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Motivation

For the representation of symbolic data by discrete
distributions (n,p) used in our program Clamix (Batagelj et
al., 2015) for clustering symbolic data we can observe two
important properties

• fixed space required for a description of a unit/cluster;

• description of a union of two disjoint clusters can be
obtained from their descriptions.

In this talk I will elaborate on this second observation.

How to join the population pyramids for China and Albania?
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Aggregation

In analysis of large data sets the aggregation is a standard way
for reducing size (complexity) of the data. Recently some books
dealing with theoretical and algorithmic background of the
traditional aggregation (replacing values of variable over a group
by a single value) were published (Beliakov et al., 2007; Torra and
Narukawa, 2007; Grabisch et al., 2009; Bustince et al., 2013).
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Aggregation

Data analysis programs provide aggregation functions such
as: means (arit, geom, harm, median, modus), min, max,
product, bounded sum, counting, etc. A special care has to
be given to variables measured in different measurement
scales.
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Aggregation

In theoretical discussion the traditional aggregation
functions are usually “normalized” to the interval [0,1] – they
take real arguments in [0,1]k and produce a value in [0,1],
and satisfy the conditions: f (0) = 0, f (1) = 1, and
monotonicity x ≤ y⇒ f (x) ≤ f (y). Often, in applications,
also idempotency and symmetry are required.

The applications of traditional aggregation functions are,
besides determining a representative value for a group of
measurements, mainly to combine partial criteria into single
criterion (multicriteria optimization and decision making) or
to express the membership degree in combined fuzzy sets.
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Aggregation

A problem with the traditional aggregation is that often too
much of information is discarded thus reducing the
precission of the obtained results.

A much better, preserving more information, summarization
of original data can be achieved by representing aggregated
data using selected types of complex data such us symbolic
objects (Diday, 1988), compositions (Aitchison, 1986),
functional data (Ramsay and Silverman, 2005), etc. In the
SDA framework much work is devoted to the summarization
process, for example the function classic.to.sym in
RSDA (Rodriguez, 2018), and SODAS or SYR software.
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Mergeable summaries

In complex data analysis the measured values over a
selected group A are aggregated into a complex object Σ(A)
and not into a single value. Most of the theory does not
apply directly.

In our contribution we present an attempt to start building a
theoretical background of complex aggregation.

An interesting question is, which complex data types are
compatible with merging of disjoint sets of units

Σ(A ∪ B) = F (Σ(A),Σ(B)), for A ∩ B = ∅.

See also Diday (1995).
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Mergeable summaries

Searching for a name I was inclined towards hierarchical or
mergeable summarization. I recently tried this term on Google
and surprise – mergeable summaries were proposed and
elaborated by Agarwal et al. (2012).

They turn out to enable parallelization in big data algorithms and
streams processing.

The summarization in big data is not deterministic and allows
some error. A summary is mergeable, if error and space (size of
summary) does not increase after the merge.

In my talk I will discuss exactly mergeable summaries “without
errors”.
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Exactly mergeable summaries
simple examples

We assume A ∩ B = ∅

1 Σ(A) = |A| = nA
Σ(A ∪ B) = Σ(A) + Σ(B)

2 Σ(A) = min(A)
Σ(A ∪ B) = min(Σ(A),Σ(B))

3 Σ(A) = max(A)
Σ(A ∪ B) = max(Σ(A),Σ(B))

4 Σ(A) = (First(A),Second(A))
Σ(A ∪ B) = (First(L),Second(L)), where
L = {First(A),Second(A),First(B),Second(B)}

5 Σ(A) = (nA, µA)
Σ(A ∪ B) = (nA + nB,

nAµA+nBµB
nA+nB

)

6 Σ(A) =
∑

X∈A v(X )
Σ(A ∪ B) = Σ(A) + Σ(B)
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Exactly mergeable summaries
moments

For example, in physics and engineering the measurements are
usually aggregated as µ± σ. It would be better for measurements
A to represent them as Σ(A) = (nA, µA, σA), where nA is the
number of measurements.

Then additional measurements B, A ∩ B = ∅, Σ(B) = (nB, µB, σB)
can be combined into measurements C = A ∪ B,
Σ(C) = (nC , µC , σC) determined by Σ(A) and Σ(B) as follows

nC = nA∪B = nA + nB

µC = µA∪B =
nAµA + nBµB

nC

σC = σA∪B =

√
SC

nC
− µ2

C

where SC = SA + SB and SX = nX (σ2
X + µ2

X ).

The result can be extended to higher moments.
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Exactly mergeable summaries
set membership count

Counting number of values from C in A

n(A; C) = |A ∩ C|

is an exactly mergeable summary.

Proof::

n(A ∪ B; C) = |(A ∪ B) ∩ C| = |(A ∩ C) ∪ (B ∩ C)| =

= |A ∩ C|+ |B ∩ C| − |A ∩ B ∩ C| = n(A; C) + n(B; C)
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Combining exactly mergeable summaries

Let Σ1 and Σ2 be exactly mergeable summaries. Then also

Σ1 ⊕ Σ2(A) = (Σ1(A),Σ2(A))

is an exactly mergeable summary.

Proof: Σ1 ⊕ Σ2(A ∪ B) = (Σ1(A ∪ B),Σ2(A ∪ B)) =

= (F1(Σ1(A),Σ1(B)),F2(Σ2(A),Σ2(B)))

Therefore, since set membership counts are exactly mergeable,
the barcharts

C = {X : v(X ) = c}
and histograms

C = {X : v(X ) ∈ [a,b)}

are exactly mergeable summaries.
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Proving that a summary
is not exactly mergeable

If for a summary Σ exist sets A1, B1, A2, B2 such that A1 ∩ B1 = ∅,
A2 ∩ B2 = ∅, Σ(A1) = Σ(A2), Σ(B1) = Σ(B2), and
Σ(A1 ∪ B1) 6= Σ(A2 ∪ B2) then Σ is not exactly mergeable.

Proof: Assume that Σ is exactly mergeable. Then

Σ(A1 ∪ B1) = F (Σ(A1),Σ(B1)) = F (Σ(A2),Σ(B2)) = Σ(A2 ∪ B2)

a contradiction.
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Median is not exactly mergeable summary

med(A) = order(A)[
⌈nA

2

⌉
]

A1 = [3,4,1] med(A1) = 3
B1 = [9,6] med(B1) = 6
med(A1 ∪ B1) = 5

A2 = [3,4] med(A2) = 3
B2 = [6,2,7] med(B2) = 6
med(A2 ∪ B2) = 4
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Second is not exactly mergeable summary

A1 = [1,3,5] Second(A1) = 3
B1 = [2,5,6] Second(B1) = 5
Second(A1 ∪ B1) = 2

A2 = [3,3,6] Second(A2) = 3
B2 = [4,5,7] Second(B2) = 5
Second(A2 ∪ B2) = 3
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Questions

• How to measure the improvement of precision of
results obtained by SDA ? Are they really performing
better than the traditional methods based on averages?

• How to consider the preserved variability in criterion
functions?

• Develop symbolic methods for big data mergeable
summaries.
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