Appendix: Computing all paths in Preprint

9.1 Semiring

A path is a walk in a graph with all its vertices different.
A and B set of paths on network.
$A+B=A \cup B$
$A \cdot B=\{a \bullet b: a \in A, b \in B\}$

$$
a \bullet b= \begin{cases}a \circ b & \operatorname{last}(a)=\operatorname{first}(b) \wedge \operatorname{set}(a) \cap \operatorname{set}(b f(b))=\emptyset \\ \text { nothing } & \text { otherwise }\end{cases}
$$

\circ is the operation of concatenation of paths.
$\emptyset \cdot A=A \cdot \emptyset=\emptyset$
Kleene, Warshall, Floyd and Roy are contributed to the development of the procedure which final form was given by Fletcher.

```
\(\mathrm{C}_{0}:=\mathrm{W}\);
for \(k:=1\) to \(n\) do begin
    for \(i:=1\) to \(n\) do for \(j:=1\) to \(n\) do
        \(c_{k}[i, j]:=c_{k-1}[i, j]+c_{k-1}[i, k] \cdot\left(c_{k-1}[k, k]\right)^{\star} \cdot c_{k-1}[k, j] ;\)
    \(c_{k}[k, k]:=1+c_{k}[k, k] ;\)
end;
\(\mathbf{W}^{\star}:=\mathbf{C}_{n}\);
```

If we delete the statement $c_{k}[k, k]:=1+c_{k}[k, k]$ we obtain the algorithm for computing the strict closure $\overline{\mathbf{W}}$.

We have an idempotent $(A+A=A)$ semiring. The unit for + is the empty set \emptyset. The unit for \cdot is $1=\{[v]: v \in V\}$.

Let

$$
A=c_{k-1}[k, k]=\{a \in \text { Path }: \operatorname{first}(a)=\operatorname{last}(a)=k\}=\{[k]\}
$$

Therefore

$$
A^{*}=1+A+A^{2}+A^{3}+A^{4}+\cdots=1+\{[k]\}+\{[k]\}+\{[k]\}+\{[k]\} \cdots=1
$$

Since the semiring is idempotent the Fletcher's algorithm can be performed in place - we can omit indices in c_{k}.

9.2 Python

```
def times(A,B):
    C = []
    if (A == [])|(B == []): return(C)
    for a in A:
        for b in B:
            la = a[len(a)-1]; fb = b[0]
            if lla == fb: & set(b[1:]) == set(): C.append(a+b[1:])
    return(C)
def closure(R):
```

```
    n = len(R); C = R
    for k in range(n):
        for u in range(n):
            for v in range(n):
    return(C)
```

```
def output(R):
```

def output(R):
n = len(R)
n = len(R)
for u in range(n):
for u in range(n):
for v in range(n):
for v in range(n):
print(u+1,v+1,R[u][v])
print(u+1,v+1,R[u][v])
r = [[] for j in range(stcNver)] for i in range(stcNver)]
r = [[] for j in range(stcNver)] for i in range(stcNver)]
while True:
while True:
line = stc.readline()
line = stc.readline()
if not line: break
if not line: break
row = list(filter(lambda s: s not in [''], line.split(' ')))
row = list(filter(lambda s: s not in [''], line.split(' ')))
u = eval(row[0]); v = eval(row[1])
u = eval(row[0]); v = eval(row[1])
r[u-1][v-1] = [[u,v]]
r[u-1][v-1] = [[u,v]]
...

```


```

$\mathrm{I}=[[1],[2],[3],[4]]$
$\mathrm{C}=$ closure (R)
output (C)

```
```

1 []
1 2 [[1, 2], [1, 3, 2]]
1 3 [[1, 3], [1, 2, 3]]
1 4 [[1, 3, 4], [1, 2, 3, 4]]
2 1 [[2, 3, 4, 1]]
2 2 []
2 3 [[2, 3]]
2 4 [[2, 3, 4]]
3 1 [[3, 4, 1]]
2 [[3, 2], [3, 4, 1, 2]]
3 []
4 [[3, 4]]
4 [[[4, 1]]
4 2 [[[4, 1, 2], [4, 1, 3, 2]]
4 4 []

```
```

