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9.1 Introduction

Most networks examined so far involve connections between nodes all of the same type,
known as one-mode networks. There are circumstances in which the nodes are of different
types and the connections are only between different types of nodes, and not between
nodes of the same type. We refer to these as multimode networks, some authors call these
multiway networks. A simple example consists of nodes made up of authors and journals.
An author is connected to a journal if they have published a paper in that journal. Since we
have two types of nodes, authors and journals, this results in a 2-mode network. There are
many examples of 2-mode networks such as people attending events [16], legislators being
members of committees [38], directors serving on boards [13], companies collaborating
on projects [39] etc. In principle there is no reason to limit the node types to two, we
could have three or more. An example of a 3-mode dataset would be criminal by crime by
victim. Such datasets are less common and we shall concentrate at first on 2-mode datasets
and discuss general multi-mode approaches later in the chapter.

For clarity of exposition, when considering 2-mode data we shall refer to one mode as
actors and the other mode as events. The resultant network will form a bipartite network,
that is a network in which the nodes can be divided into two groups with edges only oc-
curring between the groups and not within the groups (note that a one mode network can
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192 PARTITIONING MULTIMODE NETWORKS

also be bipartite). If we have n actors and m events we can represent the data as an n×m
affiliation matrix A, where a(i, j) = 1 if actor i attended event j, and 0 otherwise. If the
data are valued, reflecting for example the time actor i was at event j, then we can replace
the binary entry with the value. It is normal to ignore direction in 2-mode data since in
most cases the direction is from one mode to the other; for example actors choose events
and not the other way round. One can envisage examples in which this is not the case,
for example heterosexual actors selecting members of the opposite sex indicating whom
they would be interested in dating. However, there are few techniques or datasets of this
type and so we will not discuss the issue further, but just mention it is probably worthy of
additional research work.

There have been two distinct approaches to dealing with 2-mode data. The oldest
method is to convert the data to one-mode and this is often referred to as projection. There
are two possible projections for a 2-mode affiliation matrix one resulting in an actor by
actor matrix the other in an event by event matrix. In these cases the relations are attended
an event together and had an actor in common respectively. We can capture more infor-
mation in our projections if we record the number of events each pair of actors attended
and the number of actors each pair of events had in common. These are given by AAT and
AT A respectively where AT represents the transpose of A. As Breiger [11] pointed out
in his 1974 paper these should not be seen as two independent data matrices but as dual
representations of the data. However, it became common practice to always dichotomise
the data and in many applications only one projection was considered. Clearly reducing
valued data to binary in any situation results in loss of information and this is compounded
here by ignoring one of the projections. A consequence of this approach is that there is
significant data loss resulting in an inferior analysis.

An alternative approach is to develop methods for analyzing the bipartite graph directly.
The first systematic example of this approach was due to Borgatti [7] in 1989 and further
developed by Borgatti and Everett [8]. They showed how to extend structural and regular
equivalence to multimode data directly, this was later extended to generalized blockmod-
elling by Doreian et al [19]. In essence this was a simple matter of extending the known
block structures for one mode data to block structures for multimode data. In practice these
structures require very little modification and progress in the area of blockmodelling had
until recently been entirely computational. In this chapter we shall apply both approaches
to the same data set in order to gain some insight into how the techniques perform.

9.2 2-mode partitioning

At the heart of the blockmodeling approach described in the last paragraph is a need to
optimize a cost function which captures the extent to which a given partition of the rows
and columns of the data matrix corresponds to a blockmodel. The resulting combinato-
rial optimization problem is unlikely to have a polynomial time solution and hence more
heuristic methods are required. There is no consensus on what methods will perform best
but Rosmalen et al [42] examine five different techniques on simulated data in which they
optimize using a Euclidean metric. Their test datasets were relatively small with a max-
imum value of n and m set at 120 and up to 7 clusters in the rows and columns. Their
simulations indicated a 2-mode version of the k-means method (See the paper for details)
had the best overall performance and they then validated this finding on some empirical
data.
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The study by Rosmalen et al. did not capitalize on the binary nature of any affilia-
tion matrix (provided we have non-valued data). In [12] Brusco and Steinley propose an
extension of variable neighbourhood search which did. Variable neighbourhood searches
are meta-heuristic methods in which increasingly large neighbourhoods of the current best
solution are explored. Overall the performance of their algorithm was very similar to the
2-mode k-means except in the situation that the block positions were known. In this case
their algorithm was an improvement.

