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3.1. Introduction 

The basic tool, in Statistics like in many branches of experimental sciences concerned 

with the study of information expressed in observations, is comparison analysis: in the 

field of statistical modelling, comparison to a theoretical model, in exploratory data 

analysis (EDA), comparison between data. 

In EDA, these comparisons between data fall into two broad categories: analysis 

of similarities, when we measure how similar two objects look, analysis of dissimilari­

ties, when we measure how different they are. These approaches are not contradictory, 

though each statistical technique is usually more specifically related to one or the other. 

For instance Principal Component Analysis (PCA) is related to the analysis of similar­

ities (by means of covariances), Hierarchical cluster analysis (HCA) and additive trees 

to the analysis of dissimilarities (by means of distances) ; however, in both cases, we 

can associate with the index commonly used an index of the other category, in a natural 

way: with the covariance we can associate the Euclidean distance, while by taking the 

opposite of the ultrametric distance and adding a well chosen positive constant , we get 

an index of similarity. 

Both examples show that these associations are basically worked out by means of 

decreasing functions ; it also appears that different models of functions are available: 

quadratic function (PCA), linear function (HCA). 

We could of course use a linear link for the Euclidean geometry, or a quadratic 

link for HCA. Quite obviously these new indices would not be well adapted to the 

corresponding representation, and they would provide little if any lisibility. 

This article is devoted to a number of functions that link indices of similarity and 

indices of dissimilarity. We call these links "similarity functions" (SF). We shall not 

make an analytical study of SF. We shall concern ourselves with their properties with 

respect to methods of representation. 
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3.2. Definitions. Examples 

3.2.1. Definitions 

Let [ be a finite set, [ = {I, 2, ... , n}, and D and 8 be two n x n-matrices. 

Definition 3.2.1. 

A n x n-matrix D is a dissimilarity on [ if and only if D is symmetric, with a null 

diagonal, and all the other terms are non-negative. 

A nxn-matrix D is a semi-distance if D is a dissimilarity and if the triangle inequality 

holds: 

A n x n-matrix D is definite (in the French literature "propre") if and only if 

'<I(i,j)E[2, Dij=O ¢==;> i=j. 

A n x n-matrix D is semi-definite if and only if 

A semi-distance which is definite will be called a distance. o 

Definition 3.2.2. A n x n-matrix S is a similarity on [ if and only if 8 is symmetric 

and 

A similarity 8 is said to be proper if 

'<I (i,j) E [2, 8ii> 8ij 

A similarity 8 is said to be normed if 

'<Ii E [, 8ii = 1. o 

Theorem 3.2.1. Given 1 a decreasing real function with 1(0) = 1, and D a dissimi­

larity, let us define 8 such that 

Then 8 is a normed similarity. If 1 is strictly decreasing and D is definite, then 8 is 

proper. 

Conversely, let 9 be a decreasing real function with g(1) = 0 and let 8 be a normed 

similarity. Then D = g(8) is a dissimilarity. 

If 8 is proper and 9 is strictly decreasing, then D is definite. 

The proof is obvious. We will emphasize two points: 
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1 It is natural to consider using 9 = 1-1 and hence to take invertible functions. In 

that case any decreasing function is strictly decreasing. 

2 Let 9 be a strictly decreasing function. In order for g(8) to be a dissimilarity, 8 

should have a constant diagonal. Then there is no point in looking for a dissimilarity 

g(8) when 8 is not normed (to a multiplicative factor), and we restrict our choice 

of g's to invertible functions. 

From now on, unless explicitly mentioned otherwise, we restrict ourselves to normed 

similarities and invertible functions. 

3.2.2. Examples 

We review here the main examples of application of Theorem 3.2.1. 

3.2.2.1. Linear function 

An example is 8 = 1 - D. Hence 

V (i,j) E 12, Sij = 1 - dij and dij = 1 - Sij' 

This is the most frequently used SF for qualitative "presence-absence" variables. 

(The reader will find a list of similarity indices for categorical variables in Appendix). 

That kind of SF is well fitted to hierarchical representations (classifications, pyra­

mids). 

3.2.2.2. Homographic function 

An example is 

8=_2 __ 1 
l+D 

2 
D=---l 

1+8 

1-D 
8=1+D 

D= 1-8 
1+8 

This SF is of interest mainly because of its analytical properties. 

