Discriminant analysis

ninenationsall.jpg

Analysis

> setwd("D:/Data/counties/pajek")
> library(MASS)
> z <- function(x) (x-mean(x,na.rm=TRUE))/sd(x,na.rm=TRUE)
> options(digits = 3)
> col <- c("orange",palette()[2:8])
> c9 <- c("New England","Foundry","Dixie","Islands","Mexamerica","Ecotopia",
+   "Empty Quarter","Bread basket")
> load("rankDat.RData")
> C9 <- read.csv("../9nations/9nations.clu",header=FALSE,skip=1)$V1
> names(da)
 [1] "STCOU"                                "Areaname"                            
 [3] "AGE050200D"                           "BZA115203D"                          
 [5] "CLF040200D"                           "EDU635200D"                          
 [7] "EDU685200D"                           "HSG045200D"                          
 [9] "HSG495200D"                           "INC610199D"                          
[11] "INC910199D"                           "IPE010200D"                          
[13] "IPE120200D"                           "IPE220200D"                          
[15] "LFE305200D"                           "PIN020200D"                          
[17] "POP050200D"                           "POP060200D"                          
[19] "POP165200D"                           "POP225200D"                          
[21] "POP255200D"                           "POP285200D"                          
[23] "POP325200D"                           "POP405200D"                          
[25] "POP645200D"                           "VST020200D"                          
[27] "VST220200D"                           "VST420200D"                          
[29] "WAT130200D"                           "P.pop.under5"                        
[31] "P.pop.under18"                        "P.pop.over85"                        
[33] "P.ind.fam.farms"                      "P.land.farms"                        
[35] "P.irrigatedLand"                      "P.violent.crime"                     
[37] "P.murders"                            "P.rapes"                             
[39] "P.16to19.notHighSc"                   "P.Hisp.Latin"                        
[41] "R.Hisp.Lat.maleFemale"                "P.emply.ind.AGR.FOR.FISH.HUNT.MINING"
[43] "P.emply.ind.CONSTRUCTION"             "P.emply.ind.MANUFACTORING"           
[45] "P.emply.ind.WHOLESALEtrade"           "P.emply.ind.RETAILtrade"             
[47] "P.emply.ind.TRANSPORT.WAREHOUSING"    "P.emply.ind.INFORMATION"             
[49] "P.emply.ind.FINANC.INSUR"             "P.emply.ind.PROFscientTECH"          
[51] "P.emply.ind.EDUC.HEALTH"              "P.emply.ind.ARTSaccomFOOD"           
[53] "P.emply.ind.PUBLICaddmin"             "P.25overLESS9thGRADE"                
[55] "P.employ.FARMING"                     "P.employ.AGRIC.FOREST.FISH.HUNT"     
[57] "F.GOV.EXP.perCapita"                  "P.employ.GOV"                        
[59] "P.employ.GOV.stateLoc"                "P.vacantHousingUnits"                
[61] "P.occupiedHousingUnits"               "P.occupiedHousingUnitsBLACK"         
[63] "P.occupiedHousingUnitsHisLat"         "P.OWNERoccupiedHousingUnits"         
[65] "P.RENTERoccupiedHousingUnits"         "P.occupiedHousingUnitsLackingPlumb"  
[67] "P.URBANpopul"                         "P.RURALpopul"                        
[69] "P.CHANGErural90to00"                  "P.CHANGEurban90to00"                 
[71] "P.LAND"                               "P.WATER"                             
[73] "P.BELOWpovertyLevel"                  "P.ABOVEpovertyLevel"                 
[75] "P.WHITE.BELOWpovertyLevel"            "P.aINDIAN.BELOWpovertyLevel"         
[77] "P.BLACK.BELOWpovertyLevel"            "P.ASIAN.BELOWpovertyLevel"           
[79] "P.HisLat.BELOWpovertyLevel"           "CHANGEperCapitaIncome89to99"         
[81] "P.CHANGEemployIndustry90to00"         "P.IrrigationGROUNDwaterUse"          
[83] "GroundWaterUsePerCapita"              "P.NET.DOMESTIC.MIGRATIONS"           
[85] "P.NativePopulationBornInStateOfRes"   "R.LABOR.FORCEmaleFemale"             
[87] "R.VOTING.DEMOCRATESoverREPUBLICANS"   "P.PUBLIC.SCHOOL.ENROLNEMT"           
[89] "TOTAL.DEPOSITSperCapita"              "CROPvaluePerFARM"                    
[91] "LIFESTOCKvaluePerFARM"                "P.CHANGEpverty95to00"    