The methods discussed above are quite sophisticated and the articles contain pseudo-
code which provide more details. Many of the applications apply fairly simple greedy
algorithms that prioritize efficiency over the ability to avoid local minimum, but they can
often find acceptable solutions by using many different starting positions. The techniques
we have discussed so far are very general and can be applied to many different types of
data. We now look at methods specifically designed for social network type data.

9.3 Community Detection

In a vain effort to bring some consistency to terminology we suggest that the term commu-
nity detection is used for the partitioning of a network into groups such that actors within
a group are more closely connected to each other than those in other groups, we shall refer
to these groups as communities. If we allow actors to be in more than one group, so that
groups overlap and do not insist that all actors are assigned to any group but still have
highly connected groups, we shall call these groups cohesive subgroups. A consequence
of these definitions is that community detection is a special case of blockmodeling. Block-
modeling does partition the actors but allows for more general forms of blocks which do
not have to reflect closely connected sets of actors.

In considering 2-mode networks we shall consider the problem of partitioning both
modes so that we find sets of actors and events. We will require the density of the subma-
trix containing these actors and events to be denser than the other submatrices containing
either the actors or the events. It should be noted that some authors consider the event com-
munities and the actor communities separately (see [24] for example). For single mode net-
works the most commonly used and accepted technique (although it has some well-known
short-comings [22]) is Newman’s community detection which optimizes modularity [36].
Barber [2] extended modularity to 2-mode data and developed an algorithm specifically
for this type of data. We outline these ideas below.

First we give the formula for modularity for a single mode network in matrix form.
Suppose a network with n nodes and m edges has adjacency matrix A. Let P be a matrix
of probabilities in which the i, j th entry is the probability that actor i has an edge to actor
j given that the edges are distributed at random (but with the expected degrees made to
match those in A). Given a partition of the nodes into c groups let S be the n× c indicator
matrix in which the i, j th entry is a 1 if actor i is a member of group j and 0 otherwise. Let
B = A−P then the modularity Q is given by

Q =
1

2m
Tr(ST BS) (9.1)

where Tr(X) is the trace of matrix X. In the 2-mode version the adjacency matrix is re-
placed by an affiliation matrix Ǎ and the P matrix adapted to take account of the bipartite
structure to form P̌, so that B is replaced by B̌. In addition instead of a single S indicator
matrix we need to have one matrix for each mode which we call R and T.
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1 1 1 1 1
1 2 3 4 5 6 7 8 9 1 0 2 3 4

-----------------------------------
1 EVELYN | 1 1 1 1 1 1 | 1 | 1 | |
2 LAURA | 1 1 1 1 1 | 1 1 | | |
3 THERESA | 1 1 1 1 1 | 1 1 | 1 | |
4 BRENDA | 1 1 1 1 1 | 1 1 | | |
5 CHARLOTTE | 1 1 1 | 1 | | |
6 FRANCES | 1 1 1 | 1 | | |

-------------------------------------
7 ELEANOR | 1 1 | 1 1 | | |

10 VERNE | | 1 1 | 1 | 1 |
9 RUTH | 1 | 1 1 | 1 | |

-------------------------------------
8 PEARL | 1 | 1 | 1 | |

17 OLIVIA | | | 1 1 | |
16 DOROTHY | | 1 | 1 | |
18 FLORA | | | 1 1 | |

-------------------------------------
11 MYRNA | | 1 | 1 | 1 1 |
15 HELEN | | 1 1 | 1 | 1 1 |
12 KATHERINE | | 1 | 1 | 1 1 1 1 |
13 SYLVIA | | 1 1 | 1 | 1 1 1 1 |
14 NORA | 1 | 1 | 1 1 | 1 1 1 1 |

------------------------------------

Figure 9.1: Group assignment maximizing modularity

The resultant formula has the form

Q =
1
m

Tr(RT B̌T) (9.2)

If we have c communities and our bipartite network has p actors and q events then R is
p× c, B̌ is p× q and T is q× c. Barber also proposes an algorithm, BRIM (Bipartite,
Recursive Induced Modules) which uses the singular vectors of B to recursively partition
both actors and events into groups. The algorithm does not however provide a method to
find the maximum value for c the number of groups. To overcome this he suggests starting
with c = 1, calculating Q and then keep doubling c until Q decreases. At this stage use
bisection to find the value of c which maximises Q.

As an example we apply the technique to the Southern Women Data [16] and obtain
4 groups as given in the blocked affiliation matrix in Figure 9.1. In this data the rows
correspond to 18 women and the columns to 14 social events attended by the women.

From the blocked affiliation matrix we can see that the top group of women were
the main attendees of the first 6 events and the bottom group of women attended events
10,12,13 and 14. We see that most women attended the middle pair of events with Eleanor,
Verne and Ruth all attending events 7 and 8 whereas Pearl, Olivia, Dorothy and Flora all
attended event 9 with two of them attending event 11. These groupings are similar (but not
exactly the same) to others found in this data [23].

Other authors have suggested alternative extensions for modularity see Guimera et al
[24] and Murata [35] as examples as well as other measures [43].



DUAL PROJECTION 195

9.4 Dual Projection

A common criticism of projection methods are that information is lost in the process.
This is definitely true if the projection is dichotomised or if only one projection is used.
However, some authors have claimed (without proof) that there is always data loss even
if both projections are used in their un-dichotomized form [31]. Everett and Borgatti [21]
challenge this assumption and provide evidence that it is not true. They argue that in the
vast majority of cases given two projections it is possible to recover the original matrix
and hence no information is lost. This issue has been further explored by Kirkland[26]
where he shows as the size of the matrices increases then cases of data loss decrease. He
also gives examples of when data loss does occur but these matrices are highly structured
and are unlikely to occur in real data. Everett and Borgatti therefore suggest constructing
both projections then use methods which are applicable to proximity matrices on both
projections and finally combine these, preferably using the original data. They call this
approach the dual projection approach and show how it can be used for blockmodeling,
in particular core-periphery models and briefly centrality. In a later paper [32] Melamed
explores the method as applied to community detection.

The dual projection works best when there are robust methods for analyzing the pro-
jected matrices. That is techniques that work well on proximity type data. We shall provide
two examples. Our first is a core-periphery partition, this is a blockmodel but as we shall
see the periphery is not well connected and so is not community detection. Borgatti and
Everett [10] suggest a method for dividing a proximity matrix P into a core and periphery.
This is a two stage process, the first is to find a vector C such that ||P−CCT ||2, that is
the Euclidean 2-norm, is minimized. This C then gives a core-periphery score for each
object and we sort C to form C′ so that its elements are in descending order. Let Ik be a
vector in which the first k elements are 1 and the rest are 0. We next find the value of k for
which the correlation of Ik and C′ is the highest. We now assign the first k objects in C′
to the core and the remainder to the periphery. In our dual projection method we use this
on both projections and then map these back onto the affiliation matrix A. Again using the
Southern Women data we obtain the 2-mode core periphery structure shown in Figure 9.2.

Looking at the partition in Figure 9.2 we see that the core events were the most popular
all with 8 or more attendees, whereas the peripheral events all had 6 or less. We see that
peripheral actors attend core events and core actors attend peripheral events but not as much
as core actors attending core events. The least dense area is peripheral actors attending
peripheral events, which all gives some validation to the core-periphery structure.

We can also use dual projection to do community detection. In order to not lose any
structural information we need to partition the proximity matrices (Note this is not the
approach taken by Melamed in [32] as he uses a dichotomised projection). Guimera et
al [24] do take this approach and use a simple extension to modularity to deal with the
valued data. However, they only find clusters of women and attach the relevant events
to the clustered women data. They also use the Davis data and report a straight split of
the women into two groups namely {Evelyn, Laura, Theresa, Brenda, Charlotte, Frances,
Eleanor, Ruth} and attach events 1 through 8 to this group using the weighted method.
Clearly all the other women and events belong to the second group.