Many indices used for presence-absence variables are derived homographically from oth­

ers. For example, Jaccard's distance is thus associated to the Sokal-Sneath-Anderberg 

similarity, and the Czenakowski-Dice distance to Jaccard's similarity. (See Appendix 

for definitions) 
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3.2.2.3. Quadratic function 

An example is 

S = 1- ｾｄＲ＠
2 

D = )2(1- S) 

This formula is well fitted to the Euclidean representation, and specially to variables 

which are representable on a sphere centered at the origin O. 

--+ --t 

In that case Sij is equal to the inner product Oi· OJ (the multiplicative coefficient ｾ＠ for 
--+ --t 

D2 is necessary in order to represent Sij as the inner product Oi . OJ). 

3.2.2.4. Exponential function 

An example is 

dij = -lnsij 

or, more generally 

This kind of SF is seldom used in data analysis. It is well adapted to multiplicatively 

transformed variables (economic growth rate, for instance). 

The exponential e -dfj is well fitted to representation in V-spaces. 

Given p = 2 and the Euclidean distance 

D2 = L (Xi - Yi)2 

i 

we once again observe the strong link between the Euclidean geometry and the normal 

distribution. 

3.2.2.5. Circular function 

An example is 

dij = Arccos Sij 

In this case, dij is set as an angle. 

Angular distances are well adapted to such notions as "apparent distances" in astro­

nomy, and spherical representations. 
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3.2.2.6. Graphical representations 

Let I be a set with n elements, and D a dissimilarity on I. Let E be a metric space, 

and ,1 a dissimilarity on E. 

We shall say that the n points Ml, M2, ... , Mn are a representation of (I, D) into 

(E,,1) if and only if 

The analogous definition also holds for similarities. 

The representation depends on ,1, which has to be specified. 

- The representation most commonly used is the euclidean representation: set 

E = ]R.n and ,1 the distance associated to the inner product norm. 

- If E = ]R.n, another choice for ,1 could be the L1-distance. 

Some dissimilarities will permit a euclidean representation, others a L1-representa­

tion, and some will permit neither of them. 

In fact the set of possible representations is wide. We will make a survey of some 

cases with the objective of pointing out the type of SF underlying each model. 

Let Mr, M2, ... , Mn be n points lying on a Euclidean sphere (representation often 

used for categorical variables). In that case E is the sphere (with radius one) of ]R.n. 

There are numerous eligible choices for the dissimilarity ,1, because the relative position 

of any two points can be described in many ways. We could use for instance the 

Euclidean distance (length of the chord MiMj) or the geodetical distance (length of the 

shortest arc MiMj). 

In fact any quantity tending to zero as Mi tends to Mj can be choosen as a dissimi­

larity between Mi and Mj. Any quantity increasing as Mi tends to Mj can be choosen 

as a similarity. 

Phrased differently, the dissimilarity between two points Mi and Mj on the euclidean 

sphere can be expressed in a variety of mathematical notions, some of them we shall 

now review. Using e, the central angle MiMj, we can define 

dl = 1- cose 

d2 = e 
d3 = arc e's sagitta 

d4 = the length of the chord MiMj 

d5 = sine 

d6 = ｴ｡ｮｾ＠

Sl = cose 

S2 = ｾ＠ - e 
s3 = arc e's apothem 



72 S. JOLY, G. LE CALVE 

Here d1 to d6 may be viewed as measures of dissimilarities while 81 to 83 can be 

considered as measures of similarities. Furthermore, there is a linear link between 81 

and db 82 and d2, 83 and d3, as between 8I and dg. Between 81 and d4, there is a 
quadratic link, an homographic one between 8y and ､ｾＮ＠

It is worth remarking that, though it is of common use, with categorical variables, 

given a similarity S and a dissimilarity D, to produce a Euclidean representation on a 

sphere, this is absolutely not justified. On the one hand, it has been proved that most 

indices do not permit a Euclidean representation (Fichet, Le Calve 1984). On the other 

hand, this representation makes use of 81 and d4, linked by a quadratic function, though 

a linear function links the given indices D and S. 

It would be much more appropriate to use the couples (81, dd, or (82, d2), or else (83, d3), 

more especially as by using them, most of the indices for categorical data can be exactly 

represented (Beninel, 1987). 

