Hierarchical mixed topological maps

N.Niang¹ & M. Ouattara²

¹ Département Imath & CEDRIC, CNAM, Paris, FRANCE ² Centre Scientifique et Technique du Bâtiment

ndeye.niang_keita@cnam.fr , mory.ouattara@cstb.fr

- 1. Introduction
- 2. Mixed topological maps
- 3. Hierarchical Mixed topological maps
- 4. Case study
- 5. Conclusion & future work

1. Introduction

A national representative survey conducted by the OQAI (http://www.air-interieur.org/)

Original study purposes : investigate links between various pollutants (VOC) and several others variables and to classify dwellings across France on their air quality and find which factors influence this quality

- Data collected on several aspects of the dwellings themselves and households living in such as
 - Type of households (marital status, income,...)
 - Technical characteristics of the dwellings
 - Habits of inhabitants (smoke, ...)
 - Pollutants (Formaldheyde, benzene)
- Blocks of mixed variables

Several blocks of mixed variables

	Block 1			
	Quantitative Qualitative			
1	$X_{1r_1} \dots X_{1r_{p_1}}$	$X_{1b_1} \dots X_{1b_{g1}}$		
•	•	•		
•	•	•		
•	•			
n	$X_{nr_1} \dots X_{nr_{p1}}$	$X_{1b_1} \dots X_{1b_{q1}}$		

HCSDA-11,October 27th- 29th 2011 Beijing, China

...

6 Introduction

Preliminary study purpose (from OQAI):

Find a clustering of dwellings specific to each block
 Integrated analysis to have a global synthesis using all the available information

Problem : two-level clustering with mixed variables structured in blocks

Introduction

Clustering with mixed variables

Clustering on principal components from
 Mutliple factor analysis (Pagès)
 Categorical principal component analysis (Tenenhaus M.)

Reduce and cluster simultaneously
 Factorial K-Means (Vichi & Kiers)
 Reduced K-means (De Soete & Carroll)

Our proposition: Hierarchical MTM

2. Mixed topological maps

Kohonen self-organized maps

Neural network unsupervised learning method

Achieves both tasks of projection and clustering
Allows visualization of clusters

SOM consists of neurons organized on a regular two dimensions grid C called map

Kohonen self-organized maps

Undirected graph

- Distance δ(c,r): length of the shortest path on C between cells c and r
- Neighborhood relation defined by a kernel function based on δ and parameterized by T to control the size of the neighborhood
- The neurons are connected to adjacent neurons by the neighborhood relation and that yields the structure of the map on which similar objects should be close together on the grid

Kohonen self-organized maps

- Training data set $A = \{z_i \in \Re^p, i=1...n\}$
 - each cell is associated to referent vector w initialised with random samples from A
- Parameterized Cost function to minimize:

$$J_{SOM}^{T}(\boldsymbol{\chi}, \boldsymbol{w}) = \sum_{\boldsymbol{z}_{i \in A}} \sum_{r \in C} K^{T}(\delta(\boldsymbol{\chi}(\boldsymbol{z}_{i}), r)) \| \boldsymbol{z}_{i} - \boldsymbol{w}_{r} \|^{2}$$

K-means with a weigthed euclidian distance

HCSDA-11,October 27th- 29th 2011 Beijing, China

Backaro

SOM algorithm: two steps

Assigning step $\chi_T(z) = \arg\min_{r \in C} d_T(z, w_r)$

Gives a partition of the data $P_c = \{Z \in E/\chi(Z) = c\}$

Minimization step $W_{c}^{T} = \frac{\sum_{r \in C} K^{T} (\delta(c, r)) Z_{r}}{\sum_{r \in C} K^{T} (\delta(c, r)) n_{r}}$

ONLY for quantitative variables

Mixed topological maps (Lebbah 2005)

Quantitative Variables/Qualitative Variables

Kohonen Maps

 $P_c = \{Z \in E/\chi(Z) = c\}$

$$I_{MTM}^{T}(\chi, w) = \sum_{z_{loc}} \sum_{c \in C} \kappa^{T} \left(\delta(\chi(z_{l}), c) \right) * D$$

 $D(z_{i'}w_c) = \|z_i - w_c\|^2 = \|z_i^r - w_c^r\|^2 + \|z_i^b - w_c^b\|^2 = \|z_i^r - w_c^r\|^2 + 6\mathcal{H}(z_i^r, w_c^b)$

HCSDA-11,October 27th- 29th 2011 Beijing, China

14 *Background*

MTM algorithm

$$w_{c}^{r} = \frac{\sum_{z_{i \in E}} \kappa \left(\delta(\chi(z_{i}), r)\right) z_{i}^{r}}{\sum_{z_{i \in E}} \kappa \left(\delta(\chi(z_{i}), r)\right)}$$

$$W_{c}^{bk} = \begin{cases} 0 \ si \sum_{z_{i \in A}} \kappa \left(\delta(\chi(z_{i}), r) \right) \left(1 - z_{i}^{bk} \right) > \sum_{z_{i \in A}} \kappa \left(\delta(\chi(z_{i}), r) \right) z_{i}^{bk} \\ 1 \ sinon \end{cases}$$

3. Hierarchical mixed topological maps

HCSDA-11,October 27th- 29th 2011 Beijing, China

Our proposition Apply MTM to each data set and use AHC

Apply MTM on the new data set built by horizontal merging of level one results weighted if necessary

Like Wold's HPCA

HCSDA-11,October 27th- 29th 2011 Beijing, China

Level 2 data set

HCSDA-11,October 27th- 29th 2011 Beijing, China

Level 2 data set

HCSDA-11,October 27th- 29th 2011 Beijing, China

4. Case study

HCSDA-11,October 27th- 29th 2011 Beijing, China

Real data *from OQAI national survey* (<u>http://www.air-interieur.org/</u>)

blocks of mixed variables measured on 567 dwellings

Level 1 : Map of each block of variables after MTM+AHC

Block of inhabitants profiles interpretation

	_			
Cluster 5 Young	Cluster 4 Large family		Cluster 6 Large families	
without children	young children under 10 years		Young	
Very low income	under 10 years		large income	
Cluster 2 Couples without children Average Income		Cluster 3 Large family		
Cluster 1 Elderly Low income		children over 10 years Large income		

Block of dwellings characteristics interpretation

Cluster 4 Old individual big house all in one high rate of tiled floor low rate of carpenter PVC and agglomerated we High rate of equipment connected to Smoke conduit	Cluster 5 individual big house all in one High rate of wood	
Cluster 2 Old collectif Small dwellings Low rate of equipment connected to Smoke conduit Low rate of tiled floor	Clus ⁻ Rece	ter 3 ents dwellings
Cluster 1 Recents collectif Small dwellings Low rate of equipment connected to Smoke conduit low rate of solid wood furniture low rate of tiled floor	high rate of tiled floor high rate of solid wood furniture high rate of stratified wooden floors	

Level 2 : Map of HMTM+AHC on the referents data set

Interpretation with pollutants

	 CI 3 Big house All in one He lived alone low incomes Cleaning their home a lot High concentration of acrolein 	 CI 4 Big old house All in one there are couples moderately clean their home high concentration of toluene 		
CI 6 Recent Collective housing				
Occupied	Occupied by young people with two children under 10 years			
moderately clean their homes				
low concentration of benzene and Dichlorobenzene				
CI 7 Recent Collective housing				
young people with one children over 10 years slightly clean their homes				26

Level 2 : Map of HMTM+AHC on the partition data set

Rand index comparison

Rand	Dw Char	Inhabit	Habits	НМТМ	MTM
Dw Char	1	0,69	0,70	0,87	0.73
Inhabit		1	0,72	0,74	0.67
Habits			1	0,75	0.67
НМТМ				1	0.73
MTM					1

5. Conclusion & future work

Closing Remarks

We present a two steps method for clustering individuals described by mixed variables structured in homogeneous blocks giving both

- Iocal synthesis of each block information
- global summary, consensus of local clustering
- The proposed method applied to indoor air pollution data gives interesting insights for the OQAI

Future work

- Development of MTM: other distance for mixed variables
- Comparative studies with other methods: FKM, RKM, tandem approaches
- Other cluster validity indexesAdaptative weights to be found
- Extend the method to indoor air quality of offices

REFERENCES

- Lebbah M., Chazotte A., Badran F., Thiria S. (2005) Mixed Topological Map, ESANN 2005, Bruges April
- Pagès J. (2004) Analyse factorielle de données mixtes, in : *Revue de statistique appliquée*, 52, 93-111.
- Tenenhaus M., Young F. (1985) An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data, in: *Psychometrika*, 50, 91-119.
- Timmerman M., Ceulemans E., Kiers H., Vichi M. (2010) Factorial and reduced K-means reconsidered, in: CSDA, 54, 1858-1871.
- Wold S., Kettaneh N., Tjessem K. (1996) Hierarchical Multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection, in: *Journal of chemometrics*, 10, 463-482.