Select variables and apply LDA

      
> del <- c(1,2,4,6,9,10,11,14,15,20,25,30,33,35,36,37,38,39,40,41,42,45,46,48,
+   52,53,56,57,58,60,61,62,63,65,67,69,71,72,73,74,75,76,77,78,79,81,82,89,90,91)
> V <- da[,-del]
> C <- C9[complete.cases(V)]; V <- na.omit(V); X <- apply(V,2,z) 
> L <- lda(C ~ ., data.frame(X))
> Y <- X %*% L$scaling
> Z <- matrix(0,8,7); cp <- numeric(8); colnames(Z) <- colnames(Y); rownames(Z) <- c9
> for(j in 1:7){for(i in 1:8){Ci <- C==i; cp[i] <- sum(Y[,j][Ci])/sum(Ci)}; Z[,j] <- cp}
> colnames(X)
 [1] "AGE050200D"                         "CLF040200D"                        
 [3] "EDU685200D"                         "HSG045200D"                        
 [5] "IPE010200D"                         "IPE120200D"                        
 [7] "PIN020200D"                         "POP050200D"                        
 [9] "POP060200D"                         "POP165200D"                        
[11] "POP255200D"                         "POP285200D"                        
[13] "POP325200D"                         "POP405200D"                        
[15] "VST020200D"                         "VST220200D"                        
[17] "VST420200D"                         "WAT130200D"                        
[19] "P.pop.under18"                      "P.pop.over85"                      
[21] "P.land.farms"                       "P.emply.ind.CONSTRUCTION"          
[23] "P.emply.ind.MANUFACTORING"          "P.emply.ind.TRANSPORT.WAREHOUSING" 
[25] "P.emply.ind.FINANC.INSUR"           "P.emply.ind.PROFscientTECH"        
[27] "P.emply.ind.EDUC.HEALTH"            "P.25overLESS9thGRADE"              
[29] "P.employ.FARMING"                   "P.employ.GOV.stateLoc"             
[31] "P.OWNERoccupiedHousingUnits"        "P.occupiedHousingUnitsLackingPlumb"
[33] "P.RURALpopul"                       "P.CHANGEurban90to00"               
[35] "CHANGEperCapitaIncome89to99"        "GroundWaterUsePerCapita"           
[37] "P.NET.DOMESTIC.MIGRATIONS"          "P.NativePopulationBornInStateOfRes"
[39] "R.LABOR.FORCEmaleFemale"            "R.VOTING.DEMOCRATESoverREPUBLICANS"
[41] "P.PUBLIC.SCHOOL.ENROLNEMT"          "P.CHANGEpverty95to00"  