We partitioned both projections into two groups in order to obtain a comparison. Rather
than use the modularity we used a fit function which used correlation between an ideal
structure matrix of a 1 for within group interaction and a 0 between groups with a Tabu
search. The results are given in Figure 9.3.
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1 1 1 1 1
8 9 6 7 5 3 4 1 2 0 1 2 3 4

-------------------------------
1 EVELYN | 1 1 1 1 | 1 1 1 1 |
2 LAURA | 1 1 1 1 | 1 1 1 |
3 THERESA | 1 1 1 1 1 | 1 1 1 |
4 BRENDA | 1 1 1 1 | 1 1 1 |

14 NORA | 1 1 1 | 1 1 1 1 1 |
7 ELEANOR | 1 1 1 1 | |
9 RUTH | 1 1 1 1 | |

13 SYLVIA | 1 1 1 | 1 1 1 1 |
---------------------------------

6 FRANCES | 1 1 1 | 1 |
8 PEARL | 1 1 1 | |

10 VERNE | 1 1 1 | 1 |
12 KATHERINE | 1 1 | 1 1 1 1 |
11 MYRNA | 1 1 | 1 1 |
5 CHARLOTTE | 1 1 | 1 1 |

15 HELEN | 1 1 | 1 1 1 |
16 DOROTHY | 1 1 | |
17 OLIVIA | 1 | 1 |
18 FLORA | 1 | 1 |

--------------------------------

Figure 9.2: Dual Projection Core-Periphery of Southern Women

1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4

-------------------------------
1 EVELYN | 1 1 1 1 1 1 1 1 | |
2 LAURA | 1 1 1 1 1 1 1 | |
3 THERESA | 1 1 1 1 1 1 1 1 | |
4 BRENDA | 1 1 1 1 1 1 1 | |
5 CHARLOTTE | 1 1 1 1 | |
6 FRANCES | 1 1 1 1 | |
7 ELEANOR | 1 1 1 1 | |
8 PEARL | 1 1 1 | |
9 RUTH | 1 1 1 1 | |

---------------------------------
10 VERNE | 1 1 1 | 1 |
11 MYRNA | 1 1 | 1 1 |
12 KATHERINE | 1 1 | 1 1 1 1 |
13 SYLVIA | 1 1 1 | 1 1 1 1 |
14 NORA | 1 1 1 | 1 1 1 1 1 |
15 HELEN | 1 1 | 1 1 1 |
16 DOROTHY | 1 1 | |
17 OLIVIA | 1 | 1 |
18 FLORA | 1 | 1 |

--------------------------------

Figure 9.3: Dual Projection Community Detection for the Davis data
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1 1 1 1 1
8 9 3 4 5 6 7 4 2 0 3 1 2 1

-----------------------------------
1 EVELYN | 1 1 1 1 1 1 | | 1 1 | |
2 LAURA | 1 1 1 1 1 | | 1 1 | |
3 THERESA | 1 1 1 1 1 1 1 | | 1 | |
4 BRENDA | 1 1 1 1 1 1 | | 1 | |
5 CHARLOTTE | 1 1 1 1 | | | |
6 FRANCES | 1 1 1 1 | | | |
7 ELEANOR | 1 1 1 1 | | | |
9 RUTH | 1 1 1 1 | | | |

-------------------------------------
17 OLIVIA | 1 | | | 1 |
18 FLORA | 1 | | | 1 |

-------------------------------------
8 PEARL | 1 1 1 | | | |

16 DOROTHY | 1 1 | | | |
-------------------------------------

11 MYRNA | 1 1 | 1 1 | | |
10 VERNE | 1 1 1 | 1 | | |
15 HELEN | 1 1 | 1 1 | | 1 |
12 KATHERINE | 1 1 | 1 1 1 1 | | |
13 SYLVIA | 1 1 1 | 1 1 1 1 | | |
14 NORA | 1 1 1 | 1 1 1 1 | | 1 |

------------------------------------

Figure 9.4: Dual Projection Community Detection for 4 groups

The results in Figure 9.3 are in close agreement with the results obtained by Guimera
et al the only difference is we have placed Pearl into the first group together with event 9.
We also applied the Louvain method [6] to both projections, while the method is local it
does have the advantage of finding the optimum number of clusters. For the Women the
method it reproduced the partition found by Guimera et al into two groups. It partitioned
the events into 4 groups with events 1 to 6 in the first group, 9 to 14 in a second group and
events 7 and 8 both in singleton clusters.

It should be noted that we cannot directly compare these methods with the 2-mode
modularity of Barber. First, we can decide to have a different number of partitions in each
mode. Secondly even if these are the same we do not necessarily have the groups defined
by the diagonal blocks i.e. we do not have communities made up of both women and events
but we partition these separately. To see this we repeat the analysis above but with 4 groups
in each partition to obtain the results shown in Figure 9.4.

Examining Figure 9.4 we see that two of the diagonal blocks are zero and so this do not
correspond to mixed mode communities. We need to examine the partitions and not the
blocks, although having both to examine helps us understand the data. For example we can
see that Olivia and Flora have been put together as they attended events 9 and 11 together
and no other events.
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9.5 Signed 2-mode networks

Heider’s balance theory [25] has a long tradition in social networks and was formulated
in network terms by Cartwright and Harary [14]. In the one-mode formulation the edges
of the network are assigned either a positive or a negative sign reflecting positive or neg-
ative sentiment. In Heider’s original formulation the actors showed positive or negative
preferences to objects and so is more analogous to 2-mode data. In our formulation the
actors attending events would see them as either positive or negative. A good example is
a set of politicians or other actors voting on propositions or resolutions in which they can
vote for it, against it or abstain. Data of this type was considered by Mrvar and Doreian
[34] where the actors were supreme court judges and Doreian et al [20] where the actors
were nation states voting in the UN. It follows that a 2-mode signed network is a 2-mode
network of actors and objects (we use objects rather than events as this is more suggestive
of the type of data that has been used) in which each edge has a positive or negative sign.
In classic balance theory a balanced (one-mode) network can be partitioned into two sets
with negative ties between the sets and positive ties within. Extended balance (Davis bal-
ance or clusterability) allows more than two clusters but still positive ties within clusters
and negative ties between. Relaxed balance [18] again allows for any number of clusters
but we now just require all the connections within a cluster to be of the same sign (positive
or negative) and all the edges between pairs of clusters must also be of the same sign. In
the 2-mode case Mrvar and Doreian retain the idea of relaxed balance, but of course given
the structure of the data no longer have within cluster links. We now formalize these ideas
but more details can be found in [20] and [18].

Let A be a signed affiliation matrix and suppose the rows are partitioned into k1 clusters
and the columns into k2 clusters so that A is partitioned into k1k2 blocks. Then we say
the clustering is ideal if none of the blocks contain both positive and negative ties. Given a
partition of A we can measure how close it is to the ideal by simply counting the number of
positive and negative violations there are in the blocks, call these P and N. These are used
to produce a measure of inconsistency given by αN+(1−α)P. The α parameter allows us
to weight either positive or negative violations more highly with a value of 0.5 weighting
them equally. Unfortunately this function can always be made zero by placing each node
in its own unique cluster. In fact Mrvar and Doreian prove a stronger result showing that
this function is monotonically decreasing with k1 and k2. It is therefore necessary to find
strategies in which the blocks remain sufficiently large. For fixed values of k1 and k2
Mrvar and Doreian propose a relocation algorithm which helps finding the minimum, but
unfortunately it can easily get caught in local minima and needs many starts to reliably
find a global minimum. As a consequence it becomes quite a challenge to partition such
data particularly given the fact we have two parameters k1 and k2 to contend with and the
computational complexity of the task. It is possible that other factors can help determine
in more detail the structure of the various blocks. This is explored in [20] but is really
only feasible because of the small size of one of the modes in the datasets, consisting of
nine supreme court judges. Some further guidance on this issue and some ideas are further
examined in [18] which has far larger mode sizes but no definitive approach is suggested.
We conclude that while some early promising work has been done in this area there are
many open issues worthy of further consideration.
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9.6 Spectral methods

One technique that has been developed for networks but has been largely ignored in the
social network community is bipartite spectral co-partitioning [17]. This technique has
the added advantage that it can handle valued 2-mode networks. In this case we have an
incidence matrix A in which A(i, j) = w indicates that i attended event j with weight w,
where higher values represent a stronger association. An example would be that the actors
are words, the events documents, and the entries in A(i, j) give then number of occasions
word i was in document j. It was in this context that Dhillon proposed this method. We
briefly outline the process but full details are given in his paper.

Given a weighted n×m affiliation matrix A then form D1 an n×n diagonal matrix with
the row sums of A on the diagonal and D2 an m×m diagonal matrix with the column sums
on the diagonal. The algorithm proceeds as follows.

1. Form An = D−
1
2

1 AD−
1
2

2 .

2. Compute the second singular vectors of An, u2 and v2. That is the eigenvectors of
AnAT

n and AT
n An corresponding to the second largest eigenvalue.

3. Form z2 =

D−
1
2

1 u2

D−
1
2

2 v2

 .

4. Run k-means on z2 to bipartition the data.

This clearly partitions the rows and columns into two and we can recursively apply the
procedure to obtain a finer partition. Alternatively Dhillon gives an extended version that
allows us to find k groups by using additional singular vectors. Let p= dlog2 ke and instead
of a vector z2 in step 3 create a matrix Z i.e.

Form Z =

D−
1
2

1 U

D−
1
2

2 V

 .

Where U = [u2 : u3 : . . . : up+1] and V is defined similarly. Again use k-means to cluster
the rows of Z with the first n rows giving the partition of the rows and the last m rows giving
the partition of the columns.

We note that this method produces groups made up of nodes from both modes as in the
Barber community detection discussed in section 3. As an example we do a two cluster
split on the Davis data and the result is shown in Figure 9.5. As can be seen this is very
similar to the dual projection community detection shown in Figure 9.3 with only event 9
moved to a different group and thus this partition agrees with that found by Guimera et al
[24] and by the Louvain method in the dual projection as discussed above.

We also obtained a split into 4 groups which involves using two of the singular vectors
to obtain the partition shown in Figure 9.6.

As we found groups of women and events we need to compare this result with the
modularity result shown in Figure 9.1. In this case the event split is nearly the same with
just event 9 moved from being with event 11 to the community containing evets 7 and 8.
This leaves event 11 in a single cluster as found by the four split in the dual projection
method. The first group of women is also similar but the effect of moving event 11 to a
singleton cluster separates out Olivia and Flora into a community pair. This has a knock
on effect on the way the rest of the women are partitioned, and although there are some
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1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4

-------------------------------
1 EVELYN | 1 1 1 1 1 1 1 | 1 |
2 LAURA | 1 1 1 1 1 1 1 | |
3 THERESA | 1 1 1 1 1 1 1 | 1 |
4 BRENDA | 1 1 1 1 1 1 1 | |
5 CHARLOTTE | 1 1 1 1 | |
6 FRANCES | 1 1 1 1 | |
7 ELEANOR | 1 1 1 1 | |
8 PEARL | 1 1 | 1 |
9 RUTH | 1 1 1 | 1 |

---------------------------------
10 VERNE | 1 1 | 1 1 |
11 MYRNA | 1 | 1 1 1 |
12 KATHERINE | 1 | 1 1 1 1 1 |
13 SYLVIA | 1 1 | 1 1 1 1 1 |
14 NORA | 1 1 | 1 1 1 1 1 1 |
15 HELEN | 1 1 | 1 1 1 |
16 DOROTHY | 1 | 1 |
17 OLIVIA | | 1 1 |
18 FLORA | | 1 1 |

--------------------------------

Figure 9.5: Spectral Bisection of the Davis Data into two groups

1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 4 2 3 1

-----------------------------------
1 EVELYN | 1 1 1 1 1 1 | 1 1 | | |
2 LAURA | 1 1 1 1 1 | 1 1 | | |
3 THERESA | 1 1 1 1 1 | 1 1 1 | | |
4 BRENDA | 1 1 1 1 1 | 1 1 | | |
5 CHARLOTTE | 1 1 1 | 1 | | |
6 FRANCES | 1 1 1 | 1 | | |
7 ELEANOR | 1 1 | 1 1 | | |

-------------------------------------
8 PEARL | 1 | 1 1 | | |
9 RUTH | 1 | 1 1 1 | | |

10 VERNE | | 1 1 1 | 1 | |
15 HELEN | | 1 1 | 1 1 | 1 |
16 DOROTHY | | 1 1 | | |
14 NORA | 1 | 1 1 | 1 1 1 1 | 1 |

-------------------------------------
13 SYLVIA | | 1 1 1 | 1 1 1 1 | |
11 MYRNA | | 1 1 | 1 1 | |
12 KATHERINE | | 1 1 | 1 1 1 1 | |

-------------------------------------
17 OLIVIA | | 1 | | 1 |
18 FLORA | | 1 | | 1 |

------------------------------------

Figure 9.6: Spectral Bisection of the Davis Data into four groups
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similarities there are also differences and it is difficult without additional information to
decide which partition is the best.

