
Appendix: Computing all paths in Preprint

9.1 Semiring

A path is a walk in a graph with all its vertices different.
A andB set of paths on network.
A+B = A ∪B

A · B = {a • b : a ∈ A, b ∈ B}

a • b =

{

a ◦ b last(a) = first(b) ∧ set(a) ∩ set(bf(b)) = ∅
nothing otherwise

◦ is the operation ofconcatenation of paths.
∅ · A = A · ∅ = ∅
Kleene, Warshall, Floyd and Roy are contributed to the development of the procedure which

final form was given by Fletcher.

C0 := W ;
for k := 1 to n do begin

for i := 1 to n do for j := 1 to n do
ck[i, j] := ck−1[i, j] + ck−1[i, k] · (ck−1[k, k])

⋆ · ck−1[k, j] ;
ck[k, k] := 1 + ck[k, k] ;

end;
W

⋆ := Cn ;

If we delete the statementck[k, k] := 1 + ck[k, k] we obtain the algorithm for computing the
strict closureW.

We have an idempotent (A + A = A) semiring. The unit for+ is the empty set∅. The unit
for · is 1 = {[v] : v ∈ V }.

Let
A = ck−1[k, k] = {a ∈ Path : first(a) = last(a) = k} = {[k]}

Therefore

A∗ = 1 + A + A2 + A3 + A4 + · · · = 1 + {[k]}+ {[k]}+ {[k]}+ {[k]} · · · = 1

Since the semiring is idempotent the Fletcher’s algorithm can be performed in place – we
can omit indices inck.

9.2 Python
def times(A,B):
C = []
if (A == [])|(B == []): return(C)
for a in A:

for b in B:
la = a[len(a)-1]; fb = b[0]
if la == fb:

if set(a) & set(b[1:]) == set(): C.append(a+b[1:])
return(C)

def closure(R):
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n = len(R); C = R
for k in range(n):

for u in range(n):
for v in range(n):

C[u][v] = C[u][v] + times(C[u][k],C[k][v])
return(C)

def output(R):
n = len(R)
for u in range(n):

for v in range(n):
print(u+1,v+1,R[u][v])

...
r = [ [[] for j in range(stcNver)] for i in range(stcNver)]
while True:

line = stc.readline()
if not line: break
row = list(filter(lambda s: s not in [’’], line.split(’ ’)))
u = eval(row[0]); v = eval(row[1])
r[u-1][v-1] = [[u,v]]

...

1

2

3

4

R = [ [ [] , [[1,2]], [[1,3]], [] ],
[ [] , [] , [[2,3]], [] ],
[ [] , [[3,2]], [] , [[3,4]] ],
[ [[4,1]], [] , [] , [] ] ]

I = [[1], [2], [3], [4]]

C = closure(R)
output(C)

1 1 []
1 2 [[1, 2], [1, 3, 2]]
1 3 [[1, 3], [1, 2, 3]]
1 4 [[1, 3, 4], [1, 2, 3, 4]]
2 1 [[2, 3, 4, 1]]
2 2 []
2 3 [[2, 3]]
2 4 [[2, 3, 4]]
3 1 [[3, 4, 1]]
3 2 [[3, 2], [3, 4, 1, 2]]
3 3 []
3 4 [[3, 4]]
4 1 [[4, 1]]
4 2 [[4, 1, 2], [4, 1, 3, 2]]
4 3 [[4, 1, 3], [4, 1, 2, 3]]
4 4 []
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