Eigen values

            
> L$svd
[1] 35.33 24.44 19.04 17.47  8.66  6.58  4.48

Means

> L$means
  AGE050200D CLF040200D EDU685200D HSG045200D IPE010200D IPE120200D PIN020200D POP050200D
1     0.2461    -0.7521    1.27580     -0.294    0.80568     -0.800     1.0512     -0.232
2    -0.0154    -0.0811    0.22483     -0.191    0.64007     -0.627     0.5761     -0.215
3    -0.1407     0.1795   -0.29581      0.396   -0.28066      0.389    -0.3076      0.194
4     0.5392    -0.0334    0.75171      0.731    0.42122     -0.234     1.4466      1.231
5    -0.3591     0.7852    0.18123      0.293   -0.25593      1.004    -0.2695      0.513
6     0.1707     0.9116    0.76294      0.320    0.61818     -0.288     0.7710      0.367
7    -0.1655     0.4119    0.47245      0.442    0.15583     -0.098     0.0135      0.687
8     0.2585    -0.4403   -0.00641     -0.601   -0.00521     -0.299     0.0623     -0.439
  POP060200D POP165200D POP255200D POP285200D POP325200D POP405200D VST020200D VST220200D
1     0.1636     0.3773     -0.477    -0.1801     0.2739    -0.3142    -0.6422     -0.399
2     0.3842     0.1592     -0.248    -0.1966     0.2491    -0.2476    -0.1130     -0.213
3    -0.0286     0.1788      0.655    -0.1443    -0.1217    -0.3031     0.1968      0.121
4     0.1831    -0.4495      0.229    -0.1986     0.2183     1.5111     0.0625     -0.301
5     0.0081    -0.3509     -0.370    -0.0134     0.6589     3.0799     0.5213     -0.601
6    -0.0197    -0.1206     -0.492     0.0533     1.5352     0.3670    -0.2307     -0.383
7    -0.1166    -0.6472     -0.564     0.4538    -0.0587     0.1470     0.0760     -0.735
8    -0.1079    -0.0873     -0.473     0.1637    -0.1582    -0.0522    -0.2531      0.277
  VST420200D WAT130200D P.pop.under18 P.pop.over85 P.land.farms P.emply.ind.CONSTRUCTION
1    -0.2188    -0.2520        -0.547       -0.159       -1.244                   -0.149
2    -0.0693    -0.2098        -0.142       -0.287       -0.361                   -0.369
3     0.1577    -0.1360        -0.166       -0.328       -0.438                    0.245
4    -0.1624    -0.0748        -0.995        0.131       -0.873                    0.689
5    -0.1451    -0.0985         0.655       -0.413        0.301                    0.357
6    -0.2390    -0.0903        -0.210       -0.256       -0.893                   -0.166
7    -0.1190     0.9074         0.531       -0.514       -0.431                    0.389
8    -0.0888     0.0668         0.088        0.774        0.932                   -0.305
  P.emply.ind.MANUFACTORING P.emply.ind.TRANSPORT.WAREHOUSING P.emply.ind.FINANC.INSUR
1                    -0.103                          -0.71667                   0.7246
2                     0.501                          -0.25502                   0.2594
3                     0.373                           0.00551                  -0.1479
4                    -1.106                          -0.21620                   1.6480
5                    -0.911                          -0.13994                   0.0567
6                    -0.529                          -0.37886                   0.2713
7                    -0.916                          -0.11202                  -0.1553
8                    -0.260                           0.22751                   0.0342
  P.emply.ind.PROFscientTECH P.emply.ind.EDUC.HEALTH P.25overLESS9thGRADE P.employ.FARMING
1                     0.8633                  0.7379               -0.709           -0.738
2                     0.4109                  0.0882               -0.645           -0.601
3                    -0.0298                 -0.2744                0.424           -0.313
4                     1.7905                 -1.0553                0.119           -0.603
5                     0.3004                  0.0835                1.115            0.237
6                     0.9210                 -0.0924               -0.646           -0.462
7                     0.1508                 -0.2195               -0.671            0.109
8                    -0.3548                  0.3257               -0.191            0.677
  P.employ.GOV.stateLoc P.OWNERoccupiedHousingUnits P.occupiedHousingUnitsLackingPlumb
1              -0.38587                     -0.7861                             -0.139
2              -0.35897                      0.1218                             -0.266
3              -0.16898                      0.2077                              0.155
4              -0.49912                     -0.7835                             -0.243
5               0.49790                     -0.7036                              0.518
6              -0.00578                     -0.5189                             -0.121
7               0.31431                     -0.6237                              0.301
8               0.23853                      0.0487                             -0.231
  P.RURALpopul P.CHANGEurban90to00 CHANGEperCapitaIncome89to99 GroundWaterUsePerCapita
1      -0.2962             -0.1259                      0.5128                 -0.2402
2      -0.4328              0.1408                      0.3481                 -0.2329
3       0.1161              0.0427                     -0.1036                 -0.1396
4      -1.6247              1.6085                      0.4227                 -0.0559
5      -0.4925              0.4100                     -0.2739                 -0.0921
6      -0.7936              0.6477                      0.3800                 -0.1015
7      -0.0191              0.3893                     -0.0318                  0.2172
8       0.2012             -0.3284                     -0.0234                  0.2608
  P.NET.DOMESTIC.MIGRATIONS P.NativePopulationBornInStateOfRes R.LABOR.FORCEmaleFemale
1                     0.367                            -0.6505                 -0.7467
2                     0.110                             0.3750                 -0.2044
3                     0.250                             0.0861                 -0.1101
4                     0.413                            -2.8180                  0.6596
5                    -0.265                            -0.3160                  0.5978
6                     0.391                            -1.2741                 -0.0197
7                    -0.180                            -1.2116                  0.5653
8                    -0.334                             0.2445                  0.0315
  R.VOTING.DEMOCRATESoverREPUBLICANS P.PUBLIC.SCHOOL.ENROLNEMT P.CHANGEpverty95to00
1                             1.0033                    0.0193              0.02006
2                             0.2861                   -0.2197              0.00414
3                             0.0884                   -0.0807             -0.06495
4                             0.6238                   -0.1367              0.01008
5                             0.3084                    0.1586              0.01669
6                             0.4788                   -0.1623              0.28849
7                            -0.5218                    0.0682              0.70853
8                            -0.2523                    0.1644             -0.12594
> 