3.3. The wM(nP) forms 

3.3.1. Definitions and properties 

We will now concern ourselves with a very important family of SF, which we will 

call W -forms. To define a W -form, we first have to choose a point M of I that will act 

as origin for the form. Then a W-form will be a n x n-matrix whose terms are linear 

combinations of DMi, DMj, Dij hence the name "W-form". 

Definition 3.3.1. Let M be a point belonging to I and D a dissimilarity on I. We call 

W -form of D evaluated at point M, denoted WM (D), the n x n-matrix whose elements 

are 

For p belonging to lE+ we will also consider the following form, called "W -form of 

DP evaluated at point M" 

o 

It is a known property that if D is a dissimilarity, then, for any positive p, DP is 

also a dissimilarity. 

Some remarks concerning the W-forms can be of interest. 

- The multiplicative coefficient -1 for ｄｾ＠ is not sufficient in order for W M (DP) 

to be a decreasing function in D, because of the positive terms ｄｾｩ＠ and ｄｾｪＢ＠ Thus 

Theorem 3.2.1 cannot be applied to WP-forms. 

- It is easy to show that usually W M (DP) is not a similarity, because of the condition 

Wii 2: Wij failing to be true (this condition is equivalent to ｄｾｩ＠ 2: ｄｾｪ＠ - Dfj)' 
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- On the other hand, whenever DP is a distance, then, for any M, WM (DP) is an 

index of similarity. 

- However, when DMi is a constant with respect to i, WM (DP), as a function of D, 

is decreasing. It happens, for instance, for many indices defined on "presence-absence" 

variables, where there exists a point 0 (the null variable) such that DOi = 1 and 

o ::; Dij ::; 1. Then, for any p the WO(DP) are indices of similarity. In that peculiar 

but important case, WO(DP) can be rewrited as 

This property is no longer true when we consider the WM (DP)-form at any point 

M different from 0: the WM (DP)-forms generally are not similarities. 

From the definition of WM (DP) we derive 

V(i,j) E 12 , W M (DP)ii = Dtri 

Dfj = W M (DP)ii + W M (DP)jj - 2WM (DP)ij 

Finally, M and N being two points in I, we can explicit the relation between the 

WM-form and the WN-form: 

V(i,j)EI2 , 

with 

WM (DP)ij = WN (DP)ij + Xi + Xj 

1 
Xi = "2 (Dtri - Dj,i) 

- A similarity S and a dissimilarity D are said to be "W-associated" if and only if 

This is not a one-to-one relation: a dissimilarity D can be W-associated to several 

similarities. Let Sand T be two such similarities, W-associated to D. Then Sand T 

are related by: 

with 

Sij = Tij + Zi + Zj 

1 
Zi = "2 (Sii - Tii) 

Finally we shall note that WM (D) is a nxn-matrix with a null-line and a null-column 

(because Vi E I, WM (DP)Mi = 0). We will frequently use the restriction of WM (D), 

i.e. the (n - 1) x (n - I)-matrix obtained by cutting both null-line and null-column. 
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Both following cases p = 1 and p = 2 are of great importance: 

• p = 1 

W M (Dij) is a kind of measures how the three points M, i, and j deviate from the 

straight line . 

• p = 2 

(..) 2 M (2) 1 (2 2 2 ) V z, J E I ,W D ij = 2" DMi + D Mj - Dij 

WM (Dr) derives from the Cosine Law: in a triangle ABC, we have 

BC2 = AC2 + AB2 - 2 AB AC cos A 

which leads to AB . AC = ｾＨａｂＲ＠ + AC2 - BC2) and WM (D2)ij can be viewed, if D is 
---; ｾ＠

Euclidean, as the inner product Mi· Mj. 

We investigate now the properties of the WM (D2)-forms. 

The following theorem is generally known as Frechet's theorem (1935). With some al­

terations in the expressing, it can also be fastened to Gauss, Minkowsky, or Schoenberg. 

Theorem 3.3.1. A dissimilarity matrix D can be considered as a distance matrix 

between n points of a Euclidean space if and only if there exists a point M such that 

the matrix WM (D2) is non-negative definite (NND). 

The dimension of the representative space is equal to the rank of the matrix. If 
there exists an M such that WM(D2) is NND, then WM(D2) is NND for any M. 

Proof. Consider the spectral form of W M (D2): 

Then 

and, as 

it follows that 

r 

V (i,j) E I2, W M (D2)ij = L Ak Xf xj. 
k=l 

M 2 ｾ＠ (k)2 
W (D )ii = L..Ak Xi 

k=l 



III. SIMILARITY FUNCTIONS 75 

r 2 r 2 r 

V(i,j) E [2, (D2)ij = LAk (Xf) + LAk (X;) - 2 LAkXf xj 
k=l k=l k=l 

= tAk (Xf - Xj)2 
k=l 

and this is the square of a Euclidean distance if and only if Ak 2 o. 

Conversely, assume there exists a representation such that 

with J.tk 2 o. 

Then, as 

it follows that 

r 

= LJ.tk }ik}jk 

k=l 

and since the IJk are positive, this is a NND matrix. 

If there exists a Euclidean representation, for any M the matrix of the inner products 
-> ---> 
Mi· M j is NND, and according to the Cosine Law this matrix is none other than 
WM(D2). • 

Torgerson form 

We can consider the value of W in any point, provided we know its relative distances 

to all others. To overrule the arbitrary choice of point M, Torgerson (1958) suggested 
taking the value at the average point, i.e. the gravity centre G. We then need to 

compute the values of Dbi. 

Using Koenig's theorem, and defining 

. D21"2 "rh E [, i. = - ｾ＠ Dij 
n . 

J 

we easily get 

and ｄｾＮ＠ = .!. L Dr • 
n . 

3 
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so that 

( ..) 2 C (2) 1 (2 2 2 2 ) 
\:j 2,J EI, W D ij=2 Di.+Dj.-Dii- D ••. 

Now, in a Euclidean space, the centre of gravity belongs to that same space, so 

that W C(D2) is NND if and only if WM (D2) is NND, and we can apply the previous 

theorem to W C (D2). 

But we could prefer other choices. For example, instead of G, we could choose the 

average W·(D2) of the WM (D2). That would mean defining a point H such that 

and 

There is no difficulty in proving that W M, WC, and WH are simultaneously NND. 

If D is not Euclidean, it is worth remarking that in that case G would be the very 

wrong choice: 

On one hand, the positivity of ｄｾｩ＠ is no longer secured. Since ｄｾｩ＠ is defined as 

2 2 1 2 
DCi = Di• - 2D ••. 

It is evident that this quantity can be negative. 

But the main point leading to the rejection of G in that case is that the distances 

were calculated by means of Koenig's theorem ... which stands only if D is a Euclidean 

distance, and thus WC(D2) has no meaning! 

These remarks do not apply to WM (D2) and W·(D2). 

If D is Euclidean, the main interest of G comes from the fact that when G is the 

origin, the factorial plane corresponds to the maximum of the inertia. When the origin 

is an arbitrary M, the factorial plane corresponds to the maximum of the moment of 

order 2 about M. 

When considering subsets of I in the analysis, the WC-form is not easy to use: 

adding one point to the data leads to an (n + 1) x (n + I)-matrix, whose elements all 

have to be recalculated, since the mean point G has changed. 

On the other hand, the new matrix WM is obtained by adding one row and one 

column to the former W M: the WM-formon a subset of I is a submatrix of the WM-form 

on I. 

This last property does not hold for the Torgerson-form, which is thus unfitted for 

mathematical induction on n. 
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3.3.3. Transformations of D 

What can be done when D is not a Euclidean distance or when it is not even a 

distance? A first approach could consist in looking for approximative representations: 

this is the field of multidimensional scaling (in its broadest sense). We will select another 

way of approach, consisting in transforming D so that we get the wanted property: this 

is the field of changes of metrics. 

Among the possible transformations, our choice will be in favour of those which least 

modify the informations upon D. Thus we will select monotonous functions because 

they are order-preserving. 

Both following methods of transformations are often used: 

- the additive constant: by adding a positive constant to every term of the matrix D 

(or to D2) with the exception of the diagonal we obtain a distance or a euclidean 

distance. 

- the DO: functions (generally with 0 ::; a ::; 1). 

The case of the additive constant has already been largely considered. We shall only 

note that the constant often happens to be very large with respect to the values of dij, 

so that the distortion is important. 

We will now consider the power functions DO:, and first define how to choose a in 

order for DO: to be a distance. Then we shall consider getting a euclidean distance. 

Theorem 3.3.2. 

a) The set of all a's such that DO: is a distance is a closed set. 

b) If D is a semi-deflnite dissimilarity, let us put 

ln2 
k = SUpdij 

i,j 
q = inf{ dij : d;j i=- O} a = ＺＭＭＺＭＭｾＭ

ink -lnq 2,J 

then a belongs to the set referred to in a) 

c) If D is not semi-deflnite, DO: is a distance if and only if a = O. 

