Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Introduction to Network Analysis using Pajek

6. Structure of networks: Acyclic networks and patterns search

Vladimir Batagelj

IMFM Ljubljana and IAM UP Koper

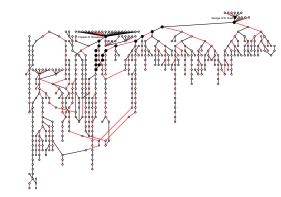
PhD and MS program in Statistics University of Ljubljana, 2022

V. Batagelj

Acyclic networks

イロト イ理ト イヨト イヨト

Э


DQC

Outline

Acyclic networks

- V. Batagelj
- Acyclic networks
- Numberings
- Citation networks
- Genealogies
- Pattern searching
- Triads
- Motifs
- Graphlets
- Acyclic networks
 Numberings
 Citation networks
 Genealogies
 Pattern searching
 Triads
 Motifs
 Graphlets

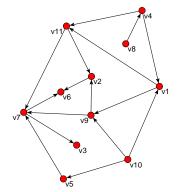
イロト イポト イヨト イヨト

Sac

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si

Current version of slides (March 23, 2022 at 00:25): slides PDF

V. Batagelj



Acyclic networks

Acyclic networks

- Numberings
- Citation networks
- Genealogies
- Pattern searching
- Triads
- Motifs
- Graphlets

Network $\mathcal{G} = (\mathcal{V}, R)$, $R \subseteq \mathcal{V} \times \mathcal{V}$ is *acyclic*, if it doesn't contain any (proper) cycle.

$$\overline{R} \cap I = \emptyset$$

In some cases we allow loops. Examples: citation networks, genealogies, project networks, ...

In real-life acyclic networks we usually have a node property $p: \mathcal{V} \rightarrow \mathbb{R}$ (most often time), that is *compatible* with arcs

acyclic.paj

 $(u,v) \in R \Rightarrow p(u) < p(v)$

Network/Create Partition/Components/Strong [2] ogg

V. Batagelj Acyclic networks

Basic properties of acyclic networks

Acyclic networks

V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Let $\mathcal{G} = (\mathcal{V}, R)$ be acyclic and $\mathcal{U} \subseteq \mathcal{V}$, then $\mathcal{G}|\mathcal{U} = (\mathcal{U}, R|\mathcal{U})$, $R|\mathcal{U} = R \cap \mathcal{U} \times \mathcal{U}$ is also acyclic.

Let $\mathcal{G} = (\mathcal{V}, R)$ be acyclic, then $\mathcal{G}' = (\mathcal{V}, R^{-1})$ is also acyclic. Duality.

The set of *sources* $Min_R(\mathcal{V}) = \{v : \neg \exists u \in \mathcal{V} : (u, v) \in R\}$ and the set of *sink*s $Max_R(\mathcal{V}) = \{v : \neg \exists u \in \mathcal{V} : (v, u) \in R\}$ are nonempty (in finite networks).

Transitive closure \overline{R} of an acyclic relation R is acyclic.

Relation *Q* is a *skeleton* of relation *R* iff $Q \subseteq R$, $\overline{Q} = \overline{R}$ and relation *Q* is minimal such relation – no arc can be deleted from it without destroying the second property.

A general relation (graph) can have several skeletons; but in a case of acyclic relation it is uniquely determined $Q = R \setminus R * \overline{R}$.

Depth

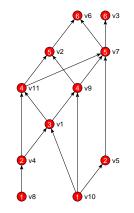
Acyclic networks

V. Batagelj

Acyclic networks

Numberings

Citation networks


Genealogies

Pattern searching

Triads

Motifs

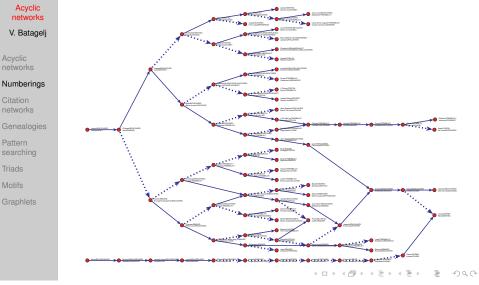
Graphlets

Mapping $h : \mathcal{V} \to \mathbb{N}^+$ is called *depth* or *level* if all differences on the longest path and the initial value equal to 1.

$$\mathcal{U} \leftarrow \mathcal{V}; k \leftarrow 0$$

while $\mathcal{U} \neq \emptyset$ do
 $\mathcal{T} \leftarrow \operatorname{Min}_{\mathcal{B}}(\mathcal{U}); k \leftarrow k + 1$
for $v \in \mathcal{T}$ do $h(v) \leftarrow k$
 $\mathcal{U} \leftarrow \mathcal{U} \setminus \mathcal{T}$

Drawing on levels. Macro Layers.