LD

> L$scaling
                                        LD1      LD2      LD3      LD4     LD5      LD6     LD7
AGE050200D                         -0.19321 -0.27029 -0.07838 -0.18939  0.0324  0.17692 -0.2236
CLF040200D                         -0.23279 -0.16970 -0.42048  0.24260 -0.5185 -0.50753 -0.0554
EDU685200D                         -0.34606 -0.29554 -0.10665  0.55260  0.6720  0.49740 -0.8581
HSG045200D                          0.31049 -0.38326  0.08723  0.15970 -0.1444 -0.26211 -0.2197
IPE010200D                          0.40863  0.45772 -0.08454 -1.04235 -0.1245  0.04427 -0.1879
IPE120200D                          0.53126 -0.14493 -0.03626 -0.58331  0.0667  0.09255 -0.3726
PIN020200D                          0.01218  0.26630 -0.39492 -0.11836  0.3200 -0.22928  0.4740
POP050200D                         -0.20949  0.05744 -0.00586  0.35028 -0.0995  0.17091  0.4661
POP060200D                          0.12483  0.11737  0.00969  0.02559 -0.4378  0.37707  0.0985
POP165200D                          0.36002 -0.14928  0.15386 -0.22683 -0.1089 -0.08121  0.0470
POP255200D                          0.67531 -0.29057  0.55964  0.23297 -0.1025 -0.05190  0.4687
POP285200D                          0.05811 -0.04507  0.32360  0.12240 -0.0184 -0.17351  0.4047
POP325200D                         -0.14312 -0.35573  0.17062 -0.00764 -0.2254 -0.75603 -0.6825
POP405200D                         -0.84971 -1.22271  0.34310 -0.71129 -0.0925  0.19792  0.2508
VST020200D                          0.19047  0.20146  0.06047  0.14449 -0.1151  0.12283  0.0183
VST220200D                          0.28040  0.01461 -0.06267  0.02276 -0.2133 -0.00544 -0.2803
VST420200D                         -0.00046  0.03042  0.01638  0.01518 -0.0276  0.05512 -0.0156
WAT130200D                         -0.05291 -0.06392 -0.26477  0.27276 -0.1759  0.21683  0.0797
P.pop.under18                      -0.77459  0.02812 -0.47160  0.27963  0.2129  0.24931 -0.6446
P.pop.over85                       -0.63665  0.20864  0.27415  0.29802  0.3297 -0.48102  0.4767
P.land.farms                       -0.36913  0.05739  0.72286  0.11401 -0.4329 -0.02445  0.0411
P.emply.ind.CONSTRUCTION           -0.02916 -0.18100  0.06812  0.12769  0.2036  0.04944 -0.0745
P.emply.ind.MANUFACTORING           0.17776 -0.02170 -0.07359 -0.55273  0.1043  0.11520  0.0750
P.emply.ind.TRANSPORT.WAREHOUSING   0.05091  0.04368  0.16428  0.05347  0.0880 -0.00308 -0.0572
P.emply.ind.FINANC.INSUR           -0.06735  0.09229  0.23081 -0.15488  0.2067  0.05418  0.2841
P.emply.ind.PROFscientTECH          0.17727 -0.19581 -0.12903 -0.26031 -0.2808 -0.00819  0.5369
P.emply.ind.EDUC.HEALTH             0.01863  0.20412 -0.10165 -0.35368  0.0519  0.20718  0.0399
P.25overLESS9thGRADE                0.55273 -0.03545  0.44980  0.32296  0.7085  0.03011 -0.0513
P.employ.FARMING                   -0.08291  0.12381 -0.10990  0.22164  0.0382 -0.30697 -0.0663
P.employ.GOV.stateLoc              -0.03595 -0.09457  0.16234  0.07923 -0.1452 -0.07831 -0.1049
P.OWNERoccupiedHousingUnits         0.23631 -0.18043  0.20105  0.36389 -0.2160 -0.16008 -0.0354
P.occupiedHousingUnitsLackingPlumb -0.09287 -0.04893 -0.18635  0.07350 -0.1452  0.16486  0.0247
P.RURALpopul                        0.12518  0.00888  0.06600 -0.33108  0.2040  0.30879 -0.3026
P.CHANGEurban90to00                 0.11015  0.00659 -0.06433 -0.25165 -0.0605 -0.00596  0.1754
CHANGEperCapitaIncome89to99        -0.06011 -0.15386  0.29047  0.21044 -0.4346 -0.07034 -0.1179
GroundWaterUsePerCapita             0.07275  0.07020  0.11817 -0.14831  0.0959 -0.17232  0.0320
P.NET.DOMESTIC.MIGRATIONS           0.02588 -0.02753  0.07263 -0.15229  0.2493 -0.26705 -0.3171
P.NativePopulationBornInStateOfRes -0.09554 -0.01021  0.25747 -0.61473 -0.5146  0.29488 -0.2382
R.LABOR.FORCEmaleFemale             0.24305 -0.06548  0.17806 -0.10527 -0.2714 -0.01506  0.4563
R.VOTING.DEMOCRATESoverREPUBLICANS -0.23058  0.22968 -0.09197 -0.28159  0.5331 -0.14815 -0.0838
P.PUBLIC.SCHOOL.ENROLNEMT           0.00368 -0.01734  0.04209  0.07687  0.0897  0.07223 -0.0201
P.CHANGEpverty95to00                0.01812  0.01476 -0.06988  0.13598 -0.1132  0.04762 -0.2117