It should be noted that the method can be extended to obtain different partitions of
the rows and columns, see Kluger et al [28]. This requires different normalization and
three normalization schemes are proposed as well as a more sophisticated technique for
partitioning the rows and the columns separately. The first suggested normalization is to
make all the rows have the same mean and all the columns to have the same mean (but not
necessarily the same as the row mean). The second method suggests making all the row
means the same as all the column means. The third method involves taking the log of the
matrix L and then for each entry of L, L(i, j) = logA(i, j), subtract off its row mean, its
column mean and the overall mean of L. Finally in step 3 do not form Z but run k-means
on AV and AT U separately where U and V are constructed from the singular vectors by
selecting subsets that are the best projections. We do not give the details here and so the
interested reader should consult their paper for details.

One further approach needs to be mentioned and that is 2-mode stochastic block models
proposed by Larremore et al [29]. In brief they assume a Poisson distribution and then
search the likelihood space using a modified Kernigan-Lin algorithm. In its simple form
this tends to sort out actors purely by degree but they use a degree correction procedure to
counteract this. The degree correction explicitly takes into account the degree distribution
of the data which allows for a wide variety of empirical degree distributions. When they
use this technique on the southern women data they get exactly the same partition as the
dual projection split shown in Figure 9.3.

9.7 Clustering

So far we have examined partitioning i.e. we have insisted that every node is placed
uniquely in one group. We now relax this condition and allow nodes to be placed in more
than one group and do not insist that actors are assigned to any group. We shall only con-
sider clustering in which we are trying to find subsets of nodes which are well connected
to each other. As mentioned before we shall refer to these as cohesive subgroups. The
standard one mode definition of a clique as a maximal complete subgraph clearly can be
generalized to a biclique as a maximally complete bipartite subgraph. Such structures have
been considered in mathematics for over 400 years although not usually as subgraphs . The
use of bicliques as cohesive subgraphs in social networks was probably due to Borgatti and
Everett [9] in 1997. It is a very simple matter to extend standard clique algorithms to find
bi-cliques and the same techniques used to deal with overlap can be applied. It is also a
simple matter to extend concepts such as k-plexes, n-cliques, n-clubs, n-clans etc to the
2-mode case. We also note that since the projections result in proximity data then the vast
number of clustering algorithms that have been developed for this type of data can be used.
We should also comment that a common measure in 1-mode networks is the clustering
coefficient (or transitivity index) that attempts to capture the extent to which a network is
clustered. In this chapter we are concerned with uncovering structural patterns in terms of
finding sets of nodes rather than providing graph invariants that try and capture the extent
to which a network has a particular property. There have been a number of suggestions for
extending the clustering coefficient (and other invariants) to 2-mode data and the interested
reader should consult [30] and [37].

One area in which there has been some developments is that of k-cores and their exten-
sion to 2-mode. A k-core is an induced subgraph in which every node has degree k or more
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and was first proposed by Seidman [40] and extended to 2-mode in [1]. A k-core is not a
cohesive subgroup but any cohesive subgroups must be wholly contained in a k-core. The
concept was extended to generalized k-cores in [3] and then to 2-mode generalized cores
by Cerinšek and Batagelj [15]. The idea of a generalized core is to extend the concept of
degree to a property function defined on the nodes. For a network N = (V,L,w) with node
set V , edge set L and a weight function w : L→ R+ a property function f (v,C) ∈ R+

0 is
defined for all v∈V and C⊆V . A subset C induces the subnetwork to which the evaluation
of the property function is restricted. We can now give a formal definition of a generalized
2-mode (p,q)-core. Let N = ((V1,V2),L,( f ,g),w), V =V1∪V2 be a finite 2-mode network
– the sets V and L are finite. Let P(V ) be the power set of the set V . Let functions f and g
be defined on the network N: f ,g : V ×P(V )→R+

0 . A subset of nodes C⊆V in a 2-mode
network N is a generalized 2-mode core C = Core(p,q; f ,g), p,q∈R+

0 if and only if in the
subnetwork K = ((C1,C2),L|C,w), C1 =C∩V1, C2 =C∩V2 induced by C it holds that for
all v ∈C1 : f (v,C) ≥ p and for all v ∈C2 : g(v,C) ≥ q, and C is the maximal such subset
in V . Algorithms for finding generalized 2-mode cores are relatively straight forward and
efficient and are based on the simple idea of deleting nodes that do not satisfy the criteria.
The paper provides some examples drawn from web of science data.

9.8 More complex data

So far we have considered 2-mode static data. If there are more than two modes then
in some circumstances it is a straight forward matter to extend the 2-mode case to more
modes. As already mentioned Borgatti and Everett [8] showed how to extend regular and
structural equivalence to multimode data but they did not address the computational issues.
Batagelj et al [4] suggest a dissimilarity measure for 3-mode structural equivalence and
apply Ward’s algorithm to partition the data. They demonstrate the effectiveness of their
approach on a three way cognitive social structure.

If we have k-modes then we examine the k(k− 1)/2 collection of 2-mode networks
between every pair of modes. Let A(r,s) denote the 2-mode affiliation matrix between
mode r and mode s where r < s and s runs from 1 to k. If we wanted to extend community
detection then it is a simple matter to construct B̌(r,s) and then define Q as

Q =
1
m ∑

i< j
Tr(ST

i B̌(i, j) S j) (9.3)

Where Si is the ith mode indicator matrix. One issue is that it is now not possible to use the
spectral methods suggested described in section in section 3 in order to find a maximum
for Q. Clearly we can use other optimization methods but these will probably not be as
efficient. One solution to this problem is to simply construct an adjacency matrix Z from
B̌(i, j) . We form Z (given in blocked form) as follows:

Z(i, j) =


B̌(i, j) if i < j

B̌T
(i, j) if j < i

0 if i = j

So that Z is a square adjacency matrix in which all the modes have been included.
The fact there are not connections within the modes is captured by the zero blocks on the
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diagonal. In this case we have:

Q =
1

2m
Tr(ST ZS) (9.4)

Where m is the number of edges and S is an indicator matrix over all the modes. We can
now use spectral partitioning to maximize Q. An example of this approach for a three-
mode network is given in [33].

Looking at the other methods discussed above there does not seem any reason why
spectral bipartitioning cannot be extended in the same way but this approach does not
seem to have been explored. In this case the constructed adajacency matrix would not have
B̌(i, j) as the blocks but would use A(i, j). The one exception for extending to more than
two modes in this way is dual projection. In this instance we would not construct a large
adjacency matrix but would project all pairs of A(i, j). In this case when we have more
than two modes then the same mode appears in a number of different projection matrices.
As a consequence each mode would have a number of different partitions and this would
not generally be of use unless the goal is to find different partitions for different pairs of
modes.

We mention one further complication that is multi-mode data that involves a time ele-
ment. Both data and techniques for dealing with such data are not common. However Tang
et al [41] examine how communities evolve over time in a dynamic multi-mode frame-
work. They consider time stamped data and they try and make a smooth transition in terms
of community detection from one time stamp to the next. They present an algorithm and
an example that uses the Enron email corpus [27].

9.9 Conclusion

In this chapter we have examined partitioning and clustering in multi-mode network data.
We briefly mentioned that there are a number of techniques developed for dealing with non-
binary data or more precisely non-network type data. We have not explored those methods
in much detail as they are generally well described elsewhere. We have not discussed soft-
ware but most of the articles referenced that develop methods discuss implementations and
point to available tools. In addition we have mainly discussed methodological issues and
have not discussed applications. There are an increasing number of application areas that
are using these methods ranging from biology and information science through to sociol-
ogy and political science. A good flavour of how to interpret some of these techniques can
be gleaned from the examples in the book by Batagelj et al [5]. It should be noted that this
is a very active area for research and new methods and ideas are constantly being explored
particularly as new types of data emerge. The complexities of this type of data in terms of
collecting, analyzing and interpreting remain both challenging and deeply fascinating.
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