イロト イロト イヨト イヨト 三日

500

V. Batagelj

p-graph of Bouchard's genealogy

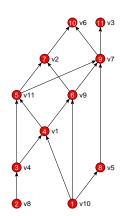
V. Batagelj Acyclic networks

Topological numberings

Acyclic networks

Numberings

Citation networks


Genealogies

Pattern searching

Triads

Motifs

Graphlets

Injective mapping $h: \mathcal{V} \to 1..|\mathcal{V}|$ compatible with relation *R* is called a *topological numbering*. 'Topological sort'

 $\begin{array}{l} \mathcal{U} \leftarrow \mathcal{V}; \, k \leftarrow 0 \\ \textbf{while} \ \mathcal{U} \neq \emptyset \ \textbf{do} \\ \text{select} \ \textbf{v} \in \operatorname{Min}_{R}(\mathcal{U}); \, k \leftarrow k+1 \\ h(\textbf{v}) \leftarrow k \\ \mathcal{U} \leftarrow \mathcal{U} \setminus \{\textbf{v}\} \end{array}$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Matrix display of acyclic network with vertices reordered according to a topological numbering has a zero lower triangle.

V. Batagelj

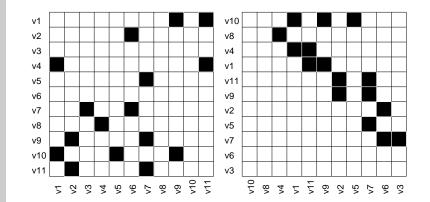
... Topological numberings

V. Batagelj

Acyclic networks

Numberings

Citation networks


Genealogies

Pattern searching

Triads

Motifs

Graphlets

read or select [Acyclic.paj] Network/Acyclic Natwork/Depth Partition/Acyclic Partition/Make Permutation File/Network/Export as Matrix to EPS/Using Permutation [acy.eps]

V. Batagelj

Acyclic networks

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

Topological numberings and functions on acyclic networks

Acyclic networks

V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Let the function $f : \mathcal{V} \to \mathbb{R}$ be defined in the following way:

• f(v) is knownn in sources $v \in Min_R(V)$

$$f(v) = F(\{f(u) : uRv\})$$

If we compute the values of function *f* in a sequence determined by a topological numbering we can compute them in one pass since for each node $v \in V$ the values of *f* needed for its computation are already known.

イロト 不得 トイヨト イヨト 二臣

Sar

Topological numberings – CPM

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

CPM (Critical Path Method): A project consists of tasks. Nodes of a project network represent states of the project and arcs represent tasks. Every project network is acyclic. For each task (u, v) its execution time t(u, v) is known. A task can start only when all the preceeding tasks are finished. We want to know what is the shortest time in which the project can be completed.

Let T(v) denotes the earliest time of completion of all tasks entering the state v.

$$T(v) = 0, \quad v \in \operatorname{Min}_{R}(\mathcal{V})$$
$$T(v) = \max_{u:u \in V} (T(u) + t(u, v))$$

Network/Acyclic Network/Critical Path Method-CPM

V. Batagelj

Acyclic networks

・ロト ・ 同ト ・ ヨト ・ ヨト

nac

Citation networks

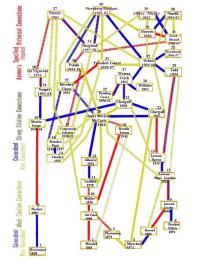
Acyclic networks

V. Batagelj

Acyclic networks

Numberings

Citation networks


Genealogie

Pattern searching

Triads

Motifs

Graphlets

The citation network analysis started in 1964 with the paper of Garfield et al. In 1989 Hummon and Doreian proposed three indices – weights of arcs that provide us with automatic way to identify the (most) important part of the citation network. For two of these indices we developed algorithms to efficiently compute them.

イロト イポト イヨト イヨト

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

... Citation networks

In a given set of units/nodes \mathcal{U} (articles, books, works, etc.) we introduce a *citing relation*/set of arcs $R \subseteq \mathcal{U} \times \mathcal{U}$

 $uRv \equiv u$ cites v

which determines a *citation network* $\mathcal{N} = (\mathcal{U}, R)$.

A citing relation is usually *irreflexive* (no loops) and (almost) acyclic. We shall assume that it has these two properties. Since in real-life citation networks the strong components are small (usually 2 or 3 nodes) we can transform such network into an acyclic network by shrinking strong components and deleting loops. Other approaches exist. It is also useful to transform a citation network to its *standardized* form by adding a common *source* node $s \notin U$ and a common *sink* node $t \notin U$. The source *s* is linked by an arc to all minimal elements of *R*; and all maximal elements of *R* are linked to the sink *t*. We add also the 'feedback' arc (*t*, *s*).