Centers

> Z
                    LD1    LD2    LD3    LD4     LD5      LD6      LD7
New England   -0.487371  1.040 -2.109 -1.559  2.4103  0.45916 -0.22428
Foundry        0.000119  0.750 -0.937 -1.516 -0.5228  0.09901  0.08922
Dixie          1.930004 -0.327  0.239  0.177  0.0373 -0.00244 -0.01740
Islands       -0.521521 -2.252 -0.645  0.626  1.9537 -1.38047  4.23150
Mexamerica    -2.945949 -4.268  0.771 -1.004  0.0208  0.20593 -0.04802
Ecotopia      -1.207992 -1.032 -2.048 -0.134  0.1092 -1.98706 -0.36186
Empty Quarter -1.377872 -0.459 -1.949  1.817 -0.2202  0.30408  0.01749
Bread basket  -1.547266  0.927  0.753  0.210  0.0435 -0.04461 -0.00498
> 

Descriptions

> opisLD <- function(i) {l <- L$scaling[,i]; l[which(abs(l)>0.5)]}
> for(i in 1:7) {cat('*** LD',i,' :\n',sep=''); print(opisLD(i)); cat('\n')}
*** LD1 :
          IPE120200D           POP255200D           POP405200D        P.pop.under18 
               0.531                0.675               -0.850               -0.775 
        P.pop.over85 P.25overLESS9thGRADE 
              -0.637                0.553 

*** LD2 :
POP405200D 
     -1.22 

*** LD3 :
  POP255200D P.land.farms 
       0.560        0.723 

*** LD4 :
                        EDU685200D                         IPE010200D 
                             0.553                             -1.042 
                        IPE120200D                         POP405200D 
                            -0.583                             -0.711 
         P.emply.ind.MANUFACTORING P.NativePopulationBornInStateOfRes 
                            -0.553                             -0.615 

*** LD5 :
                        CLF040200D                         EDU685200D 
                            -0.519                              0.672 
              P.25overLESS9thGRADE P.NativePopulationBornInStateOfRes 
                             0.709                             -0.515 
R.VOTING.DEMOCRATESoverREPUBLICANS 
                             0.533 

*** LD6 :
CLF040200D POP325200D 
    -0.508     -0.756 

*** LD7 :
                EDU685200D                 POP325200D              P.pop.under18 
                    -0.858                     -0.682                     -0.645 
P.emply.ind.PROFscientTECH 
                     0.537 

Pictures

Data points and cluster centers in (LD1,LD2)

> plot(Y[,1],Y[,2],col=col[C],pch=16,cex=0.5,xlab="LD1",ylab="LD2")
> points(Z[,1],Z[,2],pch=16,cex=1.5)
> points(Z[,1],Z[,2],col=col,pch=16,cex=1)
> legend("bottomright",legend=c9,fill=col,cex=0.75)
> title("9 nations / LDA")

9natld12.pdf

Data points / pairs

> pairs(Y,col=col[C],pch=16,cex=0.3)
> title("9 nations / LDA / colors")
> pdf("9natLDAcol.pdf",width=20,height=20)
> pairs(Y,col=col[C],pch=16,cex=0.3)
> title("9 nations / LDA / colors")
> dev.off()

9natldacol.pdf

Cluster centers / pairs

> pairs(Z,col=col,pch=16,cex=1.5)
> pdf("9natPairsCen.pdf",width=10,height=10)
> pairs(Z,col=col,pch=16,cex=1.5)
> title("9 nations / LDA / centers")
> dev.off()

9natpairscen.pdf

notes/clu/counties/lda.txt · Last modified: 2017/04/12 18:43 by vlado
 
Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Noncommercial-Share Alike 3.0 Unported
Recent changes RSS feed Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki