Temporal cores in networks

Vladimir Batagelj
IMFM Ljubljana and IAM UP Koper
Monika Cerinšek
Abelium Ljubljana

XXXVIII Sunbelt 2018
Utrecht, The Netherlands, June 26 - July 1, 2018

Outline

Temporal
cores

V. Batagelj,
M. Cerinšek

Definitions
Algorithms
Results
Conclusions
References
(1) Definitions

2 Algorithms
(3) Results

4 Conclusions
5 References

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si
Current version of slides (June 30, 2018 at 04 : 44): Sunbelt' 18 slides PDF

Cores

Network: $\mathcal{N}=(\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W})$;
$n=|\mathcal{V}|, m=|\mathcal{L}|$
A subgraph $\mathcal{H}=(\mathcal{C}, \mathcal{L}(\mathcal{C}))$ induced by the set of nodes \mathcal{C} is a k-core or a core of order k iff $\forall v \in \mathcal{C}: \operatorname{deg}_{\mathcal{H}}(v) \geq k$ and \mathcal{H} is the maximum subgraph with this property (Seidman 1983).

The core of maximum order - main core.
The core number of node v is the highest order of a core that contains this node.

Batagelj and Zaveršnik $(2003,2011)$ pro-
 posed a very fast algorithm for determining core numbers.

Generalized cores

Temporal
cores
V. Batagelj, M. Cerinšek

Node property function: $p(v, \mathcal{C}) ; v \in \mathcal{V}, \mathcal{C} \subseteq \mathcal{V}, p: L \longrightarrow \mathbb{R}^{+}$.
Properties:
$p(v, \mathcal{C})$ is local: $p(v, \mathcal{C})=p(v, N(v, \mathcal{C})) \forall v \in \mathcal{V}$
$p(v, \mathcal{C})$ is monotone: $\mathcal{C}_{1} \subset \mathcal{C}_{2} \Rightarrow \forall v \in \mathcal{V}: p\left(v, \mathcal{C}_{1}\right) \leq p\left(v, \mathcal{C}_{2}\right)$.
The subgraph $\mathcal{H}=(\mathcal{C}, \mathcal{L}(\mathcal{C}))$ induced by the set $\mathcal{C} \subseteq \mathcal{V}$ is a p-core at level $t \in \mathbb{R}$ iff $\forall v \in \mathcal{C}: t \leq p(v, \mathcal{C})$ and \mathcal{C} is a maximal such set.

Generalized cores

Temporal
cores
V. Batagelj,
M. Cerinšek

Examples of node property function
(1) $p_{1}(v, \mathcal{C})=\operatorname{deg}_{\mathcal{C}}(v):$ node degree within \mathcal{C}
(2) $p_{2}(v, \mathcal{C})=\operatorname{indeg}_{\mathcal{C}}(v)+$ outdeg $_{\mathcal{C}}(v)$: if lines are directed it holds $p_{2}=p_{1}$
3) $\mathbf{p}_{\mathbf{3}}(\mathbf{v}, \mathcal{C})=\sum_{\mathbf{u} \in \mathbf{N}(\mathbf{v}, \mathcal{C})} \mathbf{w}(\mathbf{v}, \mathbf{u})$ for $\mathbf{w}: \mathbf{L} \rightarrow \mathbb{R}_{\mathbf{0}}^{+}:$sum of weights of incident lines within \mathcal{C}
(4) $p_{4}(v, \mathcal{C})=\max _{u \in N(v, \mathcal{C})} w(v, u)$ for $w: L \rightarrow \mathbb{R}$: maximal weight of incident lines within \mathcal{C}
(5) $p_{5}(v, \mathcal{C})=\frac{\operatorname{deg}_{\mathcal{C}}(v)}{\operatorname{deg}(v)}$ if $\operatorname{deg}(v)>0$ else $f_{5}(v, \mathcal{C})=0$: fraction of neighbors within \mathcal{C}.
(6) $p_{6}(v, \mathcal{C})=\frac{\sum_{u \in N(v, \mathcal{C})} w(v, u)}{\sum_{u \in N(v)} w(v, u)}$ for $w: L \rightarrow \mathbb{R}_{0}^{+}$: fraction of sum of weights of incident lines within \mathcal{C}.

Temporal network

A temporal network

$$
\mathcal{N}_{\mathcal{T}}=(\mathcal{V}, \mathcal{L}, \mathcal{T}, \mathcal{P}, \mathcal{W})
$$

is obtained by attaching the time \mathcal{T} to an ordinary network, where \mathcal{T} is a set of time points: $t \in \mathcal{T}$ which are usually integers or reals.

Temporal quantities (TQ) are assigned to nodes and links:
a TQ is a list of triples $(s, f, v): s$ - start, f - finish of time interval $[s, f), v$ - value.
$T(v)$ - the activity set of time points for the node $v ; T(I)$ the activity set of time points for the link /

Sum and product of temporal quantities

Temporal cores
V. Batagelj, M. Cerinšek

Temporal quantity a with the activity set $T_{a} \subseteq \mathcal{T}$ describes the changes of properties of nodes and links:

$$
a= \begin{cases}a^{\prime}(t) & t \in T_{a} \\ \text { undefined } & t \in \mathcal{T} \backslash T_{a}\end{cases}
$$

Temporal quantities allow longitudional approach instead of time slices.

```
a = [(1, 5, 2), (6, 8, 1), (11, 12, 3), (14, 16, 2), (17, 18, 5), (19, 20, 1)]
b = [(2, 3, 4), (4, 7, 3), (9, 10, 2), (13, 15, 5), (16, 21, 1)]
```

The following are the sum $s=a+b$ and the product $p=a \cdot b$ of temporal quantities a and b over combinatorial semiring.

```
s = [(1, 2, 2), (2, 3, 6), (3, 4, 2), (4, 5, 5), (5, 6, 3), (6, 7, 4), (7, 8, 1),
    (9, 10, 2), (11, 12, 3), (13, 14, 5), (14, 15, 7), (15, 16, 2), (16, 17, 1),
    (17, 18, 6), (18, 19, 1), (19, 20, 2), (20, 21, 1)]
p = [(2, 3, 8), (4, 5, 6), (6, 7, 3), (14, 15, 10), (17, 18, 5), (19, 20, 1)]
```

They are visually displayed at the bottom half of figures on the following slides. \qquad 플

Addition and multiplication of temporal quantities

Temporal
cores
V. Batagelj,
M. Cerinšek

Definitions
Algorithms
Results
Conclusions
References

b :

a :

Core decomposition

Temporal
cores
V. Batagelj, M. Cerinšek

1 CoreDecomposition (N):
$2 \mathrm{C}=\mathrm{V}$
$3 \mathrm{k}=1$
4 while $C \neq \emptyset$:
5 while $\exists u \in C$: $\operatorname{deg}(u)<k$:
6

$$
\text { for } v \in N(u, C):
$$

7
8

$$
\text { while } \exists \mathrm{u} \in C \ni: \operatorname{deg}(\mathrm{u})<\mathrm{k}:
$$

$$
C=C \backslash v
$$

9

$$
\operatorname{core}(u)=k-1
$$

10

$$
k=k+1
$$

$$
\operatorname{deg}(v)=\operatorname{deg}(v)-1
$$

We extended this algorithm to ordinary temporal cores and temporal p_{S}-cores.
For programs in Python see GitHub/Bavla/Graph.

Algorithm for ordinary temporal cores

Temporal

cores
V. Batagelj,
M. Cerinšek

Definitions
Algorithms
Results
Conclusions
References

```
```

TemporalCores(\mathcal{N}):

```
```

TemporalCores(\mathcal{N}):
D = {u: [triples (start, finish, deg)]}
D = {u: [triples (start, finish, deg)]}
CoreHierarchy = {u: [triples with deg = 0]}
CoreHierarchy = {u: [triples with deg = 0]}
D = (D.filter(deg > 0)).remove(empty triples)
D = (D.filter(deg > 0)).remove(empty triples)
Dmin = {u: min deg}
Dmin = {u: min deg}
while D not empty:
while D not empty:
(dmin, u) = (deg, u) Э: (u, deg) \in Dmin ^ deg is min deg
(dmin, u) = (deg, u) Э: (u, deg) \in Dmin ^ deg is min deg
core = [triples from D[u] Э: deg[u] from triple is equal to dmin]
core = [triples from D[u] Э: deg[u] from triple is equal to dmin]
CoreHierarchy[u].add(core)
CoreHierarchy[u].add(core)
change = core.set (deg = -1)
change = core.set (deg = -1)
D[u] = D[u].add(change).cutAt(dmin)
 value >= dmin
D[u] = D[u].add(change).cutAt(dmin)
 value >= dmin
for I in \mathcal{N}.star(u):
for I in \mathcal{N}.star(u):
v = other end-node of ।
v = other end-node of ।
if not v in D: continue
if not v in D: continue
changeLink = I.intersection(change).set(deg = - 1)
changeLink = I.intersection(change).set(deg = - 1)
if changeLink empty: continue
if changeLink empty: continue
diff = D[v].add(changeLink).cutAt(0)
 value >=0
diff = D[v].add(changeLink).cutAt(0)
 value >=0
D[v] = diff.set(max(currentValue, dmin))
D[v] = diff.set(max(currentValue, dmin))
if D[v] is empty:
if D[v] is empty:
delete D[v], Dmin[v]
delete D[v], Dmin[v]
else:
else:
Dmin[v] = triple }\inD[v] with min de
Dmin[v] = triple }\inD[v] with min de
if D[u] empty
if D[u] empty
delete D[u], Dmin[u]
delete D[u], Dmin[u]
else:
else:
Dmin[u] = triple }\inD[u] with min deg
Dmin[u] = triple }\inD[u] with min deg
return CoreHierarchy

```
```

return CoreHierarchy

```
```


Algorithm for p_{S} temporal cores

Temporal cores V. Batagelj, M. Cerinšek

Definitions
Algorithms
Results
Conclusions
References

```
PSTemporalCores(N):
D = {u: [triples (start, finish, weightSum)]}
Core = {u: [triples with weightSum = 0])}
D=(D.filter(weightSum > 0)).remove(empty triples)
Dmin = {u: min weightSum}
while D not empty:
    (dmin, u) = (weightSum, u) Э: Dmin ^ weightSum is min weightSum
    core = [triples from D[u] \ni: weightSum[u] from triple is equal to dmin]
    if core not empty:
        Core[u]. add(core)
        change = core.set(weightSum = -weightSum)
        D[u] = D[u].add(change).cutAt(dmin) \\ value >= dmin
        for l in N.star(u):
            v = other end-node of l
            if not v in D: continue
            changeLink = I.intersection(change).set(weightSum = - weightSum)
            if changeLink empty: continue
            diff = D[v].add(changeLink).cutAt(0) \\ value >=0
            D[v] = diff.set(max(currentValue, dmin))
            if D[v] is empty:
                    delete D[v], Dmin[v]
            else
                    Dmin[v] = triple }\in\textrm{D}[v] with min weightSum
    if D[u] is empty:
        delete D[u], Dmin[u]
    else:
        Dmin[u] = triple }\inD[u] with min weightSum
return Core
```


Artificial example
 all weights $w=1$

Temporal
cores
V. Batagelj, M. Cerinšek

Definitions
Algorithms

Results

 Conclusions

Artificial example

all weights $w=1$

Definitions
Algorithms
Results
Conclusions
References

Node	Degree $(1,9,1)$	Core number $(1,9,1)$
$\mathbf{1}$	$(1,3,2),(3,9,3)$	$(1,9,1)$
$\mathbf{2}$	$(1,9,1),(3,3)$	$(3,9,1)$
$\mathbf{3}$	$(1,3,2),(3,9,3)$	$(1,9,2)$
$\mathbf{5}$	$(1,5,3),(5,9,2)$	$(1,9,2)$
$\mathbf{6}$	$(1,9,2)$	$(1,9,2)$
$\mathbf{7}$	$(1,5,4),(5,7,3),(7,9,4)$	$(1,7,3),(7,9,4)$
$\mathbf{8}$	$(1,9,4)$	$(1,7,3),(7,9,4)$
$\mathbf{9}$	$(1,9,4)$	$(1,7,3),(7,9,4)$
$\mathbf{1 0}$	$(1,9,4)$	$(1,7,3),(7,9,4)$
$\mathbf{1 1}$	$(1,7,3),(7,9,4)$	$(1,7,3),(7,9,4)$
$\mathbf{1 2}$	$(1,9,0)$	$(1,9,0)$
$\mathbf{1 3}$	$(1,2,0),(2,8,2),(8,9,0)$	$(1,2,0),(2,8,2),(8,9,0)$
$\mathbf{1 4}$	$(1,2,0),(2,8,2),(8,9,0)$	$(1,2,0),(2,8,2),(, 9,0)$
$\mathbf{1 5}$	$(1,2,0),(2,8,2),(8,9,0)$	$(1,2,0),(2,8,2),(8,9,0)$

Artificial example

 different weightsTemporal
cores
V. Batagelj, M. Cerinšek

Definitions
Algorithms

Results

 ConclusionsReferences

Artificial example

 different weights| Temporal cores | Node 1 | Degree $(1,5,3),(5,9,5)$ | Core number $(1,5,3),(5,9,5)$ |
| :---: | :---: | :---: | :---: |
| V. BatageljM. Cerinsel | 2 | $(1,3,7),(3,9,10)$ | $(1,5,4),(5,9,5)$ |
| | 3 | $(1,5,4),(5,9,2)$ | $(1,5,4),(5,9,2)$ |
| Definitions | 4 | $(1,3,4),(3,9,7)$ | $(1,5,4),(5,9,5)$ |
| Algorithms | 5 | $(1,5,10),(5,9,7)$ | $(1,9,5)$ |
| Results | 6 | $(1,9,7)$ | (1, 9, 5) |
| Conclusions | 7 | $(1,5,13),(5,7,10),(7,9,14)$ | (1, 9, 10) |
| References | 8 | $(1,5,13),(5,9,10)$ | $(1,9,10)$ |
| | 9 | $(1,5,19),(5,9,16)$ | $(1,9,10)$ |
| | 10 | (1, 9, 11) | (1, 9, 10) |
| | 11 | (1, 7, 11), (7, 9, 15) | $(1,9,10)$ |
| | 12 | $(1,9,0)$ | (1, 9, 0) |
| | 13 | $(1,2,0),(2,5,6),(5,8,9),(8,9,0)$ | $(1,2,0),(2,5,5),(5,8,7),(8,9,0)$ |
| | 14 | $(1,2,0),(2,8,7),(8,9,0)$ | $(1,2,0),(2,5,5),(5,8,7),(8,9,0)$ |
| | 15 | $(1,2,0),(2,5,5),(5,8,8),(8,9,0)$ | $(1,2,0),(2,5,5),(5,8,7),(8,9,0)$ |

Reuters terror news network

Obtained from the CRA (Centering Resonance Analysis) networks produced by Steve Corman and Kevin Dooley at Arizona State University.

Based on all the stories released during 66 consecutive days by the news agency Reuters concerning the September 11 attack on the U.S., beginning at 9:00 AM EST 9/11/01.

Nodes: important words (terms), $n=13332$
Links: two nodes appear in the same utterance, $m=243447$, undirected, weight is equal to the frequency of appearance, 50859 of them have the weight larger than 1 . No loops.

Data available at: Terror.
Example: induced subnetwork on 50 most active nodes.

Reuters terror news network

Temporal degrees

Temporal cores

Node Degree

1
$(1,2,5),(2,3,6),(3,4,3),(4,5,5),(5,6,4),(6,8,3),(8,10,5),(10$, $11,3),(11,13,2),(13,16,3),(16,17,4),(17,18,5),(18,19,3),(19$, $21,1),(21,22,2),(22,23,1),(23,24,4),(24,25,1),(25,29,3),(29$, $31,2),(31,33,3),(33,34,1),(34,36,3),(36,37,2),(37,39,3),(39$, $40,4),(40,41,2),(41,42,0),(42,43,3),(43,44,2),(44,45,3),(45$, $46,1),(46,47,2),(47,48,3),(48,49,0),(49,50,4),(50,51,1),(51$, $52,2),(52,53,1),(53,54,0),(54,58,2),(58,59,3),(59,60,2),(60$, $61,4),(61,62,0),(62,64,2),(64,65,1),(65,67,2)$
$(1,2,27),(2,3,29), \ldots,(63,64,2),(64,65,0),(66,67,0)$
$50(1,2,3),(2,3,2),(3,5,1),(5,8,0),(8,10,1),(10,11,2),(11,12,1)$, $(12,15,0),(15,16,3),(16,17,1),(17,19,0),(19,20,1),(20,21,2)$, $(21,22,0),(22,24,1),(24,26,0),(26,27,2),(27,28,0),(28,29,1)$, $(29,31,0),(31,32,1),(32,33,0),(33,35,1),(35,37,0),(37,38,1)$, $(38,42,0),(43,44,2),(44,49,0),(49,50,2),(51,57,0),(58,61,0)$, $(61,62,1),(62,67,0)$

Reuters terror news network

Temporal cores

Node Core number

1
$(1,2,4),(2,3,5),(3,5,3),(5,6,4),(6,8,3),(8,10,4),(10,11,3)$, $(11,14,2),(14,18,3),(18,19,2),(19,21,1),(21,22,2),(22,23,1)$, $(23,24,3),(24,25,1),(25,28,2),(28,29,3),(29,33,2),(33,34,1)$, $(34,38,2),(38,39,3),(39,41,2),(41,42,0),(42,45,2),(45,46,1)$, $(46,47,2),(47,48,3),(48,49,0),(49,50,3),(50,51,1),(51,52,2)$, $(52,53,1),(53,54,0),(54,57,2),(57,58,1),(58,59,2),(59,60,1)$, $(60,61,2),(61,62,0),(62,64,2),(64,65,1),(65,67,2)$ $(1,3,5),(3,6,4),(6,7,5), \ldots,(63,64,1),(64,65,0),(66,67,0)$
$(1,3,2),(3,5,1),(5,8,0),(8,10,1),(10,11,2),(11,12,1),(12,15$, $0),(15,16,3),(16,17,1),(17,19,0),(19,20,1),(20,21,2),(21,22$, $0),(22,24,1),(24,26,0),(26,27,1),(27,28,0),(28,29,1),(29,31$, $0),(31,32,1),(32,33,0),(33,35,1),(35,37,0),(37,38,1),(38,42$, $0),(43,44,1),(44,49,0),(49,50,2),(51,57,0),(58,61,0),(61,62$, 1), $(62,67,0)$

Reuters terror news network

Temporal cores of order at least 3 appear in the first 11 days and on 30th day

Temporal cores	25	Node world
V. Batagelj,	2	attack
M. Cerinšek	9	washington
	14	world_trade_ctr
Definitions	4	people
	21	pentagon
Algorithms	7	new_york
Results	8	pres_bush
	10	official
Conclusions	43	tower
References	34	time
	18	city
	20	tuesday
	13	plane
	15	security
	1	united_states
	19	war
	29	worker
	47	wednesday
	12	military
	5	afghanistan

```
Core number \((\geq 3)\)
\((1,3,5),(3,10,4)\)
\((1,3,5),(3,6,4),(6,7,5),(7,10,4),(11,12,4),(30,31,4)\)
\((1,3,5),(3,6,4),(6,7,5),(7,10,4),(11,12,4)\)
\((1,3,5),(3,6,4),(6,7,5),(30,31,4)\)
\((1,3,5),(3,6,4),(6,7,5),(7,8,4)\)
\((1,3,5),(3,4,4),(5,6,4),(6,7,5)\)
\((1,3,5),(3,6,4),(6,7,5),(30,31,4)\)
\((1,3,5),(3,6,4),(6,7,5),(7,10,4),(11,12,4)\)
\((1,3,5),(3,4,4),(5,6,4),(6,7,5)\)
\((1,3,5),(3,4,4),(6,7,5)\)
\((1,3,5),(3,4,4),(5,6,4),(7,8,4)\)
\((1,3,5),(3,4,4)\)
\((1,3,5),(3,7,4)\)
\((1,3,5),(3,7,4)\)
\((1,2,4),(2,3,5),(5,6,4)\)
\((1,2,4),(2,3,5),(5,6,4),(8,10,4)\)
\((1,2,4),(2,3,5),(5,8,4)\)
\((1,2,4),(2,3,5)\)
\((2,3,5),(3,4,4),(8,10,4)\)
\((1,2,4),(5,6,4),(30,31,4)\)
\((1,3,4),(5,6,4),(6,7,5),(8,10,4),(30,31,4)\)
```


Reuters terror news network

Temporal cores of order at least 3 appear in the first 11 days and on 30th day

Temporal cores		Node bin_laden	Core number (≥ 3)
	6 36	bin_laden strike	$(1,4,4),(5,6,4),(6,7,5),(7,10,4),(11,12,4)$
V. Batagelj, M. Cerinšek	28	week	($5,6,4$), (6, 7, 5), (8, 10, 4), (11, 12, 4)
	48	nation	(1, 3, 4), (5, 6, 4) ${ }^{\text {a }}$
	40	terrorist	$(1,3,4),(6,7,4)$
Definitions	17	country	$(1,3,4),(5,10,4)$
Algorithms	23	government	(1, 3, 4), $(5,6,4)$
	30	office	(1, 3, 4)
Results	24	leader	$(1,4,4),(6,10,4)$
Conclusions	49	police	(2, 4, 4), (5, 6, 4)
	31	group	$(2,3,4),(6,7,4)$
References	42	pakistan	$(2,3,4),(5,7,4)$
	32	air	$(2,3,4),(5,6,4)$
	27	day	$(2,3,4),(5,6,4)$
	35	hijack	(2, 3, 4)
	26	terrorism	$(2,3,4)$
	38	flight	(2, 3, 4)
	39	tell	(2, 3, 4)
	16	american	(2, 3, 4)
	41	airport	$(2,3,4)$
	45	new	($2,3,4$)
	22	force	$(5,6,4)$

Reuters terror news network

Temporal ps-cores

[^0]
Reuters terror news network

Temporal ps-cores

Temporal cores		Node	\mathbf{p}_{S}-core number (≥ 20)
V. Batagelj,	20	tuesday	$(1,3,86),(3,4,4 \overline{4}),(4,5,36),(5,6,66),(6,7,47)$
V. Batagelj, M. Cerinšek	3	taliban	$(2,3,28),(6,7,20),(15,16,23),(27,28,23)$
	36	strike	$(2,3,29),(5,6,29),(18,19,22),(27,28,23)$
	17	country	$(1,2,24),(2,3,31),(5,6,26),(18,19,20)$
Definitions	8	pres_bush	$(1,2,48),(2,3,44),(5,6,29),(6,7,21)$
Algorithms	41	airport	$(1,2,25),(2,3,44),(4,5,25),(5,6,24)$
	15	security	$(1,2,25),(2,3,30),(5,6,24)$
Results	16	american	(1, 2, 48), (2, 3, 30), (5, 7, 20)
Conclusions	18	city	$(1,2,60),(2,3,52),(3,4,22)$
	25	world	$(1,2,34),(2,3,44),(18,19,20)$
References	27	day	$(1,2,21),(2,3,36),(5,6,20)$
	32	air	(2, 3, 34), $(5,6,29),(27,28,23)$
	38	flight	$(1,2,25),(2,3,52),(4,5,20)$
	48	nation	$(1,2,31),(2,3,38),(5,6,23)$
	40	terrorist	(1, 2, 40), (2, 3, 29)
	19	war	$(2,3,34),(5,6,29)$
	23	government	(1, 2, 28), (2, 3, 36)
	46	buildng	(1, 2, 34), (2, 3, 44)
	30	office	$(1,2,34),(2,3,20)$

Reuters terror news network

Temporal ps-cores

Temporal
cores
V. Batagelj,
M. Cerinšek

Definitions
Algorithms
Results
Conclusions

Node	$\mathbf{p}_{\boldsymbol{S}}$-core number (≥ 20)
terrorism	$(5,6,20)$
worker	$(1,2,24)$
group	$(2,3,26)$
time	$(2,3,36)$
force	$(5,6,26)$
leader	$(1,2,22)$
pakistan	$(5,6,29)$
bomb	$(1,2,23)$
new	$(2,3,30)$
wednesday	$(2,3,52)$
police	$(2,3,20)$

Max p_{S}-core numbers by days from the event

Temporal cores
V. Batagelj, M. Cerinšek

Definitions
Algorithms Results Conclusions References

Franzosi's Violence network

Roberto Franzosi collected from the journal news in the period January 1919 - December 1922 information about the different types of interactions between political parties and other groups of people in Italy. The violence network contains only the data about violent actions and counts the number of interactions per month.

Nodes: groups of people, $n=29$
Links: violent interactions, $m=105$
For details see:
Franzosi, R., 1997. Mobilization and CounterMobilization Processes: From the Red Years (1919-20) to the Black Years (1921-22) in Italy.
Franzosi, R., 1997. A New Methodological Approach to the Study of Narrative Data. Theory and Society, 26(2-3), 275-304

Violence network

Core number ≥ 3

Temporal
cores
V. Batagelj, M. Cerinšek

```
Node
16 workers
1 undefined
2 ?
3 people
4 police
21 catholics
fascists
communists
10 socialists
```

Core number (≥ 3)
$(29,30,3),(33,34,3),(39,41,3)$
$(29,30,3),(39,40,3)$
$(31,32,3),(33,34,3),(40,41,3)$
$(31,32,3),(33,34,3),(39,40,3)$
$(31,32,3),(33,34,3),(40,41,3)$
$(33,34,3)$
$(29,30,3),(31,32,3),(33,34,3),(39,41,3)$
$(29,30,3)$
$(31,32,3),(40,41,3)$

Violence network

Core number ≥ 2

Temporal cores V. Batagelj, M. Cerinšek

Definitions
Algorithms
Results
Conclusions
References

Node
1 undefined
2 ?
3 people
4 police
5 land owners
7 fascists

8 communists
9 workers (agr)
10 socialists
12
war affected protesters

Core number (≥ 2)
$(15,16,2),(17,18,2),(25,29,2),(29,30,3),(31,32,2),(38,39,2)$,
$(39,40,3),(41,44,2),(45,46,2),(48,49,2)$
$(14,16,2),(17,18,2),(28,29,2),(31,32,3),(32,33,2),(33,34,3)$,
$(34,35,2),(40,41,3)$
$(16,18,2),(23,24,2),(25,26,2),(28,30,2),(31,32,3),(33,34,3)$,
$(35,37,2),(39,40,3),(41,43,2),(48,49,2)$
$(11,12,2),(14,20,2),(21,23,2),(29,31,2),(31,32,3),(32,33,2)$,
$(33,34,3),(34,37,2),(38,40,2),(40,41,3)$
$(15,16,2),(17,20,2),(29,30,2),(36,37,2),(38,40,2),(42,43,2)$
$(11,12,2),(16,17,2),(19,20,2),(21,24,2),(25,29,2),(29,30,3)$,
$(30,31,2),(31,32,3),(32,33,2),(33,34,3),(34,37,2),(38,39,2)$,
$(39,41,3),(41,44,2),(45,46,2),(48,49,2)$
$(28,29,2),(29,30,3),(31,33,2),(35,37,2),(43,44,2)$
$(15,16,2),(17,20,2),(28,30,2),(31,32,2),(33,35,2),(38,43,2)$,
$(45,46,2)$
$(11,12,2),(16,18,2),(19,20,2),(22,23,2),(25,26,2),(27,30,2)$,
$(31,32,3),(33,37,2),(38,40,2),(40,41,3),(41,42,2)$
$(35,36,2),(39,40,2)$
$(15,16,2),(21,22,2),(29,30,2),(31,32,2),(38,40,2)$

Violence network

Core number ≥ 2

Temporal
cores
V. Batagelj, M. Cerinšek

Definitions
Algorithms
Results
Conclusions

Node

16 workers

17 the right
19 populars
20 students
21 catholics
25 republicans
26 thugs
27 prisoners/arrested

[^1]
Violence network

Node		$\begin{aligned} & p_{S} \text {-ore number }(\geq 10) \\ & (1,2,27),(10,11,11),(14,15,27),(16,17,11),(17,18,17),(18,19 \end{aligned}$
		$12),(22,23,17),(25,26,11),(27,28,18),(28,29,16),(29,30,53)$,
		$(30,31,56),(31,32,51),(32,33,30),(33,34,17),(34,35,71),(35$,
		$36,76),(36,37,53),(37,38,11),(38,39,23),(39,40,54),(40,41$,
10		$13),(41,42,174),(42,43,25),(43,44,20),(45,46,15),(46,47,25)$
	socialists	$(10,11,10),(12,13,29),(27,28,30),(28,29,31),(29,30,64),(30$,
		$31,29),(31,32,17),(32,33,14),(33,34,24),(34,35,38),(35,36$,
		$23),(36,37,26),(37,38,13),(38,39,19),(39,40,54),(45,46,13)$
4	police	$(1,2,36),(6,7,15),(10,11,24),(12,13,29),(14,15,27),(15,16$,
		$13),(16,17,24),(17,18,17),(18,19,12),(22,23,17),(31,32,17)$
7	fascists	$(25,26,11),(27,28,30),(28,29,31),(29,30,64),(30,31,56),(31$,
		$32,51),(32,33,30),(33,34,24),(34,35,71),(35,36,76),(36,37$,
		$53),(37,38,13),(38,39,23),(39,40,54),(40,41,13),(41,42,174)$,
		$(42,43,25),(43,44,20),(45,46,15),(46,47,25)$
9	workers (agr)	$(10,11,24),(16,17,24),(28,29,16),(30,31,13),(36,37,11),(39$,
		$40,15),(43,44,10)$
1	undefined	$(25,26,11),(27,28,12),(28,29,16),(41,42,133),(45,46,11)$
8	communists	$(29,30,13),(30,31,10),(31,32,12)$
13	protesters	$(6,7,15),(15,16,13),(16,17,20)$
12	war affected	$(1,2,36)$
3	people	

SN5 network

Data from Web of Science ("social network*" AND SO=(Social networks)) plus most frequently cited works plus around 100 SNA researchers. Collected in December 2007 for the 2008 Viszards session.

We analyze the works \times authors network WA restricted to works with a complete description ($D C>0$): $|\mathbf{W}|=7950,|\mathbf{A}|=12458$ and $m=19488$.
Using the publication years the network WA was expanded to a temporal network with cumulative weights.

Normalization "by rows" $\mathbf{N}=n(\mathbf{W A})$.
Normalized coauthorship network: $\mathbf{C t}=\mathbf{N}^{T} * \mathbf{N}$.

SN5 Coauthorship

Temporal cores
V. Batagelj, M. Cerinšek

Definitions
Algorithms

Results

Conclusions
References

SN5 cumulative coauthorship p_{S} cores ≥ 3

Temporal cores
V. Batagelj,
M. Cerinšek

Definitions
Algorithms
Results
Conclusions
References

```
```

 20 : BORGATTI_S [(1991, 1992, 3.1667), (1992, 1993, 4.1667), (1993, 1994, 5.1667)
    ```
```

 20 : BORGATTI_S [(1991, 1992, 3.1667), (1992, 1993, 4.1667), (1993, 1994, 5.1667)
 (1994, 1996, 6.1667), (1996, 1997, 6.6667), (1997, 1999, 7.1667), (1999, 2003, 8.6667),
 (1994, 1996, 6.1667), (1996, 1997, 6.6667), (1997, 1999, 7.1667), (1999, 2003, 8.6667),
 (2003, 2005, 8.7917), (2005, 2006, 9.2917), (2006, 2009, 9.7917)]
 (2003, 2005, 8.7917), (2005, 2006, 9.2917), (2006, 2009, 9.7917)]
 3169 : EVERETT_M [(1991, 1992, 3.1667), (1992, 1993, 4.1667), (1993, 1994, 5.1667),
3169 : EVERETT_M [(1991, 1992, 3.1667), (1992, 1993, 4.1667), (1993, 1994, 5.1667),
(1994, 1996, 6.1667), (1996, 1997, 6.6667), (1999, 2003, 8.6667), (2003, 2005, 8.7917),
(1994, 1996, 6.1667), (1996, 1997, 6.6667), (1999, 2003, 8.6667), (2003, 2005, 8.7917),
(2005,' 2006, 9.2917),' (2006, 2009, 9.7917)]
(2005,' 2006, 9.2917),' (2006, 2009, 9.7917)]
317: BERNARD_H [(1990, 1991, 3.0244), (1991, 1995, 3.1494), (1995, 1997, 3.3094),
317: BERNARD_H [(1990, 1991, 3.0244), (1991, 1995, 3.1494), (1995, 1997, 3.3094),
(1997, 1998, 3.3894), (1998, 2001, 3.5494), (2001, 2003, 3.6294), (2003, 2006, 3.685),
(1997, 1998, 3.3894), (1998, 2001, 3.5494), (2001, 2003, 3.6294), (2003, 2006, 3.685),
(2006, 2009, 4.0706)]
(2006, 2009, 4.0706)]
2232 : KILLWORT_P [(1990, 1991, 3.0244), (1991, 1995, 3.1494), (1995, 1997, 3.3094),
2232 : KILLWORT_P [(1990, 1991, 3.0244), (1991, 1995, 3.1494), (1995, 1997, 3.3094),
232 : KILLWORT_P [(1990, 1991, 3.0244), (1991, 1995, 3.1494), (1995, 1997, 3.3094),
232 : KILLWORT_P [(1990, 1991, 3.0244), (1991, 1995, 3.1494), (1995, 1997, 3.3094),
(2003, 2006, 3.685), (2006, 2009, 4.0706)]
(2003, 2006, 3.685), (2006, 2009, 4.0706)]
4551 : STEINHAU_H [(2003, 2005, 3.0), (2005, 2006, 3.2222), (2006, 2009, 3.6667)]
4551 : STEINHAU_H [(2003, 2005, 3.0), (2005, 2006, 3.2222), (2006, 2009, 3.6667)]
4551 : STEINHAU_H [(2003, 2005, 3.0), (2005, 2006, 3.2222), (2006, 2009, 3.6667)]
4551 : STEINHAU_H [(2003, 2005, 3.0), (2005, 2006, 3.2222), (2006, 2009, 3.6667)]
3125 : SHELLEY_G [(2006, 2009, 3.4767)]
3125 : SHELLEY_G [(2006, 2009, 3.4767)]
[(2006, 2009, 3.4767)]
[(2006, 2009, 3.4767)]
1677 : JOHNSEN_E [(2006, 2009, 3.4767)]
1677 : JOHNSEN_E [(2006, 2009, 3.4767)]
75: HOLLAND_P
75: HOLLAND_P
78 : LEINHARD_S
78 : LEINHARD_S
925 : BONACICH_P
925 : BONACICH_P
3840 : BIENENST_E
3840 : BIENENST_E
69 : WASSERMA_S
69 : WASSERMA_S
1164 : DOREIAN_P
1164 : DOREIAN_P
1166 : HUMMON_N
1166 : HUMMON_N
1680 : PATTISON_P
1680 : PATTISON_P
3225 : FARARO T
3225 : FARARO T
1056 : FAUST_\overline{K}
1056 : FAUST_\overline{K}
3170 : FERLIGOOJ_A
3170 : FERLIGOOJ_A
2083 : ROBINS_G
2083 : ROBINS_G
2084 : SKVORETZ J
2084 : SKVORETZ J
949 : BATAGELJ_V
949 : BATAGELJ_V
79 : BATAGELJ
79 : BATAGELJ
796 : PARK_J

```
796 : PARK_J
```

```
[(1981, 1983, 3.0), (1983, 2009, 3.2222)]
```

[(1981, 1983, 3.0), (1983, 2009, 3.2222)]
[(1981, 1983, 3.0), (1983, 2009, 3.2222)]
[(1981, 1983, 3.0), (1983, 2009, 3.2222)]
[(1997, 2009, 3.2222)]
[(1997, 2009, 3.2222)]
[(1997, 2009, 3.2222)]
[(1997, 2009, 3.2222)]
[(2007, 2009, 3.0174)
[(2007, 2009, 3.0174)
[(2007, 2009, 3.0174)]
[(2007, 2009, 3.0174)]
[(2007, 2009, 3.0174)]
[(2007, 2009, 3.0174)]
(2007, 2009, 3.0174)
(2007, 2009, 3.0174)
[(2007, 2009, 3.0174)]
[(2007, 2009, 3.0174)]
(2007, 2009, 3.0174)
(2007, 2009, 3.0174)
[(2007, 2009, 3.0174)
[(2007, 2009, 3.0174)
[(2007, 2009, 3.0174)]
[(2007, 2009, 3.0174)]
(2007, 2009, 3.0174)
(2007, 2009, 3.0174)
[(2007, 2009, 3.0174)]
[(2007, 2009, 3.0174)]
[(2005, 2009, 3.0)]
[(2005, 2009, 3.0)]
[(2005, 2009, 3.0)]

```
[(2005, 2009, 3.0)]
```


Conclusions

(1) Improve the complexity of the algorithm
2) Extend the algorithm to generalized temporal cores
(3) Find user friendly presentations of results

4 Compare with the streaming core algorithms
Temporal Quantities - a Python 3 library for temporal network analysis TQ / Graph.

Acknowledgements.

The first author was partially sponsored by Slovenian Research Agency (ARRS) - projects J7-8279 and J1-6720, and grant P1-0294.
The second author was partially sponsored by Slovenian Research Agency (ARRS) projects Z7-7614 (B) and L7-5554.

References I

Ahmed, A., Batagelj, V., Fu, X., Hong, S.-H., Merrick, D., Mrvar, A.: Visualisation and analysis of the Internet movie database. Asia-Pacific Symposium on Visualisation 2007 (IEEE Cat. No. 07EX1615), 2007, p 17-24.
Batagelj, V, Cerinšek, M: On bibliographic networks. Scientometrics 96 (2013) 3, 845-864.Batagelj, V., Praprotnik, S.: An algebraic approach to temporal network analysis based on temporal quantities. Social Network Analysis and Mining, 6(2016)1, 1-22.
(Batagelj, V., Zaveršnik, M.: An O(m) Algorithm for Cores Decomposition of Networks. 2003. arXiv:cs/0310049

Batagelj, V., Zaveršnik, M.: Generalized Cores, 2002. arXiv:cs/0202039
Batagelj, V., Zaveršnik, M.: Fast algorithms for determining (generalized) core groups in social networks. Advances in Data Analysis and Classification, 2011. Volume 5, Number 2, 129-145.

Cerinšek, M., Batagelj, V.: Generalized two-mode cores. Social Networks 42 (2015), 80-87.

References II

Definitions
Algorithms
Results Conclusions References

Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, Lu Qin: A Fast Order-Based Approach for Core Maintenance, 2016. arXiv:1606.00200
Ahmet Erdem Sarıyuce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, Umit V. Catalyurek: Streaming Algorithms for k-core Decomposition. Journal Proceedings of the VLDB Endowment, 6(6), 2013. PDF

Li, Rong-Hua, Jeffrey Xu Yu, and Rui Mao. Efficient core maintenance in large dynamic graphs. IEEE Transactions on Knowledge and Data Engineering 26(10), 2014. PDF

[^0]: V. Batagelj, M. Cerinšek

[^1]: Core number (≥ 2)
 $(11,12,2),(14,18,2),(19,20,2),(21,24,2),(25,26,2),(27,29,2)$, $(29,30,3),(30,33,2),(33,34,3),(34,37,2),(38,39,2),(39,41,3)$,
 $(41,44,2),(45,46,2)$
 $(17,18,2),(41,42,2)$
 $(41,42,2)$
 $(17,18,2)$
 $(33,34,3)$
 $(26,27,2)$
 $(29,30,2)$
 (40, 41, 2)