Search path count method

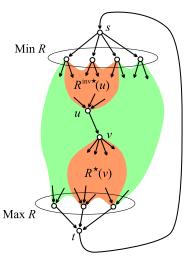
Acyclic networks

V. Batagelj

Acyclic networks

Numberings

Citation networks


Genealogies

Pattern searching

Triads

Motifs

Graphlets

The search path count (SPC) method is based on counters n(u, v) that count the number of different paths from s to t through the arc (u, v). To compute n(u, v) we introduce two auxiliary quantities: $n^{-}(v)$ counts the number of different paths from s to v, and $n^{+}(v)$ counts the number of different paths from v to t.

・ロト ・ 四 ト ・ 回 ト ・ 日 ト

San

Fast algorithm for SPC

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

It follows by basic principles of combinatorics that

$$n(u,v) = n^-(u) \cdot n^+(v), \qquad (u,v) \in R$$

where

$$n^-(u) = egin{cases} 1 & u = s \ \sum_{v:v extbf{R} u} n^-(v) & otherwise \end{cases}$$

and

$$n^+(u) = \begin{cases} 1 & u = t \\ \sum_{v:u \mathbf{R}v} n^+(v) & otherwise \end{cases}$$

This is the basis of an efficient algorithm for computing n(u, v) – after the topological sort of the graph we can compute, using the above relations in topological order, the weights in time of order O(m), m = |R|. The topological order ensures that all the quantities in the right sides of the above equalities are already computed when needed.

V. Batagelj

Hummon and Doreian indices and SPC

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

The Hummon and Doreian indices are defined as follows:

- search path link count (SPLC) method: w_l(u, v) equals the number of "all possible search paths through the network emanating from an origin node" through the arc (u, v) ∈ R.
- search path node pair (SPNP) method: w_p(u, v) "accounts for all connected node pairs along the paths through the arc (u, v) ∈ R".

We get the SPLC weights by applying the SPC method on the network obtained from a given standardized network by linking the source *s* by an arc to each nonminimal vertex from \mathcal{U} ; and the SPNP weights by applying the SPC method on the network obtained from the SPLC network by additionally linking by an arc each nonmaximal vertex from \mathcal{U} to the sink *t*.

イロト イロト イヨト イヨト 二日

San

Node weights

Acyclic networks V. Batagelj

. ..

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

The quantities used to compute the arc weights w can be used also to define the corresponding node weights t

$$t_{c}(u) = n^{-}(u) \cdot n^{+}(u) t_{l}(u) = n^{-}_{l}(u) \cdot n^{+}_{l}(u) t_{p}(u) = n^{-}_{p}(u) \cdot n^{+}_{p}(u)$$

They are counting the number of paths of selected type through the node *u*.

Network/Acyclic Network/Citation Weights

V. Batagelj

Acyclic networks

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Properties of SPC weights

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

The values of counters n(u, v) form a flow in the citation network – the *Kirchoff's node law* holds: For every node *u* in a standardized citation network *incoming flow* = *outgoing flow*:

$$\sum_{v:v \in u} n(v, u) = \sum_{v:u \in v} n(u, v) = n^{-}(u) \cdot n^{+}(u)$$

The weight n(t, s) equals to the total flow through network and provides a natural normalization of weights

$$w(u, v) = rac{n(u, v)}{n(t, s)} \quad \Rightarrow \quad 0 \le w(u, v) \le 1$$

and if C is a minimal arc-cut-set $\sum_{(u,v)\in C} w(u,v) = 1$.

In large networks the values of weights can grow very large. This should be considered in the implementation of the algorithms.

イロト 不得 トイヨト イヨト ニヨー

590

Nonacyclic citation networks

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

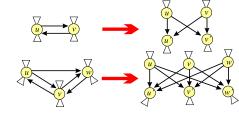
Graphlets

If there is a cycle in a network then there is also an infinite number of trails between some units. There are some standard approaches to overcome the problem: to introduce some 'aging' factor which makes the total weight of all trails converge to some finite value; or to restrict the definition of a weight to some finite subset of trails – for example paths or geodesics. But, new problems arise: What is the right value of the 'aging' factor? Is there an efficient algorithm to count the restricted trails?

The other possibility, since a citation network is usually almost acyclic, is to transform it into an acyclic network

• by identification (shrinking) of cyclic groups (nontrivial strong components), or

・ロト ・ 同ト ・ ヨト ・ ヨト


Sar

- by deleting some arcs, or
- by transformations such as the 'preprint' transformation.

Preprint transformation

- Acyclic networks
- V. Batagelj
- Acyclic networks
- Numberings
- Citation networks
- Genealogies
- Pattern searching
- Triads
- Motifs
- Graphlets

The *preprint transformation* is based on the following idea: Each paper from a strong component is duplicated with its 'preprint' version. The papers inside strong component cite preprints.

・ロト ・ 同ト ・ ヨト ・ ヨト

Large strong components in citation network are unlikely – their presence usually indicates an error in the data.

An exception from this rule is the HEP citation network of High Energy Particle Physics literature from **arXiv**. In it different versions of the same paper are treated as a unit. This leads to large strongly connected components. The idea of preprint transformation could be used also in this case to eliminate cycles.

Probabilistic flow

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Another way to measure the importance of nodes and arcs in acyclic networks is the following. Let $\mathcal{N} = (\mathcal{V}, \mathcal{A})$ be a standardized acyclic network with source $s \in \mathcal{V}$ and sink $t \in \mathcal{V}$. The *node potential*, p(v), is defined by

$$p(s) = 1$$
 and $p(v) = \sum_{u:(u,v)\in\mathcal{A}} \frac{p(u)}{\operatorname{outdeg}(u)}$

The flow on the arc (u, v) is defined as $\varphi(u, v) = \frac{p(u)}{\text{outdeg}(u)}$. It follows immediately that

$$p(\mathbf{v}) = \sum_{u:(u,v)\in\mathcal{A}} \varphi(u,v)$$

and also,

$$\sum_{u:(v,u)\in\mathcal{A}}\varphi(v,u)=\sum_{u:(v,u)\in\mathcal{A}}\frac{p(v)}{\operatorname{outdeg}(v)}=\frac{p(v)}{\operatorname{outdeg}(v)}\sum_{u:(v,u)\in\mathcal{A}}1=p(v)$$

... probabilistic flow

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Therefore, for each $v \in \mathcal{V}$

$$\sum_{u:(u,v)\in\mathcal{A}}\varphi(u,v)=\sum_{u:(v,u)\in\mathcal{A}}\varphi(v,u)=p(v)$$

which states that Kirchoff's law holds for the flow φ . The probabilistic interpretation of flows has two parts:

- 1 The node potential of v, p(v), is equal to the probability that a random walk starting in the source s goes through the node v, and
- 2 The arc flow on (u, v), φ(u, v), is equal to the probability that a random walk starting in the source, s, goes through the arc (u, v).

Note that the measures p and φ consider only "users" (future) and do not depend on the past.

V. Batagelj

Acyclic networks

イロト イボト イヨト イヨト 三日

Sar

... probabilistic flow

Acyclic networks

V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern

searching

Triads

Motifs

Graphlets

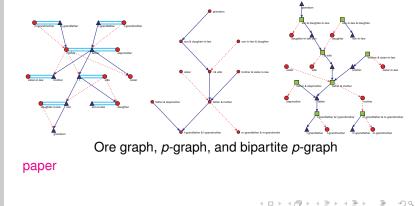
SN5 citation network, flows multiplied with 10⁶

	BARABASI_A(1999)286:509	2481.1796		SCHOUTEN_L(1993)22:369	701.4421
2	WATTS_D(1998)393:440	2413.1823	27	LANEMAN_J(2004)50:3062	697.3903
3	ALBERT_R(2002)74:47	2099.6951	28	BOYD_S(2004):	681.9335
4	WASSERMA_S(1994):	1807.7400	29	BARABASI_A(2004)5:101	662.5071
5	RONAYNE_J(1987):	1697.2066	30	AMARAL_L(2000)97:11149	659.7386
6	WANT_R(1992)10:91	1694.8577	31	CARZANIG_A(2001)19:332	658.6667
7	JEONG_H(2001)411:41	1656.5485	32	BURT_R(1992):	635.2949
8	FREEMAN_L(1979)1:215	1559.2715	33	[ANONYMO (2008) :	621.7552
9	NEWMAN_M(2003)45:167	1521.8437	34	JADBABAI_A(2003)48:988	599.2536
10	HOLBEN_B(1998)66:1	1494.6278	35	BORGATTI_S(2002):	594.1600
11	ALBERT_R(2000)406:378	1171.6774	36	ALBERT_R(1999)401:130	589.2179
12	JEONG_H(2000)407:651	1142.8359	37	NEWMAN_M(2001)98:404	584.6247
13	FREEMAN L(1977)40:35	1083.6487	38	[ANONYMO (2006) :	570.9648
14	GIRVAN_M(2002)99:7821	1055.2631	39	SHANNON_P (2003) 13:2498	566.9214
15	[ANONYMO (2011) :	940.7750	40	KATZELA_I(1996)3:10	558.6965
16	SELBY P(1996)348:313	884.8034	41	LYNN D(2008)4:	512.6603
17	ZADEH L(1997)90:111	873.1572	42	BLUMENTH D(1994)82:1650	509.7068
18	[ANONYMO (2009) :	808.5712	43	[ANONYMO (2007) :	508.8429
19	[ANONYMO(2010):	789.0410	44	DOROGOVT_S(2002)51:1079	505.0996
20	STROGATZ S(2001)410:268	785.9130	45	SCOTT J(2000):	497.5110
21	BOCCALET S (2006) 424:175	782.6379	46	RAVASZ E(2002)297:1551	496.6379
22	GRANOVET (1973) 78:1360	777.3402	47	UETZ P(2000)403:623	496.3690
23	PARTON R (1994) 127:1199	751.0084	48	ERDOS P(1959)6:290	483.7304
24	GAREY M(1979):	734.1673	49	DIAMOND D(2008)75:606	466.9622
	HAGMANN P(2008)6:1479	718.6859	50	VANLANSC J(2001)91:1574	465.9244

V. Batagelj

Acyclic networks

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ = ・ の へ ()



Genealogies

Acyclic networks

- V. Batagelj
- Acvelie networks
- networks
- Genealogies
- searching

Another example of acyclic networks are genealogies. In 'Sources' we already described the following network representations of genealogies:

V. Batagelj

Acyclic networks

DQC

Properties of representations

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

p-graphs and bipartite *p*-graphs have many advantages:

- there are less nodes and links in *p*-graphs than in corresponding Ore graphs;
- *p*-graphs are directed, acyclic networks;
- every semi-cycle of the *p*-graph corresponds to a *relinking marriage*. There exist two types of relinking marriages: *blood* marriage: e.g., marriage among brother and sister, and *non-blood* marriage: e.g., two brothers marry two sisters from another family.
- *p*-graphs are more suitable for analyses.

Bipartite *p*-graphs have an additional advantage: we can distinguish between a married uncle and a remarriage of a father. This property enables us, for example, to find marriages between half-brothers and half-sisters.

V. Batagelj

Acyclic networks V. Batageli

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

A genealogy is *regular* if every person in it has at most two parents. Genealogies are *sparse* networks – number of links is of the same order as the number of nodes.

For a *regular Ore genealogy* $(\mathcal{V}, (\mathcal{A}, \mathcal{E}))$ we have:

Genealogies are sparse networks

$$|\mathcal{A}| \leq 2|\mathcal{V}|, \quad |\mathcal{E}| \leq \frac{1}{2}|\mathcal{V}|, \quad |\mathcal{L}| = |\mathcal{A}| + |\mathcal{E}| \leq \frac{5}{2}|\mathcal{V}|$$

p-graphs are almost trees – deviations from trees are caused by relinking marriages (V_p , A_p – nodes and arcs of *p*-graph, n_{mult} – # of nodes with multiple marriages):

$$|\mathcal{V}_{p}| = |\mathcal{V}| - |\mathcal{E}| + n_{mult}, \quad |\mathcal{V}| \ge |\mathcal{V}_{p}| \ge \frac{1}{2}|\mathcal{V}|, \quad |\mathcal{A}_{p}| \le 2|\mathcal{V}_{p}|$$

and for a bipartite *p*-graph, we have

$$|\mathcal{V}| \leq |\mathcal{V}_b| \leq \frac{3}{2}|\mathcal{V}|, \quad |\mathcal{A}_b| \leq 2|\mathcal{V}| + n_{\textit{mult}}$$

V. Batagelj

Acyclic networks

Sar

Number of nodes and links in Ore and *p*-graphs

Acyclic networks

V. Batagelj

Ac

Ge Pa se Tri

cyclic etworks	data	$ \mathcal{V} $	$ \mathcal{E} $	$ \mathcal{A} $	$\frac{ \mathcal{L} }{ \mathcal{V} }$	$ \mathcal{V}_i $	n _{mult}	$ \mathcal{V}_{\mathcal{P}} $	$ \mathcal{A}_{p} $	$\frac{ \mathcal{A}_{\mathcal{P}} }{ \mathcal{V}_{\mathcal{P}} }$	
house he was to see	Drame	29606	8256	41814	1.69	13937	843	22193	21862	0.99	
lumberings	Hawlina	7405	2406	9908	1.66	2808	215	5214	5306	1.02	
itation	Marcus	702	215	919	1.62	292	20	507	496	0.98	
etworks	Mazol	2532	856	3347	1.66	894	74	1750	1794	1.03	
etworks	President	2145	978	2223	1.49	282	93	1260	1222	0.97	
enealogies	Royale	17774	7382	25822	1.87	4441	1431	11823	15063	1.27	
Ŭ	Loka	47956	14154	68052	1.71	21074	1426	35228	36192	1.03	
attern	Silba	6427	2217	9627	1.84	2263	270	4480	5281	1.18	
earching	Ragusa	5999	2002	9315	1.89	2347	379	4376	5336	1.22	
	Tur	1269	407	1987	1.89	549	94	956	1114	1.17	
riads	Royal92	3010	1138	3724	1.62	1003	269	2141	2259	1.06	
lotifs	Little	25968	8778	34640	1.67	8412				1.01	
10115	Mumma	34224	11334	45565	1.66	11556				1.00	
araphlets	Tilltson	42559	12796	54043	1.57	16967				1.00	

