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Machine learning

Ω n, p( ) X1 … Xp Y

ω1 x11 … x1p y1
  …  
ωn xn1 … xnp yn

Ω n, p( ) X1 … Xp

ω1 x11 … x1p
  … 
ωn xn1 … xnp

Build a predictive model      for  

Cluster the individuals  
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d n,n( ) ω1 … ωn

ω1 d11 … d1n
  … 
ωn dn1 … dnn

Dissimilarity/Similarity/… 
is a common tool for many 
algorithms  
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Topological learning

Focuses on other aspects that only density.

Ω
Dataset 

Shape 

Density 

Topology 
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Framework : Topological Graphs

Let us assume that the feature space is R = IRp and we have 2
class-problem.
There are plenty of ways to define the topology of the learning
the dataset.
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Topology of Voronoi’s Diagram

Feature space is partitioned by the dataset; each part
defines the area of influence;
Two points are neighbors if they share a common border;
the graph brought about by the links between neighbors is
the Delaunay’s Polyhedron.
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Topology of Delaunay’s polyhedron
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Property: all set of P + 1 neighbors of the p-dimensional space
are on tangents of an empty hypersphere.

Topology of Delaunay’s polyhedron
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Building Delaunay’s graph or Vornoi’s Diagram is
intractable in high dimension feature space
Delaunay’s Graph is a related graph
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Gabriel’s Graph (GG)

X1

X2

Gabriel’s Graph is a related graph
It feasible O(n2) even in high dimension space
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Relative Neighborhood Graph (RNG)

X1

X2

Relative Neighborhood Graph is a related graph
RNG ⊂ GG ⊂ DG
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Minimum Spanning Tree (MST)

X1

X2

MST is a related graph
MST ⊂ RNG ⊂ GG ⊂ DG
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Learnability

- Definition
The classes are not LEARNABLE if the learning data set in the
feature space have been randomly labeled: P(ci/X ) = P(ci)
Example :

X1

Xi Xp

the classes are not

easily separable

it will be difficult to

find a method that

can produce a reliable

model

In such case, the underlying problem of machine learning is not
learnable. New insights in topological learning 13/ 29
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X1

Xi Xp

the classes seem to

be well separable

a machine learning

method can probably

find a model of these data

In that case, the classes are separable, therefore There exists,
potentially, a machine learning algorithm capable to produce a
reliable model ϕ, consequently, we can launch the screening
process.
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Statistic of the cut edges

 1),(I

 0),(I

I = 14 couples belonging to two different classes
J = 61 couples belonging to the same class
PJ = I

I+J = 18,6% ; 1 ≤ PJ < 7n

What would be this proportion in random labeling ?
New insights in topological learning 15/ 29
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Distribution of I and J under the null hypothesis

H0: The vertices of the graph are randomly labeled according
to the same probability πk for the class k , k = 1, . . . ,K . We
have established in

Zighed et al. (2002) "Separability Index in Supervised
Learning", LNAI 2431, pp. 475-487, .
Zighed et al. (2005) "A statistical approach of class
separability", App. Stochastic Models in Bus. and Ind., Vol.
21, No. 2, , pp. 187-197.

the law of I and J for K classes.
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Comparing proximity measures

- Proximity measure = dissimilarity/similarity/ressemblance/...

- In many domains, such as information retrieval, clustering,
classification... the choice of a proximity measure plays a key
role in the final result.

- There are dozens of proximity measures
- Are they all equivalent ?
- How can we differentiate them ?
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Comparison based on preordonnance/topology

Definition of equivalence in preordonnance
Let us consider two proximity measures ui and uj to compare. If
for any quadruple (x , y , z, t), we have:
ui(x , y) ≤ ui(z, t)⇒ uj(x , y) ≤ uj(z, t) then, the two measures
are considered equivalent.

S(ui ,uj) is an index of similarity between proximity measures.
S(ui ,uj) =

1
n4

∑
x
∑

y
∑

z
∑

t δij(x , y , z, t)
where δij(x , y , z, t) =
{ 1 if [ui(x , y)− ui(z, t)]× [uj(x , y)− uj(z, t)] > 0

or ui(x , y) = ui(z, t) and uj(x , y) = uj(z, t)
0 otherwise

S ∈ [0,1] and the complexity : O(n4)
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Definition based on topological graphs
To each proximity measure ui we can associate a
neighborhood graph Vi from which we can say that two
proximity measures ui and uj are equivalent if the topological
graphs Vi and Vj induced are the same.

S(ui ,uj) =
1
n2

∑
x∈Ω

∑
y∈Ω δij(x , y)

where δij(x , y) =
{ 1 if Vui (x , y) = Vuj (x , y)

0 otherwise
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Some results

If it exists a strictly monotonic function f such that ui = f (uj)
then if the preorder is preserved this implies that the
topology is preserved and vice versa.
In the context of topological structures induced by the
graph of relative neighbors, if two proximity measures ui
and uj are equivalent in preordonnance, they are
necessarily topologically equivalent.
Both approaches give different results and they are,
generally, sensitive to the dataset.
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Dendogram for topological comparison
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Dendogram for preordonance comparison
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Topological random classification

Ω n, p( ) X1 … Xp Y

ω1 x11 … x1p y1
  …  
ωn xn1 … xnp yn
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Fig. 1. Graph of relative neighbours
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Fig. 2. Gabriel graph

1. Sampling procedures : From the training data set El which is an n ⇥ p table of
values, we carry out M random samples. The sampling can be achieved in different
ways :

– sampling on rows with or without replacement;
– sampling on columns ;
– building new columns by linear combination of some existing ones (oblique

projection);
– generate new individuals by linear combination of columns;
– add randomly x% of rows and/or column.

Each sample produced leads to a specific classifier.
2. Aggregating function :

Generally, the aggregating function is based on the majority rule vote. However,
many other possibilities could be used [15], among them, we may cite :

– Vote of classifiers which aggregates the responses of each classifier and nor-
malize them. The majority vote is a particular case of this one.

– minimum, maximum, or average vector where the score for each class is the
minimum, maximum or the mean of the answers for all the classifiers.

– Weighted version (majority or mean)
– Maximum Likelihood calculated as the product of the answers for all the clas-

sifiers, for each class. The winner class is one that has de highest value.
– Naive Bayes [15].
– Decision Templates [15]. This method is based on the concept of Decision Tem-

plate which is the average vector over the individual of a test sample belonging
to each class and a Decision Profile which is the set of responses of all clas-
sifier. The member ship class is determined according an Euclidian distance
between the Decision profile and the Decision Template. The winner class is
these that minimize this diantance.

– Linear Regression in this method, we assumed that the probability of a class is
the linear combination of the probabilities of class for each classifier.
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1. Sampling procedures : From the training data set El which is an n ⇥ p table of
values, we carry out M random samples. The sampling can be achieved in different
ways :

– sampling on rows with or without replacement;
– sampling on columns ;
– building new columns by linear combination of some existing ones (oblique

projection);
– generate new individuals by linear combination of columns;
– add randomly x% of rows and/or column.

Each sample produced leads to a specific classifier.
2. Aggregating function :

Generally, the aggregating function is based on the majority rule vote. However,
many other possibilities could be used [15], among them, we may cite :

– Vote of classifiers which aggregates the responses of each classifier and nor-
malize them. The majority vote is a particular case of this one.

– minimum, maximum, or average vector where the score for each class is the
minimum, maximum or the mean of the answers for all the classifiers.

– Weighted version (majority or mean)
– Maximum Likelihood calculated as the product of the answers for all the clas-

sifiers, for each class. The winner class is one that has de highest value.
– Naive Bayes [15].
– Decision Templates [15]. This method is based on the concept of Decision Tem-

plate which is the average vector over the individual of a test sample belonging
to each class and a Decision Profile which is the set of responses of all clas-
sifier. The member ship class is determined according an Euclidian distance
between the Decision profile and the Decision Template. The winner class is
these that minimize this diantance.

– Linear Regression in this method, we assumed that the probability of a class is
the linear combination of the probabilities of class for each classifier.

Geometrically, this property means that the hyper-lunula (the intersection of the
two hyper-spheres centered on two points) is empty. The set of couples that meet this
property bring about a related graph such as that shown in Figure 2. For the example
shown, the proximity measure used is the Euclidean distance. The topological graph is
fully defined by the adjacency matrix as in the Figure 2.
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Vu . . . x y z t u . . .
...

...
...

...
...

...
... . . .

x . . . 1 1 0 0 0 . . .
y . . . 1 1 1 1 0 . . .
z . . . 0 1 1 0 1 . . .
t . . . 0 1 0 1 0 . . .
u . . . 0 0 1 0 1 . . .
...

...
...

...
...

...
... . . .

1
CCCCCCCCCCCCCA

Fig. 2. Topological graph built on RNG property.

In order to use the topological approach, the property of the relationship must lead
to a related graph. Among the various possibilities to define the binary relationship,
we can use the property of the Gabriel Graph or any other algorithm that leads to a
related graph such as the Minimal Spanning Tree, MST. For our work, we only use the
Relative Neighborhood Graph, RNG, because of the relationship that exists between
those graphs [16].

3.2 Similarity between proximity measures in topological frameworks

From the previous material, using topological graphs (represented by an adjacency ma-
trix), we can evaluate the similarity between two proximity measures via the similarity
between the topological graphs brought about by each one. To do so, we just need the
adjacency matrix associated with each graph. The workflow is represented in Figure 3.

⌦(n,p)

matrix of
dataset

ui(x, y)

u13 place
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or more
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holder text
or more
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proximity
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Vui

Vu13
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some ran-
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Vuj
place

holder text
some ran-
dom

Vui place
holder text
or some
random

Vu1

Adjacency
matrix

S(Vui
,Vuj

)

similarity
matrix

Fig. 3. Workflow of topological equivalence

Note that Vui and Vu j are the two adjacency matrices associated with both proximity
measures. To measure the degree of similarity between the two proximity measures, we
just count the number of discordances between the two adjacency matrices. The value
is computed as:

S(Vui ,Vu j) = 1
n2 Âx2W Ây2W di j(x,y)

K-random sampling on 
the learning sample 

(n,p) 

K-Classifier based on 
the neighborhood 

graph 
(RNG) 

Φ

ϕ1

ϕk

ϕK

Y ω( ) =Φ ϕ1 ω( ),…,ϕk ω( ),…,ϕK ω( )( )

Aggregation  
Function 
(Decision 
Template) 

Learning 
sample 
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Evaluation

TRC has been compared to
- kNN with k = 1, 2, 3.
- Decision tree/CART : random forests (RFs),
- SVM : K support vector machines (KSVMs),
- Adaboost,
- Discriminant analysis (DA),
- logistic regression (RegLog)
- C4.5.
All was done with R software.
- We used 14 quantitative data sets from UCI repository.
- We ran the same protocol over all the methods mentioned
- For each experiment, we applied 10-Cross Validations
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Results

Algorithm Average rank / X validation
TRC 2.88

Random Forest 3.19
Ksvm 4.04
1-NN 4.15
3-NN 4.58

AdaBoost 5.06
LDA 6.58
2-NN 7.04
C4.5 7.46

Log. Reg 7.56
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Working in the topological framework generates new
issues and provide some efficient tools to address some
basic question in machine learning
We are just opening the door : many works are undergoing
: feature selection, building an efficient representation
space, discrimination without an explicit raws/Columns
data (social networks), testing other definitions of topology,
working on the shape of data...
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Thank you
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