Analysis of temporal networks

Vladimir Batagelj

iffic Outline

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

1) Networks and semirings

2 Temporal networks
3 netJSON and Graph
4 Violence
5 Bibliographic temp-nets
6 Matrix based TQ
7 Terror news
8 Conclusions
9 References

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si
Current version of slides (May 31, 2017 at 04 : 55):
Sunbelt 2017 workshop slides PDF

$i 4 f i$
 Introduction

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

Work in progress!!!

We present a longitudinal approach to analysis of temporal networks that was proposed in our paper:

> Batagelj, V., Praprotnik, S.: An algebraic approach to temporal network analysis based on temporal quantities. Social Network Analysis and Mining, 6(2016)1, 1-22.

To describe their temporal behavior we assign temporal quantities to nodes and links of a network. The proposed approach enables us to treat as temporal quantities also other network characteristics such as degrees, connectivity components, centrality measures, Pathfinder skeleton, cores, etc. It is an alternative to the usual approach to temporal network analysis based on time slices. We developed fast algorithms for the proposed operations.

iffif ... Introduction

They are available as an open source Python library TQ:
http://vladowiki.fmf.uni-lj.si/doku.php?id=tq and

```
    https://github.com/bavla/TQ/.
```

The initial version of TQ library was based on matrices and on an extended Pajek input format. This limits the application of the proposed methods to some thousands of nodes (space and time complexity). The limits can be partially extended by switching to graph representation
https://github.com/bavla/graph/ .

Also for the input format we decided to base it on JSON - a netJSON format.

$i 4 f i$
 Networks and semirings

A network $\mathcal{N}=(\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W}): \mathcal{V}$ is a set of nodes, \mathcal{L} is a set of links (undirected - edges, directed - Arcs), \mathcal{P} are properties of nodes, and \mathcal{W} are properties of links, usually called weights.
We assume that the values of a property belong to a set A which is a semiring ($A,+, \cdot, 0,1$) for binary operations $+: A \times A \rightarrow A$ and $\cdot: A \times A \rightarrow A$.

This means that $(A,+, 0)$ is an Abelian monoid - the addition + is associative and commutative, and has 0 as its neutral element; and $(A, \cdot, 1)$ is a monoid - the multiplication \cdot is associative and has 1 as its neutral element. Also, multiplication distributes from both sides over addition.

$i m i$
 Semiring addition and multiplication in networks.

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

The "default" semiring is the combinatorial semiring combinatorial $\left(\mathbb{R}_{0}^{+},+, \cdot, 0,1\right)$ where + and \cdot are the usual addition and multiplication of real numbers.

In applications of semirings in analysis of graphs and networks the addition + describes the composition of values on parallel walks and the multiplication - describes the composition of values on sequential walks. For a combinatorial semiring these two schemes correspond to basic principles of combinatorics Rule of Sum and Rule of Product.

(iffif Networks and semirings

We extend the weight w to a walk $\sigma=p_{1} p_{2} p_{3} \ldots p_{k}$

$$
w(\sigma)=w\left(p_{1}\right) \cdot w\left(p_{2}\right) \cdot w\left(p_{3}\right) \cdots w\left(p_{k}\right)
$$

and to a finite set of walks $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{m}\right\}$

$$
w(\Sigma)=w\left(\sigma_{1}\right)+w\left(\sigma_{2}\right)+w\left(\sigma_{3}\right)+\cdots+w\left(\sigma_{m}\right)
$$

It holds

$$
w\left(\Sigma_{1}\right)+w\left(\Sigma_{2}\right)=w\left(\Sigma_{1} \cup \Sigma_{2}\right)+w\left(\Sigma_{1} \cap \Sigma_{2}\right)
$$

In some applications other semirings are useful.

Examples of semirings

 semiringsTemporal networks

The reachability semiring reach $(\{0,1\}, \vee, \wedge, 0,1)$ for reachability problems.

The maxmin semiring maxmin $(\overline{\mathbb{R}}, \max , \min ,-\infty, \infty)$.
The semiring path $\left(\overline{\mathbb{R}}_{0}^{+}, \min ,+, \infty, 0\right)$ is suitable to deal with the shortest paths problem in networks.

The geodetic semiring geodetic $\left(\overline{\mathbb{R}}_{0}^{+} \times \overline{\mathbb{N}}, \oplus, \odot,(\infty, 0),(0,1)\right)$, where $\overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}$ and we define addition \oplus with:

$$
(a, i) \oplus(b, j)=\left(\min (a, b),\left\{\begin{array}{ll}
i & a<b \\
i+j & a=b \\
j & a>b
\end{array}\right)\right.
$$

and multiplication \odot with: $(a, i) \odot(b, j)=(a+b, i \cdot j)$.
The Pathfinder semiring PFsemi $\left(\overline{\mathbb{R}}_{0}^{+}, \min , \boxtimes, \infty, 0\right)$ with $a \square b=\sqrt[r]{a^{r}+b^{r}}$.

Computing in semirings

Python library TQ

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks
net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

```
>>> gdir = 'c:/users/batagelj/work/python/graph/graph'
>>> import sys, os, datetime
>>> sys.path = [gdir]+sys.path
>>> from TQ import *
>>> TQ.report()
semiring = combinatorial
add = add
mult = mul
sZero = 0
sOne = 1
>> TQ.sAdd (3,4)
7
>>> TQ.sMul(3,4)
12
>>> TQ.path()
>>> TQ.report()
semiring = path
add = min
mult = add
sZero = inf
sOne = 0
>> TQ.sAdd(3,4)
3
>>> TQ.sMul( }3,4
7
>>>
```

A temporal network $\mathcal{N}_{T}=(\mathcal{V}, \mathcal{L}, \mathcal{T}, \mathcal{P}, \mathcal{W})$ is obtained by attaching the time, \mathcal{T}, to an ordinary network where \mathcal{T} is a set of time points, $t \in \mathcal{T}$.

In a temporal network, nodes $v \in \mathcal{V}$ and links $I \in \mathcal{L}$ are not necessarily present or active in all time points. Let $T(v), T \in \mathcal{P}$, be the activity set of time points for node v and $T(I), T \in \mathcal{W}$, the activity set of time points for link $/$.

Besides the presence/absence of nodes and links also their properties can change through time.

Temporal quantities

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

We introduce a notion of a temporal quantity

$$
a(t)= \begin{cases}a^{\prime}(t) & t \in T_{a} \\ \mathscr{H} & t \in \mathcal{T} \backslash T_{a}\end{cases}
$$

where T_{a} is the activity time set of a and $a^{\prime}(t)$ is the value of a in an instant $t \in T_{a}$, and \mathscr{H} denotes the value undefined.

We assume that the values of temporal quantities belong to a set A which is a semiring $(A,+, \cdot, 0,1)$ for binary operations + and \cdot.

We can extend both operations to the set $A_{\mathscr{H}}=A \cup\{\mathscr{H}\}$ by requiring that for all $a \in A_{\mathscr{H}}$ it holds

$$
a+\mathscr{H}=\mathscr{H}+a=a \quad \text { and } \quad a \cdot \mathscr{H}=\mathscr{H} \cdot a=\mathscr{H} .
$$

The structure $\left(A_{\mathscr{H}},+, \cdot, \mathscr{H}, 1\right)$ is also a semiring.

344 Operations with temporal quantities

Let $A_{\mathscr{H}}(\mathcal{T})$ denote the set of all temporal quantities over $A_{\mathscr{H}}$ in time \mathcal{T}. To extend the operations to networks and their matrices we first define the sum (parallel links) $a+b$ as

$$
(a+b)(t)=a(t)+b(t) \quad \text { and } \quad T_{a+b}=T_{a} \cup T_{b}
$$

The product (sequential links) $a \cdot b$ is defined as

$$
(a \cdot b)(t)=a(t) \cdot b(t) \quad \text { and } \quad T_{a \cdot b}=T_{a} \cap T_{b} .
$$

Let us define the temporal quantities $\mathbf{0}$ and $\mathbf{1}$ with requirements $\mathbf{0}(t)=\mathscr{H}$ and $\mathbf{1}(t)=1$ for all $t \in \mathcal{T}$. Again, the structure $\left(A_{\mathscr{H}}(\mathcal{T}),+, \cdot, \mathbf{0}, \mathbf{1}\right)$ is a semiring.

$34 i f$
 Semiring for temporal quantities

A semiring is also the set of square matrices of order n over $A_{\mathscr{H}}(\mathcal{T})$ it for addition $\mathbf{A} \oplus \mathbf{B}=\mathbf{S}$

$$
s_{i j}=a_{i j}+b_{i j}
$$

and multiplication $\mathbf{A} \odot \mathbf{B}=\mathbf{P}$

$$
p_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

The matrix multiplication is closely related to traveling on networks. For a value $p_{i j}$ to be defined (different from \mathscr{H}) there should exist at least one node k such that both link (i, k) and link (k, j) exist (at the same time) - the transition from the node i to the node j through a node k is possible. Its contribution is $a_{i k} \cdot b_{k j}$.

ifff Multiplication of networks

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

We will limit our attention to networks with zero latency in which the transitions on links are immediate (they take no time) - in the product $\mathbf{A} \odot \mathbf{B}$ a link (i, j) exists in a time point t iff in the time point t there exist a link (i, k) in \mathbf{A} and a link (k, j) in \mathbf{B}, for some node k.

$34 i$
 Temporal quantities on intervals

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

In the following we shall limit our discussion to temporal quantities that can be described in the form of time-interval/value sequences

$$
a=\left(\left(I_{i}, v_{i}\right)\right)_{i=1}^{k}
$$

where I_{i} is a time-interval and v_{i} is a constant value of a on this interval. $T_{a}=\bigcup_{i=1}^{k} l_{i}$. To simplify the exposition we will assume in the following that all the intervals are of the form [s_{i}, f_{i}), s_{i} is the starting time and f_{i} is the finishing time, $s_{i}<f_{i}$ and $f_{i} \leq s_{i+1}$. Therefore we can describe the temporal quantities with sequences

$$
a=\left(\left(s_{i}, f_{i}, v_{i}\right)\right)_{i=1}^{k}
$$

Library TQ

temporal quantities

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

To provide a computational support for the proposed approach we are developing in Python a library TQ (Temporal Quantities). Its initial version was based on matrix representation of networks.

The following are two temporal quantities a and b represented in Python

```
a = [(1, 5, 2), (6, 8, 1), (11, 12, 3), (14, 16, 2),
    (17, 18, 5), (19, 20, 1)]
b = [(2, 3, 4), (4, 7, 3), (9, 10, 2), (13, 15, 5), (16, 21, 1)]
```

The temporal quantity a has on interval $[1,5)$ value 2 , on interval $[6,8)$ value 1 , on interval $[11,12)$ value 3 , etc. Outside the specified intervals its value is undefined, $\not \mathscr{H}$.

ifffic Operations

Temporal
networks
V. Batagelj

For the simplified version of temporal quantities we wrote procedures sum for addition and prod for multiplication of temporal quantities over the selected semiring. Because the intervals in TQs are ordered we can base both operatins on "merging of seqeunces".

The semiring operations are provided by functions sAdd and sMul. The procedure standard joins adjacent time intervals with the same value into a single interval.
In procedures for operations with temporal quantities we use

```
@staticmethod
def get(S):
    try: return(next(S))
    except StopIteration: return((TQ.inf,TQ.inf,TQ.sZero))
```


$i 4 f$
 Addition of temporal quantities

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

```
@staticmethod
def sum(a,b):
    if len(a) == 0: return(b)
    if len(b) == 0: return(a)
    c = []; A = a.__iter__(); B = b.__iter__()
    (sa,fa,va) = TQ.get(A); (sb,fb,vb) = TQ.get(B)
    while (sa<TQ.inf) or (sb<TQ.inf):
        if sa < sb:
            sc = sa; vc = va
            if sb < fa: fc = sb; sa = sb
            else: fc = fa; (sa,fa,va) = TQ.get(A)
            c.append((sc,fc,vc))
        elif sa == sb:
            sc = sa; fc = min(fa,fb); vc = TQ.sAdd(va,vb)
            c.append((sc,fc,vc))
            sa= sb = fc; fA = fa
            if fA <= fb: (sa,fa,va) = TQ.get(A)
            if fb <= fA: (sb,fb,vb) = TQ.get(B)
        else:
            sc = sb; vc = vb
            if sa < fb: fc = sa; sb = sa
            else: fc = fb; (sb,fb,vb) = TQ.get(B)
            c.append((sc,fc,vc))
    return(TQ.standard(c))
```


$i 4 f$
 Multiplication of temporal quantities

Networks and semirings

Temporal networks

```
@staticmethod
def prod(a,b):
    if len(a)*len(b) == 0: return([])
    c = []; A = a.__iter__(); B = b.__iter__()
    (sa,fa,va) = TQ.get(A); (sb,fb,vb) = TQ.get(B)
    while (sa<TQ.inf) or (sb<TQ.inf):
        if fa<= sb: (sa,fa,va)= TQ.get(A)
        elif fb <= sa: (sb,fb,vb) = TQ.get(B)
        else:
            sc = max(sa,sb); fc = min(fa,fb); vc = TQ.sMul(va,vb)
            c.append((sc,fc,vc))
            if fc == fa: (sa,fa,va) = TQ.get(A)
            if fc == fb: (sb,fb,vb) = TQ.get(B)
    return(TQ.standard(c))
```


(iffif Sum and product of temporal quantities

$$
\begin{aligned}
& \mathrm{a}=[(1,5,2),(6,8,1),(11,12,3),(14,16,2), \\
& \mathrm{b}=[(2,3,4),(4,7,3),(9,10,2),(13,15,5),(16,21,1)]
\end{aligned}
$$

The following are the sum $s=a+b$ and the product $p=a \cdot b$ of temporal quantities a and b over combinatorial semiring.

$$
\begin{aligned}
s= & {[(1,2,2),(2,3,6),(3,4,2),(4,5,5),(5,6,3),} \\
& (6,7,4),(7,8,1),(9,10,2),(11,12,3), \\
& (13,14,5),(14,15,7),(15,16,2),(16,17,1), \\
& (17,18,6),(18,19,1),(19,20,2),(20,21,1)] \\
p= & {[(2,3,8),(4,5,6),(6,7,3),(14,15,10),} \\
& (17,18,5),(19,20,1)]
\end{aligned}
$$

They are visually displayed at the bottom half of figures on the following slides.

Addition of temporal quantities

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

Multiplication of temporal quantities

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

$i 4 f i$
 Adding and multiplying TQs in Python

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

```
\(\ggg \mathrm{a}=[(1,5,2),(6,8,1),(11,12,3),(14,16,2)\),
    \((17,18,5),(19,20,1)]\)
\(\ggg b=[(2,3,4),(4,7,3),(9,10,2),(13,15,5),(16,21,1)]\)
>>> TQ.combinatorial()
\(\ggg \mathrm{s}=\) TQ.sum(a,b)
\([(1,2,2),(2,3,6),(3,4,2),(4,5,5),(5,6,3),(6,7,4)\),
    \((7,8,1),(9,10,2),(11,12,3),(13,14,5),(14,15,7),(15,16\),
    \((16,17,1),(17,18,6),(18,19,1),(19,20,2),(20,21,1)]\)
\(\ggg>{ }_{p}^{p}=T Q \cdot \operatorname{prod}(a, b)\)
\([(2,3,8),(4,5,6),(6,7,3),(14,15,10),(17,18,5),(19,20,1)\)
>>> TQ.TqSummary (s)
(1, 21, 1, 7)
>>> TQ.TqSummary (p)
(2, 20, 1, 10)
>>> from GraphNew import Graph
>>> cdir = 'c:/users/batagelj/work/python/graph/chart'
>>> TQmax \(=12 ; \operatorname{Tmin}=0 ; \operatorname{Tmax}=21 ; \mathrm{w}=600 ; \mathrm{h}=180\)
>>> tit \(=\) 'temporal sum'
>>> Graph.TQshow(s,cdir,TQmax,Tmin,Tmax,w,h,tit,fill='red')
>>>
```


Pictures of TQs

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets Matrix based TQ

The procedure Graph.TQshow displays a given TQ using the Chrome web browser. The picture can be saved either as a bitmap or as an SVG file. To do the later activate in Chrome

Tools/More tools/Developer tools
Select the line with the <svg> tag and right click on it. Select the option
Copy/Copy element
and open a text editor. Paste the element and save as an SVG.file. Using Inkscape or some other vector graphics editor you can convert it to PDF.

$2 \pi f$
 The aggregated value

In some applications over the combinatorial semiring we shall use the aggregated value of a temporal quantity $a=\left(\left(s_{i}, f_{i}, v_{i}\right)\right)_{i=1}^{k}$. It is defined as

$$
\Sigma a=\sum_{i=1}^{k}\left(f_{i}-s_{i}\right) \cdot v_{i}
$$

and is computed using the procedure total. For example $\Sigma a=23$ and $\Sigma b=30$. Note that $\Sigma a+\Sigma b=\Sigma(a+b)$.
>>> TQ.total(a)
23
>>> TQ.total(b)
30
>>> TQ.total(s)
53

Temporal network data netJSON format

For describing temporal networks we initially, extending Pajek format, defined and used a lanus format.

Recently we started to develop a new format based on JSON - we named it netJSON.
netJSON has two formats: a basic and a general format. Current implementation of the TQ library supports only the basic format.

Informal description of the basic netJSON format

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

```
{
"netJSON": "basic",
"info": {
    "org":1, "nNodes":n, "nArcs":mA, "nEdges":mE,
    "simple":TF, "directed":TF, "multirel":TF, "mode":m,
    "network":fName, "title":title,
    "time": { "Tmin":tm, "Tmax":tM, "Tlabs": {labs} },
    "meta": [events], ...
    },
"nodes": [
    { "id":nodeId, "lab":label, "x":x, "y":y, ... },
    ***
    ]
"links": [
    { "type":arc/edge, "n1":nodeID1, "n2":nodeID2, "rel":r, ... }
    ***
    ]
}
```

where ... are user defined properties and ${ }^{* * *}$ is a sequence of such elements.

iffic Basic netJSON formats

An event description can contain fields:

```
{ "date": date,
    "title": short description,
    "author": name,
    "desc": long description,
    "url": URL,
    "cite": reference,
    "copy": copyright
}
```

for describing temporal networks a node element and a link element has an additional required property tq

Example 1, Franzosi's violence network / UTF-8 no sig

iffic Python library Graph

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks Graph

Violence
Bibliographic temp-nets

The Pythoni library Graph supports basic operations with networks based on graph representation. Each node/link has its id. If a link id is not specified by a user it is determined by Graph.
The library Graph is based on an object containing three dictionaries:

- _graph - keys are general properties of a network. System properties: network, title, simple, directed, multirel, mode, temporal, meta, nNodes, nArcs, nEdges, time, etc. User properties: nWeak, planar, etc.
- _nodes - keys are ids of nodes. A value is a list of four dictionaries:
[edgeStar, inArcStar, outArcStar, nodeProperties]
Each star is again a dictionary that has for keys ids of neighboring nodes and for values lists of link ids.
- _links - keys are ids of links. A value is a list [nodeld1, nodeld2, directed, relld, linkProperties] where linkProperties is a dictionary of weights.

Some basic functions for network construction

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

A new version of Graph labeled GraphNew is in development. It contains also support for TQs. Attention! It can happen that not all procedures were updated.

```
```

from GraphNew import Graph

```
```

from GraphNew import Graph
def TestAdd():
def TestAdd():
G = Graph()
G = Graph()
G.addNode(2); G.addNode(1); G.addNode(3); G.addNode(4)
G.addNode(2); G.addNode(1); G.addNode(3); G.addNode(4)
G.addEdge(2,4,{'W':3}); G.addArc(2,1,{'W':5});
G.addEdge(2,4,{'W':3}); G.addArc(2,1,{'W':5});
G.addArc(1,3,{'W':4}); G.addArc(2,3,{'W':6})
G.addArc(1,3,{'W':4}); G.addArc(2,3,{'W':6})
G.addNode(5); G.addNode(6)
G.addNode(5); G.addNode(6)
i=G.addArc (5,3,{'w':5}); j=G.addEdge(2,4,{'w':7});
i=G.addArc (5,3,{'w':5}); j=G.addEdge(2,4,{'w':7});
G.addArc(1,6,{'W':8});G.addArc(1,3,{'W':5})
G.addArc(1,6,{'W':8});G.addArc(1,3,{'W':5})
G.onCircle()
G.onCircle()
print(G)
print(G)
G.draw(800,800,"Cornsilk")
G.draw(800,800,"Cornsilk")
G.savePajek('test.net')
G.savePajek('test.net')
G.delLink(j); G.delLink(i)
G.delLink(j); G.delLink(i)
print(G)
print(G)
return G

```
```

 return G
    ```
```


Picture of network

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

imf
 Network representation in Python

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

```
>>> G._graph
{'mode': 1, 'multirel': False, 'temporal': False, 'simple': False}
>>> G._nodes
{
1: [{}, {2: [2]}, {3: [3, 8], 6: [7]}, {'x': 0.5, 'y': 0.95}],
2: [{4: [1]}, {}, {1: [2], 3: [4]}, {'x': 0.88971, 'y': 0.725}],
3: [{}, {1: [3, 8], 2: [4], 5: []}, {}, {'x': 0.88971, 'y': 0.275}],
4: [{2: [1]}, {}, {}, {'x': 0.5, 'y': 0.045}],
5: [{}, {}, {3: []}, {'x': 0.11029, 'y': 0.275}],
6: [{}, {1: [7]}, {}, {'x': 0.11029, 'y': 0.725}]
}
>>> G._links
{
1: [2, 4, False, None, {'w': 3}],
2: [2, 1, True, None, {'w': 5}],
3: [1, 3, True, None, {'w': 4}],
4: [2, 3, True, None, {'w': 6}],
7: [1, 6, True, None, {'w': 8}],
8: [1, 3, True, None, {'w': 5}]
```


$2 \pi i f$
 Some new functions and programs

```
TQ.Ianus2netJSON(N,fileJSON="test.json",indent=None)
    twoMode2netJSON(yFile,netFile,jsonFile,instant=True)
    Graph.TQmultiply(A , B,oneMode=False)
    Graph.TQtwo2oneRows(self)
    Graph.TQtwo2oneCols(self)
    Graph.TQnetDeg(self,u)
    Graph.TQnetInDeg(self,u)
    Graph.TQnetOutDeg(self,u)
    Graph.TQnetSum(self,u)
    Graph.TQnetInSum(self,u)
    Graph.TQnetOutSum(self,u)
    Graph.TQnetBin(self)
    Graph.loadNetJSON(file, encoding='utf-8')
    Graph.TQgraph2mat(self)
    multiply.py
```


iffir Node activities and degrees

Temporal networks V. Batagelj

Networks and semirings

Temporal networks

We define the activity between groups of nodes \mathcal{V}_{1} and \mathcal{V}_{2} as

$$
\operatorname{act}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)=\sum_{u \in \mathcal{V}_{1}} \sum_{v \in \mathcal{V}_{2}} a_{u v}
$$

To illustrate the notion of activity we applied it on Franzosi's violence temporal network. Roberto Franzosi collected from the journal news in the period (January 1919 - December 1922) information about the different types of interactions between political parties and other groups of people in Italy. The violence network contains only the data about violent actions and counts the number of interactions per month.

We determined the temporal quantities: $a l l=\operatorname{act}(\mathcal{V}, \mathcal{V})$, pol $=\operatorname{act}(\{$ police $\}, \mathcal{V})+\operatorname{act}(\mathcal{V},\{$ police $\})$, and fas $=\operatorname{act}(\{$ fascists $\}, \mathcal{V})+\operatorname{act}(\mathcal{V},\{$ fascists $\})$.
They are presented on the next slide. Comparing the intensity charts of police and fascists activity with overall activity we see that most of the violent activity in the first two years 1919 and 1920 was related to the police. In the next two years (1921 and 1922) it was taken over by the fascists.

$34 i$
 Activities - Python

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

```
gdir = 'c:/users/batagelj/work/python/graph/graph'
cdir = 'c:/users/batagelj/work/python/graph/chart'
wdir = 'c:/users/batagelj/Documents/papers/2017/INSNA/ws/ex/violence'
import sys, os, datetime
sys.path = [gdir]+sys.path; os.chdir(wdir)
from TQ import *
from GraphNew import Graph
TQ.report()
file = 'violenceU.json'
G = Graph.loadNetJSON(file)
for v in G.nodes(): print(v,G.getNode(v,'lab'))
# All-All
n = len(G); All = range(1,n+1,1)
ca = G.TQactivity(All,All)
TQ.TqSummary(ca)
TQmax = 420; Tmin = 0; Tmax = 50; w = 800; h = 500
tit = 'violence'
Graph.TQshow(ca, cdir,TQmax,Tmin,Tmax,w,h,tit,fill='orange')
# police - 4
cb = TQ.sum(G.TQactivity([4],All),G.TQactivity(All, [4]))
tit = 'violence: all - police'
Graph.TQshow(cb,cdir,TQmax,Tmin,Tmax,w,h,tit,fill='red')
# fascists - 7
cc = TQ.sum(G.TQactivity([7],All),G.TQactivity(All, [7]))
tit = 'violence: all - fascists'
Graph.TQshow(cc,cdir,TQmax,Tmin,Tmax,w,h,tit,fill='blue')
```

i4ff Violent activities of police, fascists and all

Temporal
networks
V. Batagelj

Networks and semirings
Temporal networks
net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References
 V. Batagelj

Temporal networks

$i 4 f i$
 Networks from bibliographic data

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

From special bibliographies (BibTEX) and bibliographic services (Web of Science, Scopus, SICRIS, CiteSeer, Zentralblatt MATH, Google Scholar, DBLP Bibliography, US patent office, and others) we can derive some two-mode networks on selected topics:

- works \times authors (WA),
- works \times keywords (WK);
and from some data also the network
- works \times classification (WC), and the
- one-mode citation network works \times works ($\mathbf{C i}$);
where works include papers, reports, books, patents etc.
Besides this we get also at least the partition of works by the journal or publisher and the partition of works by the publication year.

For converting WoS file into networks in Pajek's format a program WoS2Pajek was developed (in Python).

Temporal co-occurrence networks

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

Let the binary matrix $\mathbf{A}=\left[a_{e p}\right]$ describe a two-mode network on the set of events E and the set of of participants P :

$$
a_{e p}= \begin{cases}1 & p \text { participated in the event } e \\ 0 & \text { otherwise }\end{cases}
$$

The function $d: E \rightarrow \mathcal{T}$ assigns to each event e the date $d(e)$ when it happened. $\mathcal{T}=[$ first, last $] \subset \mathbb{N}$. Using these data we can construct two temporal affiliation matrices:

- instantaneous $\mathbf{A i}=\left[a i_{e \rho}\right]$, where

$$
a i_{e p}= \begin{cases}{[(d(e), d(e)+1,1)]} & a_{e p}=1 \\ {[]} & \text { otherwise }\end{cases}
$$

- cumulative $\mathbf{A c}=\left[a c_{e p}\right]$, where

$$
a c_{e p}= \begin{cases}{[(d(e), \text { last }+1,1)]} & a_{e p}=1 \\ {[]} & \text { otherwise }\end{cases}
$$

Multiplication of co-occurence networks

Instantaneous

Temporal networks

Instantaneous \mathbf{A} on $P \times A$ and \mathbf{B} on $P \times B . \mathbf{C}=\mathbf{A}^{T} . \mathbf{B}$ on $A \times B$.

$$
\begin{aligned}
& \qquad c_{i j}(t)=\sum_{p \in P} a_{p i}(t)^{T} \cdot b_{p j}(t) \\
& a_{p i}=\left[\left(d_{p i}, d_{p i}+1, v_{p i}\right)\right] \text { and } b_{p j}=\left[\left(d_{p j}, d_{p j}+1, v_{p j}\right)\right] \\
& \text { for } t=d \text { we get }
\end{aligned}
$$

$$
c_{i j}=\left[\left(d, d+1, \sum_{p \in P: d_{p i}=d_{p j}=d} v_{p i} \cdot v_{p j}\right)\right]_{d \in \mathcal{T}}
$$

for $v_{p i}=v_{p j}=1$ we finally get

$$
v_{i j}(d)=\left|\left\{p \in P: d_{p i}=d_{p j}=d\right\}\right|
$$

For binary temporal two-mode networks \mathbf{A} and \mathbf{B} the value $v_{i j}(d)$ of the product \mathbf{A}^{T}. \mathbf{B} is equal to the number of different members of P with which both i and j have contact in the instant d.

Multiplication of co-occurence networks

Cumulative

Temporal networks V. Batagelj semirings

Temporal networks

Cumulative \mathbf{A} on $P \times A$ and \mathbf{B} on $P \times B . \mathbf{C}=\mathbf{A}^{T} . \mathbf{B}$ on $A \times B$.

$$
c_{i j}(t)=\sum_{p \in P} a_{p i}(t)^{T} \cdot b_{p j}(t)
$$

$a_{p i}=\left[\left(d_{p i}\right.\right.$, last $\left.\left.+1, v_{p i}\right)\right]$ and $b_{p j}=\left[\left(d_{p j}\right.\right.$, last $\left.\left.+1, v_{p j}\right)\right]$ for $t=d$ we get

$$
c_{i j}=\left[\left(d, d+1, \sum_{p \in P:\left(d_{p i} \leq d\right) \wedge\left(d_{p j} \leq d\right)} v_{p i} \cdot v_{p j}\right)\right]_{d \in \mathcal{T}}
$$

for $v_{p i}=v_{p j}=1$ we finally get

$$
v_{i j}(d)=\left|\left\{p \in P:\left(d_{p i} \leq d\right) \wedge\left(d_{p j} \leq d\right)\right\}\right|
$$

For binary temporal two-mode networks \mathbf{A} and \mathbf{B} the value $v_{i j}(d)$ of the product \mathbf{A}^{T}.B is equal to the number of different members of P with which both i and j have contact in all instants up to including the instant d.

$i 4 f i$
 Temporal co-authorship networks

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

Using the multiplication of temporal matrices over the combinatorial semiring we get the corresponding instantaneous and cumulative co-occurrence matrices

$$
\mathbf{C i}=\mathbf{A i}^{T} \cdot \mathbf{A} \mathbf{i} \quad \text { and } \quad \mathbf{C} \mathbf{c}=\mathbf{A c}^{T} \cdot \mathbf{A c}
$$

A typical example of such a matrix is the papers authorship matrix WA where E is the set of papers W, P is the set of authors A and d is the publication year.
The triple (s, f, v) in a temporal quantity $c i_{p q}$ tells that in the time interval $[s, f)$ there were v events in which both p and q took part.
The triple (s, f, v) in a temporal quantity $c c_{p q}$ tells that in the time interval $[s, f)$ there were in total v accumulated events in which both p and q took part.

The diagonal matrix entries $c i_{p p}$ and $c c_{p p}$ contain the temporal quantities counting the number of events in the time intervals in which the participant p took part.

Temporal co-authorship networks

For an example, from a collection SN5 of network data about publications on social networks till 2008 we extracted data about 92 the most active researchers and transformed them to corresponding temporal networks: Citelnst, CiteCum, WAinst, WAcum, WKinst, WKcum and a partition W92 with outdegrees of works in the original WA network.
The matrices

$$
\mathbf{C o i}=\mathbf{W A} \mathbf{i}^{T} \cdot \mathbf{W A i} \quad \text { and } \quad \mathbf{C o c}=\mathbf{W} \mathbf{A c}{ }^{T} \cdot \mathbf{W A c}
$$

describe the instantaneous co-autorship temporal network and the cumulative co-autorship temporal network.

92 authors

| Temporal |
| :---: |
| networks |

V. Batagelj

Networks and semirings

Temporal networks net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions References

- COHEN_C
- hammer_m
- MLARDO_A
- SEikKula_
- HIRSCH_B
- ROBERTS_

- LITwiN_H
- Yamaguch_K
- BERKMAN L
- scom_d
- burt_r
- SEIDMAN_S
- IANONL
- SMITH_R
- SMALL_H

$34 i$
 Temporal co-authorship networks

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ
>>> import os, sys, datetime
>>> os.chdir("C:/Users/batagelj/work/Python/WoS/SN5/ten")
>>> from TQ import *
>>> wai = TQ.Ianus2Mat("WAinst.ten")
>>> wac = TQ.Ianus2Mat("WAcum.ten")
>>> list(wai.keys())
['dim', 'met', 'typ', 'nam', 'mat', 'til', 'tin', 'tit']
>>> wai ['dim']
(1346, 92, 1970, 2008)
>>> WAi = wai['mat']; WAc = wac['mat']
\ggg AWi $=$ TQ.MatTrans (WAi) ; AWc = TQ.MatTrans (WAc)
>>> Coi = TQ.MatProd(AWi,WAi); Coc = TQ.MatProd(AWc,WAc)
>>> auNames = wai['nam'][nr:]
>>> ia=dict (zip(auNames, range(92)))
>>> Coi[ia['BORGATTI_S']] [ia['EVERETT_M']]
$[(1988,1989,1),(1989,1990,2),(1990,1991,4)$,
$(1991,1992,1),(1992,1995,2),(1996,1998,1)$,
(1999, 2000, 3), (2003, 2004, 1), (2005, 2007, 1)]
>>> Coc[ia['BORGATTI_S']][ia['EVERETT_M']]
$[(1988,1989,1),(1989,1990,3),(1990,1991,7)$,
$(1991,1992,8),(1992,1993,10),(1993,1994,12)$,
$(1994,1996,14),(1996,1997,15),(1997,1999,16)$, $(1999,2003,19),(2003,2005,20),(2005,2006,21)$,
(2006, 2008, 22)]

iffif Authors and keywords

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks netJSON and Graph

Violence
Bibliographic temp-nets

Using the multiplication of temporal matrices over the combinatorial semiring on bibliographic matrices WA and WK we get the corresponding instantaneous and cumulative matrices

$$
\mathbf{A K i}=\mathbf{W} \mathbf{A i}^{T} \cdot \mathbf{W K i} \quad \text { and } \quad \mathbf{A K c}=\mathbf{W} \mathbf{A c}{ }^{T} \cdot \mathbf{W K c}
$$

The triple (s, f, v) in a temporal quantity $a k i_{a k}$ tells that in the time interval $[s, f$) the author a used the keyword $k v$ times (in v works).
The triple (s, f, v) in a temporal quantity $a k c_{a k}$ tells that in an instant t in the time interval $[s, f)$ the author a used cumulatively (till time t) the keyword $k v$ times (in v works).

ifffi Authors and keywords

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks temp-nets

```
>>> wki = TQ.Ianus2Mat("WKinst.ten")
>>> AKi = TQ.MatProd(AWi,wki['mat'])
>>> kwNames = wki['nam'][nr:]
>>> len(kwNames)
8571
>>> ik=dict(zip(kwNames,range(8571)))
>>> Bc = [ AKi[i][ik['centrality']] for i in range(92)]
>>> [auNames[i] for i in range(92) if Bc[i]!=[]]
['BORGATTI_S', 'CARLEY_K', 'GALASKIE_J', 'BURT_R', 'FREEMAN_L',
    'NEWMAN_M', 'BARABASI_A', 'WELLMAN_B', 'KNOKE_D', 'PAPPI_F',
    'HOLME_P', 'WATTS_D', 'JOHNSON_C', 'WHITE_D', 'BREWER_D',
    'MARSDEN_P', 'ROTHENBE_R', 'VALENTE_T', 'SNIJDERS_T',
    'KRACKHAR_D', 'WHITE_H', 'KILDUFF_M', 'LEYDESDO_L',
    'KLOVDAHL_A', 'MOODY_J', 'FRANK_O', 'BONACICH_P', 'BATAGELJ_V',
    'JOHNSON_J', 'FAUST_K', 'MIZRUCHI_M', 'YAMAGUCH_K',
    'FRIEDKIN_N', 'LAZEGA_E', 'CHEN_C', 'KILLWORT_P', 'ESTRADA_E',
    'BUTTS_C', 'EVERETT_M', 'FERLIGOJ_A', 'IACOBUCC_D']
```


ifffi Authors and keywords

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

```
>>> T = [ (i,TQ.total(Bc[i])) for i in range(92) ]
```

>>> T = [(i,TQ.total(Bc[i])) for i in range(92)]
>>> I = sorted(T,key=lambda e:e[1],reverse=True)
>>> I = sorted(T,key=lambda e:e[1],reverse=True)
>>> [[auNames[i],v,Bc[i]] for (i,v) in I[:5]]
>>> [[auNames[i],v,Bc[i]] for (i,v) in I[:5]]
[['BORGATTI_S', 11, [(1991, 1992, 1), (1994, 1995, 1),
[['BORGATTI_S', 11, [(1991, 1992, 1), (1994, 1995, 1),
(1997, 1998, 1), (1999, 2000, 2), (2003, 2004, 1),
(1997, 1998, 1), (1999, 2000, 2), (2003, 2004, 1),
(2005, 2007, 2), (2007, 2008, 1)]],
(2005, 2007, 2), (2007, 2008, 1)]],
['NEWMAN_M', 9, [(2001, 2002, 2), (2002, 2003, 1),
['NEWMAN_M', 9, [(2001, 2002, 2), (2002, 2003, 1),
(2004, 2005, 2), (2005, 2006, 1), (2006, 2007, 2),
(2004, 2005, 2), (2005, 2006, 1), (2006, 2007, 2),
(2007, 2008, 1)]],
(2007, 2008, 1)]],
['BONACICH_P', 7, [(1986, 1988, 1), (1991, 1992, 1),
['BONACICH_P', 7, [(1986, 1988, 1), (1991, 1992, 1),
(1998, 1999, 1), (2001, 2002, 1), (2004, 2005, 2)]],
(1998, 1999, 1), (2001, 2002, 1), (2004, 2005, 2)]],
['EVERETT_M', 6, [(1997, 1998, 1), (1999, 2000, 2),
['EVERETT_M', 6, [(1997, 1998, 1), (1999, 2000, 2),
(2004, 2007, 1)]],
(2004, 2007, 1)]],
['CARLEY_K', 5, [(1999, 2000, 1), (2003, 2004, 1),
['CARLEY_K', 5, [(1999, 2000, 1), (2003, 2004, 1),
(2006, 2007, 3)]]]

```
        (2006, 2007, 3)]]]
```


Temporal citation networks

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

A citation matrix $\mathbf{C i}$ describes the citation relation p cites q. Note that p cites $q \Rightarrow d(p) \geq d(q)$.
Then we can construct its instantaneus version Cii:

$$
c i i_{p q}=[(d(p), d(p)+1,1)] \quad \text { iff } \quad c i_{p q}=1
$$

and its cumulative version Cic:

$$
c i c_{p q}=[(d(p), \text { last }+1,1)] \quad \text { iff } \quad c i_{p q}=1
$$

Temporal versions of:
Bibliographic coupling biCo $=\mathbf{C i} \cdot \mathbf{C i}^{T}$.
Co-citation $\mathbf{c o C i}=\mathbf{C i}{ }^{T}$. $\mathbf{C i}$.
Citations between authors $\mathbf{C a}=\mathbf{W A}^{T} \cdot \mathbf{C i} \cdot \mathbf{W A}$.

$$
\mathbf{A C A}=\mathbf{W A i}{ }^{T} \cdot \mathbf{C i i} \cdot \mathbf{W A c}
$$

iffic Citations between authors

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ Terror news Conclusions

```
>>> cite = TQ.Ianus2Mat("CiteInst.ten")
>>> Cite = cite['mat']; WAc = wac['mat']
>>> ACA = TQ.MatProd(TQ.MatProd(AWi,Cite),WAc)
>>> ACA[ia['WASSERMA_S']][ia['HOLLAND_P']]
[(1977, 1978, 1), (1980, 1981, 5), (1981, 1982, 2),
    (1984, 1985, 2), (1985, 1986, 1), (1987, 1989, 2),
    (1990, 1991, 1), (1991, 1992, 2), (1992, 1994, 3),
    (1995, 1996, 2), (1996, 1997, 3), (1999, 2000, 5),
    (2000, 2001, 1), (2006, 2008, 1)]
>>> D = [(i,TQ.total(ACA[ia['DOREIAN_P']][i])) for i in range(92)
>>> J = sorted(D,key=lambda e:e[1],reverse=True)
>>> [[auNames[i],v,ACA[ia['DOREIAN_P']][i]] for (i,v) in J[:5]]
[['DOREIAN_P', 69, [(1980, 1983, 1), (1984, 1985, 2),
        (1985, 1986, 1), (1986, 1987, 3), (1987, 1988, 2),
        (1988, 1989, 7), (1989, 1990, 5), (1990, 1991, 2),
        (1992, 1993, 6), (1994, 1995, 8), (1995, 1996, 2),
        (1996, 1997, 4), (2000, 2001, 3), (2001, 2004, 4),
        (2004, 2005, 6), (2006, 2007, 3)]],
    ['BREIGER_R', 26, [(1980, 1981, 3), (1984, 1986, 1),
        (1986, 1987, 2), (1987, 1988, 1), (1988, 1989, 4),
        (1989, 1990, 1), (1992, 1993, 3), (1994, 1995, 2),
        (1995, 1996, 1), (1996, 1997, 2), (2000, 2001, 1),
        (2004, 2005, 2), (2007, 2008, 2)]],
```


iffif Citations between authors

Networks and semirings
Temporal networks

```
    ['BURT_R', 20, [(1985, 1986, 3), (1986, 1987, 1),
        (1987, 1988, 2), (1988, 1989, 5), (1989, 1990, 2),
        (1992, 1993, 4), (1994, 1995, 1), (2000, 2001, 1),
        (2004, 2005, 1)]],
    ['BATAGELJ_V', 17, [(1992, 1993, 2), (1994, 1995, 2),
        (1996, 1997, 4), (2000, 2001, 4), (2004, 2005, 5)]],
    ['FARARO_T', 15, [(1984, 1985, 1), (1985, 1986, 2),
        (1988, 1989, 2), (1989, 1990, 1), (1992, 1993, 1),
        (1995, 1996, 1), (2001, 2002, 3), (2002, 2003, 2),
        (2003, 2004, 1), (2006, 2007, 1)]]]
>>>
```


Temporal co-authorship network for SN5

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

SN5 (2008)

| | W | A | K | J |
| :--- | :--- | :--- | :--- | :--- |
| raw | 193376 | 75930 | 29267 | 14651 |
| DC=1 | 7950 | 12458 | | |

In Pajek we extract a subnetwork WAc and a corresponding partition SN5yearC. Using a program twoMode2netJSON we transform them into temporal network in the netJSON format.

Bibliographic networks are usually sparse. The network WAcInst has 19488 arcs. The co-authorship network
Colnst $=$ WAcInst $^{T} *$ WAcInst has 64980 edges; the corresponding matrix in the package TQ would have $12458^{2}=155201764$ entries. Using a package Graph the co-authorship network is computed in a second and half - a big speed-up.

multiply.py

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References
gdir = 'c:/users/batagelj/work/python/graph/graph'
wdir = 'c:/users/batagelj/work/python/graph/JSON/SN5'
cdir = 'c:/users/batagelj/work/python/graph/chart'
import sys, os, datetime, json
sys.path $=$ [gdir]+sys.path; os.chdir(wdir)
import TQ
from GraphNew import Graph
\# file = 'C:/Users/batagelj/work/Python/graph/JSON/WAtest.json'
file = 'C:/Users/batagelj/work/Python/graph/JSON/SN5/WAcInst.json'
\# file = 'C:/Users/batagelj/work/Python/graph/JSON/SN5/WAcCum.json'
\# file = 'C:/Users/batagelj/work/Python/graph/JSON/Gisela/papInst.json'
t1 = datetime. datetime.now ()
print("started: ",t1.ctime(),"\n")
$\mathrm{G}=$ Graph.loadNetJSON(file)
t2 = datetime.datetime.now()
print ("\nloaded: ",t2.ctime(),"\ntime used: ", t2-t1)
\# T $=$ G.transpose()
\# Co $=$ Graph.TQmultiply(T,G,True)
\# CR $=$ G.TQtwo2oneRows()
CC = G.TQtwo2oneCols()
t3 $=$ datetime. datetime.now ()
print ("\ncomputed: ",t3.ctime(),"\ntime used: ", t3-t2)
ia $=$ \{ $v[3][' l a b ']: k$ for k, v in CC._nodes.items() \}
\# CC._links[(ia['BORGATTI_S'],ia['EVERETT_M'])][4]['tq']
\# CC._links[(ia['IDI/B'],ia['HCL/B'])][4]['tq']

Temporal co-authorship network for SN5

Temporal networks

V. Batagelj

Networks and semirings

Temporal networks netJSON and Graph

Violence

Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

```
======= RESTART: C:\Users\batagelj\work\Python\graph\graph\multiply.py =======
started: Sun Nov 20 00:26:51 2016
loaded: Sun Nov 20 00:26:51 2016
time used: 0:00:00.425024
computed: Sun Nov 20 00:26:52 2016
time used: 0:00:01.165066
>>> BB = CC._links[(ia['BORGATTI_S'],ia['BORGATTI_S'])][4]['tq']
>>> BE = CC._links[(ia['BORGATTI_S'],ia['EVERETT_M'])][4]['tq']
>>> BB
[(1988, 1990, 2), (1990, 1991, 4), (1991, 1992, 2), (1992, 1993, 4),
    (1993, 1994, 2), (1994, 1995, 3), (1996, 1997, 1), (1997, 1998, 2),
    (1998, 1999, 1), (1999, 2000, 3), (2001, 2002, 2), (2002, 2003, 1),
    (2003, 2004, 4), (2005, 2006, 3), (2006, 2007, 2), (2007, 2008, 3)]
>>> BE
[(1988, 1989, 1), (1989, 1990, 2), (1990, 1991, 4), (1991, 1992, 1),
    (1992, 1995, 2), (1996, 1998, 1), (1999, 2000, 3), (2003, 2004, 1),
    (2005, 2007, 1)]
>> TQmax = 8; Tmin = 1970; Tmax = 2009; w = 600; h = 120
>>> tit = 'BORGATTI_S'
>>> Graph.TQshow(BB,cdir,TQmax,Tmin,Tmax,w,h,tit,fill='orange')
>>> tit = 'BORGATTI_S - EVERETT_M'
>>> Graph.TQshow(BE,cdir,TQmax,Tmin,Tmax,w,h,tit,fill='orange')
>>> NN = CC._links[(ia['NEWMAN_M'],ia['NEWMAN_M'])][4]['tq']
>> NN
[(1999, 2000, 2), (2000, 2001, 4), (2001, 2002, 7), (2002, 2003, 8),
    (2003, 2004, 7), (2004, 2005, 11), (2005, 2006, 7), (2006, 2007, 11),
    (2007, 2008, 3)]
>>> tit = 'NEWMAN_M'; TQmax = 12; h = 150
>>> Graph.TQshow(NN,cdir,TQmax,Tmin,Tmax,w,h,tit,fill='orange')
```


(ifff Visualization

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions

 V. Batagelj Temporal networks

i4f1 Clustering coefficients

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

Let us assume that the network \mathcal{N} is based on a simple directed graph $\mathcal{G}=(\mathcal{V}, \mathcal{A})$ without loops. From a simple undirected graph we obtain the corresponding simple directed graph by replacing each edge with a pair of opposite arcs. In such a graph the clustering coefficient, $C(v)$, of the node v is defined as the proportion between the number of realized arcs among the node's neighbors and the number of all possible arcs among the node's neighbors $N(v)$, that is

$$
C(v)=\frac{|\mathcal{A}(N(v))|}{k(k-1)} \quad C^{\prime}(v)=\frac{|\mathcal{A}(N(v))|}{\Delta(k-1)}
$$

where k is the number of neighbors of the node v and Δ is the maximum number of neighbors in a graph. For a node v without neighbors or with a single neighbor we set $C(v)=0$.

Let \mathbf{A} be a temporal network matrix. The number of triangles in a node can be obtained as a diagonal entry of the matrix SAS where $\mathbf{T}=\mathbf{A}^{T}$ and $\mathbf{S}=\mathbf{A}+\mathbf{T}$.

imf
 Clustering coefficients

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks
net JSON and Graph

Violence

Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

Clustering coefficient
Corrected clustering coefficient

| 1 | $:[]$ |
| ---: | :--- |
| 2 | $:[]$ |
| 3 | $:$ |
| 4 | $:[(1,3,0.5),(3,9,0.1667)]$ |
| 5 | $:[(1,5,0.1667),(5,9,0.5)]$ |
| 6 | $:[(1,9,0.5)]$ |
| 7 | $:[(1,5,0.25),(5,9,0.5)]$ |
| 8 | $:[(1,7,0.4167),(7,9,0.5)]$ |
| 9 | $:[(1,7,0.4167),(7,9,0.5)]$ |
| 10 | $:[(1,7,0.4167),(7,9,0.5)]$ |
| 11 | $:[(1,9,0.5)]$ |
| 12 | $:[]$ |
| 13 | $:[(2,8,1.0)]$ |
| 14 | $:[(2,8,1.0)]$ |
| 15 | $:[(2,8,1.0)]$ |

| 1 | $:[]$ |
| ---: | :--- | :--- |
| 2 | $:[]$ |
| 3 | $:[]$ |
| 4 | $:[(1,3,0.25),(3,9,0.125)]$ |
| 5 | $:[(1,5,0.125),(5,9,0.25)]$ |
| 6 | $:[(1,9,0.25)]$ |
| 7 | $:[(1,5,0.25),(5,7,0.375)$, |
| 8 | $:[(1,9,0.5)]$ |
| 9 | $:[(1,7,7) 0.4167),(7,9,0.5)]$ |
| 10 | $:[(1,7,0.4167),(7,9,0.5)]$ |
| 11 | $:[(1,7,0.375),(7,9,0.5)]$ |
| 12 | $:[]$ |
| 13 | $:[(2,8,0.5)]$ |
| 14 | $:[(2,8,0.5)]$ |
| 15 | $:[(2,8,0.5)]$ |

Closures in temporal networks

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

When the basic semiring $(A,+, \cdot, 0,1)$ is closed - an unary closure operation \star with the property

$$
a^{\star}=1+a \cdot a^{\star}=1+a^{\star} \cdot a, \quad \text { for all } a \in A
$$

is defined in it - this property can be extended also to the corresponding matrix semiring. For computing the matrix closure we can apply the Fletcher's algorithm. In most of semirings, for which we are interested in determining the closures, also the absorption law holds

$$
1+a=1, \quad \text { for all } a \in A
$$

In these semirings $a^{\star}=1$, for all $a \in A$, and therefore the Fletcher's algorithm can be simplified and performed in place as implemented in the following procedure.

Closure of a temporal matrix over an absorptive semiring

```
@staticmethod
def MatClosure(R,strict=False):
    nr = len(R); nc = len(R[0])
    if nr!=nc:
        raise TQ.TQerror("MatClosure: square matrix required")
    C = deepcopy(R)
    for k in range(nr):
        for u in range(nr):
            for v in range(nr):
                C[u][v] = TQ.sum(C[u][v], TQ.prod(C[u][k],C[k][v]))
        if not strict: C[k][k] = TQ.sum(TQ.sE,C[k][k])
    return(C)
```


Temporal weak and strong connectivity

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

For a temporal network represented with the corresponding matrix \mathbf{A} its transitive closure \mathbf{A}^{\star} (over the semirings based on the reachability semiring $(\{0,1\}, \vee, \wedge, 0,1))$ determines its reachability relation matrix. We obtain its weak connectivity temporal matrix \mathbf{W} as

$$
\mathbf{W}=\left(\mathbf{A} \cup \mathbf{A}^{T}\right)^{\star}
$$

and its strong connectivity temporal matrix \mathbf{S} as

$$
\mathbf{S}=\mathbf{A}^{\star} \cap\left(\mathbf{A}^{\star}\right)^{T}
$$

The use of the strict transitive closure instead of a transitive closure in these relations preserves the inactivity value [] on the diagonal for all isolated nodes.

$i 4 f i$

Temporal weak components in example network

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions

All unlabeled links have a value $[(1,9,1)]$

$i 4 f f$

Temporal strong components in example network

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

$\begin{array}{lll}1 & : & {[(1,9,1)]} \\ 2 & : & {[(1,9,1)]} \\ 3 & : & {[]} \\ 4 & : & {[(1,9,2)]} \\ 5 & : & {[(1,9,2)]} \\ 6 & : & {[(1,9,2)]} \\ 7 & : & {[(7,9,3)]}\end{array}$
$8:[(1,7,4),(7,9,3)]$
$9:[(1,7,4),(7,9,3)]$
$10:[(1,7,4),(7,9,3)]$
$11:[(1,7,4),(7,9,3)]$
12 : []
$13:[(2,8,5)]$
14 : $[(2,8,5)]$
$15:[(2,8,5)]$

All unlabeled links have a value $[(1,9,1)]$

iffif Other results

Using the closure over geodetic semiring we can determine the temporal closeness and betweenness vectors. For computing the "ingredients" for computing the betweenness centralities the geodetic semiring is used.

Using the Pathfinder semiring we can determine temporal Pathfinder skeletons of a given temporal network.

$i m f$

Betweenness centralities

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

| 1 : | $[(3,4,0.2500)$ | (4, 6, 0 | 7, | 9, 0.1429)] | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | [(1, 3, 0.3452) | (3, 4, 0.4048) | (4, 6, 0.4187), | $(6,7,0.4048)$ | (7, 9, 0.6071)] |
| 3 | [(1, 3, 0.0595) | (3, 4, 0.0952) | (4, 6, 0.1052), | (6, 7, 0.0952), | (7, 9, 0.0595)] |
| 4 : | $[(1,3,0.1667)$ | (3, 4, 0.2500), | (4, 5, 0.1762), | $(5,6,0.1048)$ | $(6,9,0.1786)]$ |
| 5 | [(1, 3, 0.1667), | (3, 4, 0.2500) | (4, 5, 0.3476), | $(5,6,0.2762)$, | $(6,9,0.1786)]$ |
| 6 | [(1, 3, 0.1190), | (3, 4, 0.0952) | (4, 6, 0.0544), | $(6,7,0.0952)$, | $(7,9,0.1786)]$ |
| 7 | $\begin{array}{ccc} {[(1,} & 3, & 0.1190) \\ (7, & 9, & 0.1786) \end{array}$ | (3, 4, 0.4048) | (4, 5, 0.4694), | $(5,6,0.3266)$, | (6, 7, 0.2619), |
| 8 : | (1, 3, 0.3095) | (3, 4, 0.2500) | (4, 6, 0.2484) | (6, 7, 0.2500), | 9, 0.523 |

$i m f$
 September 11th Reuters terror news

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

Reuters terror news network was obtained from the CRA networks produced by Steve Corman and Kevin Dooley at Arizona State University. The network is based on all the stories released during 66 consecutive days by the news agency Reuters concerning the September 11 attack on the U.S., beginning at 9:00 AM EST 9/11/01. The nodes of this network are words (terms); there is an edge between two words iff they appear in the same text unit (sentence). The weight of an edge is its frequency. The network has $n=13332$ nodes (different words in the news) and $m=243447$ edges, 50859 with value larger than 1. There are no loops in the network. We transformed the Pajek version of the network into the lanus format used in TQ. To identify important terms we computed their aggregated frequencies and extracted the subnetwork of 50 most active (during 66 days) nodes. They are listed in table in next slide.
Trying to draw this subnetwork it turns out to be almost a complete graph. To obtain something readable we removed all temporal edges with a value smaller than 10. The corresponding underlying graph is presented in figure. The isolated nodes were removed.

(2T14) 50 most frequent terms in the Terror news network

| Temporal
 networks | n | term | \sum freq | n | term | \sum freq |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- |
| | 1 | united_states | 15000 | 26 | terrorism | 2212 |
| V. Batagelj | 2 | attack | 10348 | 27 | day | 2128 |
| | 3 | taliban | 6266 | 28 | week | 2017 |
| Networks and | 4 | people | 5286 | 29 | worker | 1983 |
| semirings | 5 | afghanistan | 5176 | 30 | office | 1967 |
| Temporal | 6 | bin_laden | 4885 | 31 | group | 1966 |
| networks | 7 | new_york | 4832 | 32 | air | 1962 |
| netJSON and | 8 | pres_bush | 4506 | 33 | minister | 1919 |
| Graph | 9 | washington | 4047 | 34 | time | 1898 |
| Violence | 10 | official | 3902 | 35 | hijack | 1884 |
| Bibliographic | 11 | anthrax | 3563 | 36 | strike | 1818 |
| temp-nets | 12 | military | 3394 | 37 | afghan | 1775 |
| Matrix based | 13 | plane | 3078 | 38 | flight | 1775 |
| TQ | 14 | world_trade_ctr | 3006 | 39 | tell | 1746 |
| Terror news | 15 | security | 2906 | 40 | terrorist | 1745 |
| Conclusions | 16 | american | 2825 | 41 | airport | 1741 |
| References | 17 | country | 2794 | 42 | pakistan | 1714 |
| | 18 | city | 2689 | 43 | tower | 1685 |
| | 19 | war | 2679 | 44 | bomb | 1674 |
| | 20 | tuesday | 2635 | 45 | new | 1650 |
| | 21 | pentagon | 2620 | 46 | buildng | 1634 |
| | 22 | force | 2516 | 47 | wednesday | 1593 |
| | 23 | government | 2380 | 48 | nation | 1589 |
| | 24 | leader | 2375 | 49 | police | 1587 |
| | 25 | world | 2213 | 50 | foreign | 1558 |

$i \frac{\pi}{i n}$

 Most frequent terms in the Terror news networkTemporal
networks
V. Batagelj

Networks and semirings

Temporal networks net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

[^0]
$34 i f$
 Types of activity

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks
net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
hijack:

bin Laden :

taliban :

Types of activity

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks
net JSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References
bomb :

Wednesday :

anthrax :

Attraction

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

To consider also the node's position in the network in a measure of importance of the node $u \in \mathcal{V}$ we constructed the attraction coefficient $\operatorname{att}(u)$.
Let $\mathbf{W}=\left[w_{u v}\right]$ be a network matrix. We assume that the weights of links are positive $w_{u v}>0$. We define the node activity $\operatorname{act}(u)$ as

$$
\operatorname{act}(u)=\operatorname{act}(\{u\}, \mathcal{V} \backslash\{u\})=\sum_{v \in \mathcal{V} \backslash\{u\}} w_{u v} .
$$

Then the attraction of the node u is defined as

$$
\operatorname{att}(u)=\frac{1}{\Delta} \sum_{v \in \mathcal{V} \backslash\{u\}} \frac{w_{v u}}{\operatorname{act}(v)}
$$

The fraction $\frac{w_{v u}}{\operatorname{act}(v)}$ is measuring the proportion of the activity of the node v that is shared with the node u. We have $0 \leq \operatorname{att}(u) \leq 1$, for all $u \in \mathcal{V}$. The maximum possible attraction value 1 is attained exactly for nodes:
a) in undirected network: that are the root of a star;
b) in directed network: that are the only out-neighbors of their in-neighbors - the root of a directed in-star.

Attraction patterns

| Temporal |
| :---: |
| networks |

V. Batagelj

Networks and semirings
Temporal networks netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions References
pres Bush :

Pakistan:

taliban:

V. Batagelj Temporal networks

iffif Attraction patterns

Temporal
networks
V. Batagelj

Networks and semirings

Temporal networks
netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions References

Kabul :

bomb :

V. Batagelj Temporal networks

$i 4 f i$
 Temporal generalized cores

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks

In September 2016 we developed also an algorithm for computing temporal cores [4]. As a real data example we used the data set SN5 (2008). The temporal authorship network WA (restricted to works with $\mathrm{DC}=1$) has two versions: the instant WAcInst. json and the cumulative WAcCum.json. Both networks have the same sizes $|W|=7950,|A|=12458$ and $|L|=19488$. We computed the normalized cumulative temporal version Ct of co-authorship network [2]. It turned out that the p_{S} cores procedure is quite fast. It produced the cores in 20 s.

```
>>>
======= RESTART: C:\Users\batagelj\work\Python\graph\graph\PsCoresTQ.py =======
Temporal Ps cores in: CcCSN5.json
started: Tue Oct 25 17:23:26 2016
finished: Tue Oct 25 17:23:45 2016
time used: 0:00:19.644124
>>> C = TQ.TQ.TQdictCut (Core,3)
>>> for v in C:
    print("{0:3d} : {1:11s} ".format(v,G.getNode(v,'lab')),C[v])
```


ps cores at level 3

in normalized co-authorship in SN5

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks netJSON and Graph

Violence
Bibliographic temp-nets

Matrix based TQ

Terror news
Conclusions
References

20 : BORGATTI_S [(1991, 1992, 3.1667), (1992, 1993, 4.1667), (1993, 1994, 5.1667), (1994, 1996, 6.1667), (1996, 1997, 6.6667), (1997, 1999, 7.1667), (1999, 2003, 8.6667), (2003, 2005, 8.7917), (2005, 2006, 9.2917), (2006, 2009, 9.7917)]
3169
: EVERETT_M [(1991, 1992, 3.1667), (1992, 1993, 4.1667), (1993, 1994, 5.1667), (1994, 1996, 6.1667), (1996, 1997, 6.6667), (1999, 2003, 8.6667), (2003, 2005, 8.7917), (2005, 2006, 9.2917), (2006, 2009, 9.7917)]
317 : BERNARD_H [(1990, 1991, 3.0244), (1991, 1995, 3.1494), (1995, 1997, 3.3094),
(1997, 1998, 3.3894), (1998, 2001, 3.5494), (2001, 2003, 3.6294), (2003, 2006, 3.685), (2006, 2009, 4.0706)]
2232 : KILLWORT_P [(1990, 1991, 3.0244), (1991, 1995, 3.1494), (1995, 1997, 3.3094),
(2003, 2006, 3.685), (2006, 2009, 4.0706)]
4551 : STEINHAU_H $[(2003,2005,3.0),(2005,2006,3.2222),(2006,2009,3.6667)]$
4860 : METZKE_C [(2003, 2005, 3.0), $(2005,2006,3.2222),(2006,2009,3.6667)]$
3125 : SHELLEY_G [(2006, 2009, 3.4767)]
1673 : MCCARTY_C [(2006, 2009, 3.4767)]
1677 : JOHNSEN_E [(2006, 2009, 3.4767)]
75 : HOLLAND_P [(1981, 1983, 3.0), (1983, 2009, 3.2222)]
78 : LEINHARD_S [(1981, 1983, 3.0), (1983, 2009, 3.2222)]
925 : BONACICH_P [(1997, 2009, 3.2222)]
3840 : BIENENST_E [(1997, 2009, 3.2222)]
69 : WASSERMA_S [(2007, 2009, 3.0174)]
1164 : DOREIAN_P $\quad[(2007,2009,3.0174)]$
1166 : HUMMON_N [(2007, 2009, 3.0174)]
1680 : PATTISŌN_P [(2007, 2009, 3.0174)]
3225 : FARARO_T [(2007, 2009, 3.0174)]
1056 : FAUST_K $\quad[(2007,2009,3.0174)]$
3170 : FERLIGOJ_A [(2007, 2009, 3.0174)]
2083 : ROBINS_G [(2007, 2009, 3.0174)]
2084 : SKVORETZ_J [(2007, 2009, 3.0174)]
949 : BATAGELJ_V [(2007, 2009, 3.0174)]
79 : NEWMAN_M [(2005, 2009, 3.0)]
796 : PARK_J $\quad[(2005,2009,3.0)]$
\ggg

Conclusions

- New approach, an alternative to the traditional approach with slices. Many traditional concepts still need to be adapted and new ones developed.
- Which methods can be used also on large networks?
- It seems that extension of the approach to networks with nonzero latency is very difficult, if not impossible.
- Temporal networks methods produce large results. Special methods for identifying and presenting (visualizing) interesting parts need to be developed;
- We presented only some examples to show that it works. Many options have still to be elaborated;
- Temporal networks approach can give additional insight into bibliographic networks;

References I

Temporal networks
V. Batagelj

Networks and semirings

Temporal networks netJSON and Graph

Violence
Bibliographic temp-nets

Batagelj, V.: Semirings for social networks analysis. Journal of Mathematical Sociology, 19(1994)1, 53-68.

R Batagelj, V, Cerinšek, M: On bibliographic networks. Scientometrics 96 (2013) 3, 845-864.

R- Batagelj, V., Praprotnik, S.: An algebraic approach to temporal network analysis based on temporal quantities. Social Network Analysis and Mining, 6(2016)1, 1-22.

R Batagelj, V., Zaveršnik, M.: Fast algorithms for determining (generalized) core groups in social networks. Advances in Data Analysis and Classification, 2011. Volume 5, Number 2, 129-145.
E
Casteigts, A., Flocchini, P.: Deterministic Algorithms in Dynamic Networks: Formal Models and Metrics. Commissioned by Defense Research and Development Canada (DRDC), 82p, 2013.

References II

Networks and semirings

Temporal networks

Fletcher, J.G.: A more general algorithm for computing closed semiring costs between vertices of a directed graph. CACM 23 (1980), 350-351.

Rolme, P., Saramäki, J. (Eds.): Temporal Networks. Understanding Complex Systems. Springer, 2013.

Tolme, P.: Modern temporal network theory: a colloquium. European Physical Journal B 88, 234 (2015).

T- Praprotnik, S., Batagelj, V.: Spectral centrality measures in temporal networks. Ars Mathematica Contemporanea 11 (2016) 11-33.

T- Praprotnik, S., Batagelj, V.: Semirings for temporal network analysis. March 2016. arXiv: 1603.08261

[^0]: V. Batagelj

 Temporal networks