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

Relinking index

- V. Batagelj
- Acyclic networks
- Numberings
- Citation networks

Genealogies

- Pattern searching
- Triads
- Motifs
- Graphlets

Let *n* denotes number of nodes in *p*-graph, *m* number of arcs, *k* number of weakly connected components, and *M* number of maximal nodes (nodes having output degree 0, $M \ge 1$).

The *relinking index* is defined as:

$$RI = \frac{k+m-n}{k+n-2M}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

nac

For a trivial graph (having only one node) we define RI = 0. It holds $0 \le RI \le 1$. RI = 0 iff network is a forest.

V. Batagelj

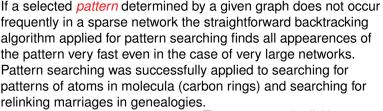
Pattern searching

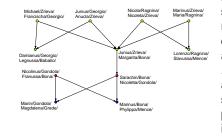
Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks


Genealogies


Pattern searching

Triads

Motifs

Graphlets

Three connected relinking marriages in the genealogy (represented as a *p*-graph) of ragusan noble families. A solid arc indicates the _ *is a son of* _ relation, and a dotted arc indicates the _ *is a daughter of* _ relation. In all three patterns a brother and a sister from one family found their partners in the same other family.

... Pattern searching

Acyclic networks

- V. Batagelj
- Acyclic networks
- Numberings
- Citation networks
- Genealogies

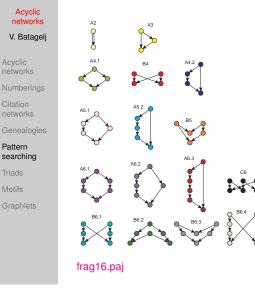
Pattern searching

- Triads
- Motifs
- Graphlets

To speed up the search or to consider some additional properties of the pattern, a user can set some additional options:

- nodes in network should match with nodes in pattern in some nominal, ordinal or numerical property (for example, type of atom in molecula);
- values of edges must match (for example, edges representing male/female links in the case of *p-graphs*);
- the first node in the pattern can be selected only from a given subset of nodes in the network.

Networks/Fragment (First in Second)


V. Batagelj

Acyclic networks

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Relinking patterns in p-graphs

All possible relinking marriages in *p*-graphs with 2 to 6 nodes. Patterns are labeled as follows:

- first character number of first nodes: A single, B two, C three.
- second character: number of nodes in pattern (2, 3, 4, 5, or 6).
- last character: identifier (if the two first characters are identical).

Patterns denoted by A are exactly the blood marriages. In every pattern the number of first nodes is equal to the number of last nodes.

Frequencies normalized with number of couples in p-graph \times 1000

Acyclic networks

V. I	Batagelj
------	----------

Acyclic networks

Numberings

Citation networks

Genealogies

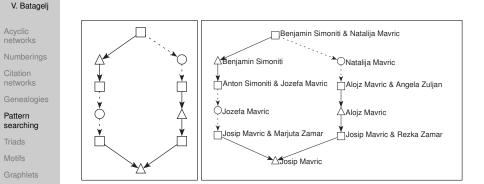
Pattern searching

Triads

Motifs

Graphlets

pattern	Loka	Silba	Ragusa	Turcs	Royal
A2	0.07	0.00	0.00	0.00	0.00
A3	0.07	0.00	0.00	0.00	2.64
A4.1	0.85	2.26	1.50	159.71	18.45
B4	3.82	11.28	10.49	98.28	6.15
A4.2	0.00	0.00	0.00	0.00	0.00
A5.1	0.64	3.16	2.00	36.86	11.42
A5.2	0.00	0.00	0.00	0.00	0.00
B5	1.34	4.96	23.48	46.68	7.03
A6.1	1.98	12.63	1.00	169.53	11.42
A6.2	0.00	0.90	0.00	0.00	0.88
A6.3	0.00	0.00	0.00	0.00	0.00
C6	0.71	5.41	9.49	36.86	4.39
B6.1	0.00	0.45	1.00	0.00	0.00
B6.2	1.91	17.59	31.47	130.22	10.54
B6.3	3.32	13.53	40.96	113.02	11.42
B6.4	0.00	0.00	2.50	7.37	0.00
Sum	14.70	72.17	123.88	798.53	84.36


Most of the relinking marriages happened in the genealogy of Turkish nomads; the second is Ragusa while in other genealogies they are much less frequent.

V. Batagelj

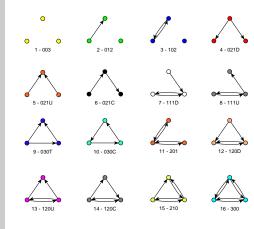
Acyclic networks

Bipartite *p*-graphs: Marriage among half-cousins

V. Batagelj

Acyclic networks

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <


Triads

- V. Batagelj
- Acyclic networks
- Numberings
- Citation networks
- Genealogies
- Pattern searching

Triads

- Motifs
- Graphlets

Let $\mathcal{G} = (\mathcal{V}, R)$ be a simple directed graph without loops. A *triad* is a subgraph induced by a given set of three nodes. There are 16 nonisomorphic (types of) triads. They can be partitioned into three basic types:

- the *null* triad 003;
- *dyadic* triads 012 and 102; and
- connected triads: 111D, 201, 210, 300, 021D, 111U, 120D, 021U, 030T, 120U, 021C, 030C and 120C.

Э

DQC

イロト イポト イヨト イヨト

Network/Info/Triadic Census

V. Batagelj

Triadic spectrum

Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Several properties of a graph can be expressed in terms of its *triadic spectrum* – distribution of all its triads. It also provides ingredients for p^* network models.

A direct approach to determine the triadic spectrum is of order $O(n^3)$; but in most large graphs it can be determined much faster.

Moody

Pattern counting using matrices

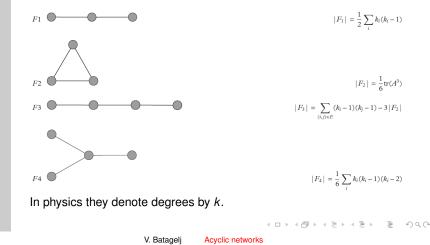
Acyclic networks V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies


Pattern searching

Triads

Motifs

Graphlets

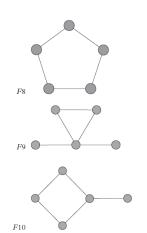
In the Estrada's book *A First Course in Network Theory* (2015) a long list of formulae for counting small subgraphs is given.

Pattern counting using matrices

Acyclic networks

Numbering

Citation networks


Genealogies

Pattern searching

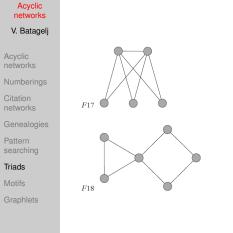
Triads

Motifs

Graphlets

$$|F_8| = \frac{1}{10} (tr(A^5) - 30 |F_2| - 10 |F_6|)$$

 $|F_9| = \frac{1}{2} \sum_{k_i \ge 4} t_i (k_i - 2) (k_i - 3)$


500

$$|F_{10}| = \frac{1}{2} \sum_{i} (k_i - 2) \times \sum_{i,j} \binom{(A^2)_{ij}}{2} - 2|F_7|$$

V. Batagelj

Pattern counting using matrices

500

$$|F_{18}| = \sum_{i} t_{i} \cdot \sum_{i \neq j} \binom{(\mathcal{A}^{2})_{ij}}{2} - 6|F_{7}| - 2|F_{14}| - 6|F_{17}|$$

< => < @> < => < => < =>

V. Batagelj

Motifs

Acyclic networks

V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Network motifs are sub-graphs that repeat themselves frequently in a specific network or even among various networks. Each of these sub-graphs, defined by a particular pattern of interactions between nodes, may reflect a framework in which particular functions are achieved efficiently. Indeed, motifs are of notable importance largely because they may reflect functional properties.

Milo, R, Shen-Orr, S, Itzkovitz, S, Kashtan, N, Chklovskii, D, Alon, U: Network Motifs: Simple Building Blocks of Complex Networks. Science, 298, October 2002, p. 824-827. Wikipedia: Motifs

V. Batagelj

Acyclic networks

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Motifs

Acyclic networks

V. Batagelj	Network	Nodes	Edges	Nreal	$N_{rand} \pm SD$	Z score	Nreal	$N_{\text{rand}} \pm \text{SD}$	Z score	Nreal	Nrand ± SD	Z score
	Gene regulat (transcriptio			Γ	× ₩	Feed- forward	X	X	Bi-fan			
Acyclic networks				5	¥ ∀ Z	Іоор	V∉ z	W				
Numberings	E. coli S. cerevisiae*	424 685	519 1,052	40 70	7 ± 3 11 ± 4	10 14	203 1812	$47 \pm 12 \\ 300 \pm 40$	13 41			
Citation networks	Neurons				× ∀ Y	Feed- forward loop	X	√ ₩	Bi-fan	V Y	x N VZ	Bi- parallel
Genealogies					V Z		~	w			W	
Pattern	C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
searching	Food webs				X ∀	Three chain	¥ X	N	Bi- parallel			
Triads					¥ ∀		Y	$\varkappa^{\mathbf{z}}$				
Motifs	Little Rock	92	984	3219	$Z_{3120 \pm 50}$	2.1	W 7295	2220 ± 210	25			
							1295	2220 ± 210	25			
		83		1182	1020 ± 20	7.2	1357	230 ± 50	23			
Graphlets	Ythan St. Martin		391 205	1182 469	$1020 \pm 20 \\ 450 \pm 10$	7.2 NS	1357 382	230 ± 50 130 ± 20	23 12			
Graphlets	Ythan St. Martin Chesapeake	83 42 31	391 205 67	469 80	$\begin{array}{c} 450\pm10\\ 82\pm4 \end{array}$	NS NS	382 26	$130 \pm 20 \\ 5 \pm 2$	12 8			
Graphlets	Ythan St. Martin Chesapeake Coachella	83 42 31 29	391 205 67 243	469 80 279	450 ± 10 82 ± 4 235 ± 12	NS NS 3.6	382 26 181	130 ± 20 5 ± 2 80 ± 20	12 8 5			
Graphlets	Ythan St. Martin Chesapeake	83 42 31	391 205 67	469 80	$\begin{array}{c} 450\pm10\\ 82\pm4 \end{array}$	NS NS	382 26	$130 \pm 20 \\ 5 \pm 2$	12 8			

V. Batagelj

Motifs

Acyclic networks

V.	Batagelj
----	----------

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Electronic circuits (forward logic chips)			$\begin{vmatrix} X \\ \Psi \\ Y \\ \Psi \\ Z \end{vmatrix}$		Feed- forward loop			Bi-fan		Bi- parallel	
s15850	10,383	14,240		2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204		0 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661		3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234	5,844	8,197		2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
s13207	8,651	11,831	403	2 ± 1	225	4445	1 ± 1	4950	264	2 ± 1	200
Electronic circuits (digital fractional multipliers)		$\gamma \sim x$ $\gamma < - y$	z Z	Three- node feedback loop	x z	Y W	Bi-fan	X^{-}	$\rightarrow Y$ \downarrow W	Four- node feedback loop	
s208	122	189	10 1	± 1	9	4	1 ± 1	3.8	5	1 ± 1	5
s420	252	399	20 1	± 1	18	10	1 ± 1	10	11	1 ± 1	11
s838‡	512	819	40 1	± 1	38	22	1 ± 1	20	23	1 ± 1	25
World Wide Web				Feedback with two mutual dyads	$X \\ Y \leftarrow$	S z ≤	Fully connected triad	$\gamma^{\mathbf{x}}_{\mathbf{y} \longleftrightarrow}$	∧ > z	Uplinked mutual dyad	
nd.edu§	325,729	1.46e6	1.1e5 2	$e3 \pm 1e2$	800	6.8e6	5e4±4e2	15,000	1.2e6	$1e4 \pm 2e$	2 5000

R: igraph::motifs

V. Batagelj

Acyclic networks

イロト イロト イヨト イヨト 三日

500

Graphlets

Acyclic networks

V. Batagelj

Acyclic networks

Numberings

Citation networks

Genealogies

Pattern searching

Triads

Motifs

Graphlets

Graphlets are small connected non-isomorphic induced subgraphs of a large network. Graphlets differ from network motifs, since they must be induced subgraphs, whereas motifs are partial subgraphs. An induced subgraph must contain all edges between its nodes that are present in the large network, while a partial subgraph may contain only some of these edges.

Graphlets were first introduced in:

Pržulj, Nataša: Biological network comparison using graphlet degree distribution. Bioinformatics, Volume 23, Issue 2, 15 January 2007, Pages e177–e183, PDF

Wikipedia: /Graphlets

iGraph: graphlet; ORCA

V. Batagelj Acyclic networks

イロト イロト イヨト イヨト 二日

Sar

Graphlets with 2–5 nodes and automorphism orbits

- V. Batagelj
- Acyclic networks
- Numberings
- Citation networks
- Genealogie
- Pattern searching
- Triads
- Motifs
- Graphlets

Nodes of the same color belong to the same orbit within that graphlet.

V. Batagelj

Acyclic networks

・ ロ ト ・ 同 ト ・ 回 ト ・

ъ

э

200