Proof· 

a) We need only prove that if D is a distance, DO: is a distance, for a ::; 1. The triangle 

inequality holding for D also holds for DO: due to the inequality 

V (a, b) E lR+, Va E [0,1]' aO: + bO: 2: (a + b)O: . 

b) This property follows from the fact that the triangle inequality holds for any dissim­

ilarity L1 such that 

Let us put k = sup dij. Let L1 be defined by Dij = i dij. Then 
2,J 
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- If D is definite, then 

inf dij > O. 
',) 

Let us put 
In2 

a=:--.,----.,--:--:--:-:--:-:--:-
In (sup dij) -In (00 dij) 

hence 

Ｈ ｾ＠ inf d .. ) 0: 1 
k i,j ') 2 

So ,10:, with values between ｾ＠ and 1, is a distance, and the same is true for DO:. 

This value of a is not the supremum of all a's. The supremum is given by the 

formula 

a' = sup {inf (dij + d'A - dik) 2: O}. 
a 'L,J,k 

- If D is semi-definite, let us define 1° = {i : ::J j such that dij = O} and 1+ = I - 1°. 

Then D restricted to 1+ is definite, and the precedent theorem holds. Furthermore, 

on 1° Dij is constant (and so is Dij, and the proof of b) is achieved. 

c) If D is not semi-proper, there exists i, j, k with dij = 0 and dik =1= dj k. The triangle 

inequality applied to DO: holds only if dik = djk and thus a = O. • 

DO: and the Euclidean distances 

It will be equivalent to prove that D is a Euclidean distance or that W M ( (f (D) 2 ) is 

NND. To that purpose the following property can be of great use: 

Theorem 3.3.3. (generalized Schur's lemma) 

Assume f to be a real function, such that 

(Cl) The expansion of f into a serie about t = 0 exists, with radius of convergence T, 

f (t) = L Cktk , 

k 

with Ck 2: 0, continuous in t at the point t = 1. 

Assume A = [aij] to be a real matrix such that A is symmetric, NND, and aij ::; T. 

Let us denne B = [bij] = [f(aij)] and A*n = [aij]. Then 

1) the matrix B is NND, 

2) the matrix B is not positive dennite (PD) iff there exists an X such that, 

'in E N, XtA*nX = 0 (condition C2). 

Proof. (Joly, Le Calve (1986» Since condition (C1) refers to f and condition (C2) 

to A, it follows that 

• for any f and any 9 both satisfying (C1) 

"f(A) is PD" ¢=;> "g(A) is PD", 

• If lim A*n = I, then (C2) holds for A. 
ｮｾＫｯｯ＠

• If S is a similarity matrix with positive terms, then (C2) holds for S. • 
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Corollary 3.3.1. Assume S to be a NND similarity matrix. Then the matrices 

denned by their general term as follows are NND: 

1 
1- J1- Sij Va E [0,1]' 1 - (1- sij) 

1 - Sij 

1 
Va::::: 1, 1 _ sr;<. 

'J 

In 1 + Sij 

1 - Sij 
Arcsin Sij 

For practical applications, it will be useful to remember that if D is a Euclidean 

distance, then Arccos D and D a for 0 ::; a ::; 1 are Euclidean too. This last characteristic 

of Da implies that the set of 0'. numbers such that Da is Euclidean is a non empty set, 

since DO is Euclidean, and is a closed interval. Hence there exists a power of D that 

is Euclidean. Looking for the supremum of all these a's (0'. ::; 1) seems an interesting 

method, competing with the additive constant technique. We don't know the infimum 

of this supremum, at least not for any general n. 

Definition 3.3.2. A dissimilarity is said to be "quasi-hypermetric" if its square root 

is a Euclidean distance. 

Corollary 3.3.2. The following dissimilarities are quasi-hypermetric with full rank: 

Jaccard, Sokal-Sneath-Anderberg, Czenakowski-Dice, Rogers-Tanimoto, Russel-Rao, 

Ochiai". 

The proof, and the definitions of these indices (for categorical "presence-absence" 

variables), can be found in Fichet, Le Calve (1984) or in Gower, Legendre (1986). (See 

also Appendix). 

3.4. The WM(D) form 

3.4.1. Geometrical interpretations and properties 

In Section 3.3, the definition of the matrix WM (D) was introduced by the relation 

Let us define the metric segment [AB] as 

In an affine space, we define a vector segment by 

---+ ----+ 
[AB]vec = {M: AM = kMB, 0::; k::; I}. 

In a Euclidean space, both definitions are equivalent. But in a normed space, they 

differ if the norm on the vector space is not the one inducing the metric. For example, 
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if, on R2, we define the Ll-norm, the metric segment [AB] consists of all points within 

the rectangle with vertices A and B and whose sides are parallel to the axes. 

If M belongs to the metric segment [ij]meb WM (D)ij is null and, in the general 

case, WM (D)ij can thus measure how M deviates from the metric segment [ij]. 

For another interpretation, let us suppose that D is a distance on a space E and 

consider the set A , the intersection of the metric segments [Mi] and [Mj] : 

A = [Mi] n [Mj] 

The set A is non-empty since M belongs to A. Then, 

VNEA, 

It follows that 

VNEA, 

Then WM (D)ij can be considered as the length of the greatest metric segment 

included in both [Mi] and [Mj], and thus defines a kind of "metric similarity" between 

these two metric segments. Though WM (D)ij is not an inner product, it sometimes 

plays a very analogous part. 

Lastly, assume X, Y, ... to be categorical variables. They can be viewed as charac­

teristic functions (indicators) of some sets X, Y, .... If we consider the Hamming metric 

Dx,y = IXL1YI, then 

w0 (Dh,y = IX n YI· 

Theorem 3.4.1 lists some properties of WM (D). 

Theorem 3.4.1. Let D be a dissimilarity. Then 

• D is a distance iff 

• if D is a chain, then for every triple i, j, k one and only one of the three quantities 

Wi(D)jb Wj(D)ib Wk(D)ij is null. 

• D is a Hamming metric if and only ifVM E I, WM(D)ij is an integer, and if 

W 0(D)ij = IXi n Xjl 

• Dis quasi-hypermetric if and only ifWM (D) is NND 

• If D is an ultrametric, then W;k = WJk = ｾｄｩｫ＠

• If D is an additive tree metric, then for any arbitrary triple (i, j, k), there exists an 

M such that W/Y = wit = wit = o. 
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3.4.2. About metric projection 

We defined earlier the notion of "metric segment". In the same way we can define 

the metric projection of a point onto a subset. 

Definition 3.4.1. Given a subset A, we shall call metric projection of i onto A a 

point i* such that 

o 

If there exists a point j such that Dij = Dii*, j can be considered as i*. 

If there exists such a point j, and if D is a proper dissimilarity, then j is unique. 

If there exists no j such that Dij = Dii*, by adding to [ the point i* we define [* by 

[* = [ U {i*}, and by lining D with one column and one row, we get D*. 

The metric projection of i onto the total set [ is called" the foot of i ". 

On [* (I completed with all the feet), we define 8ij "distance" between the feet, such 

that 

Then we can establish the following theorem. 

Theorem 3.4.2. With the above notations, 

• Oij is a distance. 

• the binary relation defined on [2 by: "iRj {=} Oij = 0" is an equivalence relation. 

• (iRj) ('<Ik E [, '<Ix E [, Wk_Wk_Wk) 
ij - ix - jx· 

We shall remark that 8 is a distance, even when D fails to be one. Furthermore, the 

equivalence classes are all subsets on which WM (D) has a constant value (whatever D 

may be). 

It should be noted that D is a star distance if and only if all points have the same foot. 

On an additive tree, the foot of a point is the node under which the point hangs. We 

deduce that D is "representable" by an additive tree if and only if, for any M, there 

exists a partition such that 

for any i and j belonging to distinct classes W M (D)ij = DMM*. 

(Le Calve (1988)). 
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3.4.3. WM(D) and" M 1-type" distance 

Definition 3.4.2. A dissimilarity D is said to be an "Ml-type" distancet iff the 

following equality holds: 
r 

Dij = L IXik - xjl· D 

k=l 

Such a distance is called "city-block" distance. It plays an important part in data 

analysis. Since rotating the axes causes the distances to change (rotations are not 

isometry), the axes have an intrinsic importance, which can be of interest in many 

problems. Furthermore the" M I-type " distance is the widest class of distances allowing 

easy to read representations, and permitting thus the best approximation (see Critchley, 

this volume). The absolute value makes the calculations difficult j it explains why there 

are so few available results. In particular, we know of no result similar to: 

"D is Euclidean if and only if WM (D2) is NND" 

We will now establish such a result. 

Definition 3.4.3. A symmetric n x n-matrix M is said to be realisable if and only if 

it can be written 

V(i,j) E 12,Mij = L akXik xj 

k 

with ak ｾ＠ 0, and xt E {O, I}. D 

It may be noticed that this definition is very similar to the definition of a NND matrix. 

It was first used by Kelly (1972), with a simplificated form, owing to the fact that he 

was working with integers, and needed thus only to consider ak = 1. 

Theorem 3.4.3. The dissimilarity D is of "M 1-type" if and only if there exists an 

M such that WM (D) is realisable. If there exists an M such that WM (D) is realisable, 

then it is realisable for any M. 

Proof. Let us assume that WM (D) is realisable: 

From the identity 

W M (D)ij = L ak xt Xj. 

k 

Dij = W M (D)ii + W M (D)jj - 2WM (D)ij , 

we deduce, as in the Euclidean case, 

Dij = L ak [{Xt}2 + {Xj}2 - 2XtXj] 

k 

= L ak (xt - xj) 2 

k 

= L aklXt-Xjl 

k 

We use the Ml notation, for Minkowski spaces, and Ll for normed spaces. 



III. SIMILARITY FUNCTIONS 

Conversely, if 

Dij = L ak IXf - xjl = L ak (Xik - xj r ' 
k k 

it follows from the definition of WM {D)ij that 

WM {D)ij = L ak Xf Xj. 
k 
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• 
The following theorem strengthens the parallelism between NND matrices and real­

isable matrices. 

Theorem 3.4.4. Let f be a real function, whose expansion into a serie has positive 

coefficients and a convergence radius r, continuous at the point r. Then, if A = [aij] is 

realisable, so is B = [f ( aij]. 

Proofs of the Theorem 3.4.4 and of the below Corollary 3.4.1 can be found in Joly, 

Le Calve (1992). The demonstration is analogous to that of Theorem 3.3.3. 

Corollary 3.4.1. The following indices of dissimilarity, defined for categorical vari­

ables, are "city-block" distances: Jaccard, Sokal-Sneath-Anderberg, Czenakowski-Dice, 

Rogers-Tanimoto, Russel-Rao, Ochiai". 

This result completes the result of Corollary 3.3.2 and is a very strong incitation to 

use Ml-type representation for categorical variables. 
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Appendix: Some indices of dissimilarity for categorical variables 

Let I be a set of n individuals and J a set of p attributes. The n x p-matrix X is a 

zero-one matrix defined by 

{
I if the individual i possesses the attribute k, 

Xik = 0 if the individual i does not posses the attribute k. 

We define 

nij to be the number of attributes common to i and j 

p 

nij = L Xik Xjk 
k=l 

n;i] to be the number of attributes missing both for i and j 

p 

nIl = L (1 - Xik) (1 - Xjk) 
k=l 

% to be the number of disagreements between i and j 

p 

% = L IXik - Xjkl 
k=l 

ni to be the number of attributes the individual i possesses 

p 

ni = LXik 
k=l 

We now list some of the most frequently used indices of similarity defined on cate­

gorical " presence-absence " variables. 



RAO 

KULCYNSKI 

JACCARD 

Ill. SIMILARITY FUNCTIONS 

S ( ..) nij 
12,J =­

n 

S ( ..) nij 
2 2,J =-

% 

S ( .. ) nij 
3 2,J = 

nij + % 

n·· 
CZEKANOWSKI - DICE S4(i,j) = 'J1 

nij + 2% 

ANDERBERG 

ROGERS - TANIMOTO S6(i,j) = (nij + n,3)(nij + 2qij + nH) 

SOKAL - SNEATH 

Simple Matching 
n·· +no • 

S8(i,j) = 'J 'J 
n 

HAMMAN Sg(i,j) = nij - % + n;:] 

KULCYNSKI 
n·· 

S ( ..) 1 'J 

10 2, J = 2 ni + nij nj 

ANDERBERG 

OCRIAI 

OCHIAI 
n·· n .. 

S13(i,j) = _'_J ___ '_J_ 

-jninj -jn;:n] 

YULE 
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