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Abstract
Two indices for measuring the widespread of a node attribute value in a network are

proposed and studied: the (simple) widespread index and the domination index. A compu-
tation of the proposed indices using the program Pajek is illustrated on two networks: the
Class network and the US Airports network.
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1 Introduction
On January 12, 2016, Clement Levallois posted at SocNet the following message:

I need to have a measure of how widespread is the distribution of a node attribute
in a network. Let me explain:

My nodes have a textual attribute, let’s say ”preferred flavor for ice cream”. I
would like to know to what extent the flavor ”raspberry” is a value which is evenly
distributed in the network, or to the contrary, just found in one community. A
low value would mean that only nodes from a subregion of the network have this
taste, a higher value would show an even distribution of the value across the whole
network. I imagine that a difficulty is to account for the frequency of the attribute:
if many nodes of the network have ”raspberry” for the value of the attribute, it will
tend to make this value distributed more widely.

Any help or pointer on this would be very much appreciated!

Thank you, Clement Levallois

In the paper we propose and study two indices for measuring the widespread of a node
attribute value in a network. We also show how they can be computed in Pajek.
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2 Simple widespread index
Let us start with some notions needed in the following discussion.

Let V be a set of nodes and S its subset with a given attribute value. Let further N = (V, L),
L is a set of links, be a simple network — no loops, two adjacent nodes are linked either by an
arc (directed link) or an edge (undirected link). See the Class network in Figure 1. With N(S)
we denote the set of neighbors of the set S:

N(S) = {u ∈ V : ∃v ∈ S : (v, u) ∈ L}

and with N [S] = S ∪ N(S). We say that a node is covered by S iff it is in the set S or is
a neighbor of some node from the set S. Therefore the set N [S] is exactly the set of nodes
covered from S. With n = |V | we denote the number of nodes.

D is a dominating set of a network N = (V, L) iff N [D] = V . D is an independent set of a
network N = (V, L) iff D ∩N(D) = ∅. For details see Haynes et al. (1998, p. 211).

Related to dominating sets is a domination number γ(N)

γ(N) = min{|D| : D is a dominating set of N}

for which it holds n ≥ γ(N) ≥ d n
1+∆
e ≥ 1, where ∆ is the largest outdegree in N.

Note 1. Even better lower bound is γ(N) ≥ k, where k is the smallest number such that

k∑
i=1

(1 + di) ≥ n

where (di)i is a sequence of outdegrees ordered in decreasing order.

Let S be the set of nodes having a selected attribute’s value. A simple measure of its
widespread is the size of the set N [S]. For S 6= ∅ it holds 0 < |N [S]| ≤ n. Normalizing
it we get a simple widespread index

W (S) =
|N [S]|
n

.

It is easy to verify that

Proposition 1. The simple widespread index W (S) has the following properties:

(a) 0 ≤ W (S) ≤ 1.

(b) W (V ) = 1.

(c) W (S) = 1 iff S is a dominating set.

(d) if S1 ⊂ S2 then N [S1] ⊆ N [S2]

(e) W (S1) < W (S2) iff |N [S1]| < |N [S2]|.
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3 Domination index
A problem with the definition of the simple widespread index W (S) is that it doesn’t consider
the size of the set S. The setN [S]\S is the “expansion” of the set S – a set of new nodes linked
from S. A well widespread set S has a large expansion. Let D∗ be a minimum dominating set,
|D∗| = γ(N). Then an alternative widespread measure of S could be a normalized size of its
expansion which we call a domination index

W ∗(S) =
|N [S] \ S|
|V \D∗|

=
|N(S) \ S|
n− γ

.

If S = ∅ we set W ∗(S) = 0. Note that (Sc = V \ S)

N [S] \ S = (N(S) ∪ S) ∩ Sc = N(S) ∩ Sc ∪ S ∩ Sc = N(S) \ S

It is easy to see that

Proposition 2. The domination index W ∗(S) has the following properties:

(a) 0 ≤ W ∗(S) ≤ 1 .

(b) W ∗(V ) = 0.

(c) if S is a minimum dominating set then W ∗(S) = 1.

(d) if |N [S1]| = |N [S2]| and |S1| < |S2| then W ∗(S1) > W ∗(S2).

Most proofs are simple. Let us show that W ∗(S) ≤ 1. In general we have N [S] ⊆ V . Then
there exists P ⊆ V such that N [S]∩ P = ∅ and N+(S ∪ P ) = V . Note that also S ∩ P = ∅. If
N [S] = V we set P = ∅. Because S ⊆ N [S] it holds

|N [S] \ S| = |N [S]| − |S|

From
n = |V | = |N [S ∪ P ]| ≥ |N [S]|+ |P |

we get
|N [S]| − |S| ≤ n− |S| − |P | = n− |S ∪ P |

Because S ∪ P is a dominant set |S ∪ P | ≥ γ and therefore

|N [S]| − |S| ≤ n− γ

or finally W ∗(S) ≤ 1.
The value W ∗(S) = 1 can be attained also in cases not covered by Proposition 2.c . For

example in the 4-cycle C4 = (V,E), where V = {a, b, c, d} and E = {(a : b), (b : c), (c :
d), (d : a)}, we have n = 4, γ = 2, and for S = {a}

W ∗({a}) =
|{a, b, d} \ {a}|

4− 2
= 1
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These cases satisfy the following scheme.
Let D∗ be a minimum dominating set in a network N and D0 ⊂ D∗ its subset such that the

subnetwork induced by the set V \ N [D0] is a null graph – it has no link. Then for each D,
D0 ⊆ D ⊆ D∗ it holds W ∗(D) = 1. Note also that each such D can be extended to a minimum
dominating set D ∪ (V \N [D]).

Unfortunately the problem of determining the domination number γ(N) is NP-complete –
there is no efficient algorithm to computeW ∗ (Garey and Johnson, 1979, p. 190, problem GT2).

Note 2. Nodes with indegree 0 belong to every dominating set of a given network.

Note 3. Let D0 be the set of all nodes with zero indegree. Then we get a better lower bound
for γ — it is |D0|+ k′, where k′ is the smallest number such that

k′∑
i=1

(1 + di) ≥ n− |N+(D0)|.

Since V \ D0 can have zero degree nodes again, we iterate the process. The final dis are
computed in the final V \D0.

Note 4. In some real life networks we have many ”leaves” – nodes with indegree 1 and out-
degree at most 1. For such nodes there always exists a minimal dominant set that contains their
twin node – ”roots”.

To get an efficiently computable index we could replace γ with 1 (it always holds 1 ≤ γ);
or, even better, with some other lower bound k (also k ≤ γ). The domination k-index is defined
as

Wk(S) =
|N(S) \ S|
n− k

.

Proposition 3. For the domination k-index Wk(S) it holds:

(a) W ∗(S) = Wγ(S) .

(b) k1 < k2 ⇒ Wk1(S) < Wk2(S).

(c) k < γ ⇒ 0 ≤ Wk(S) < 1.

(d) W ∗(S1) > W ∗(S2) iff Wk(S1) > Wk(S2)

(e) if |N [(S1]| = |N [S2]| and |S1| < |S2| then Wk(S1) > Wk(S2).
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4 Examples

4.1 The Class network
The Class network (see Figure 1) describes the borrowing of study materials among 15 social
informatics students at Faculty of social sciences in Ljubljana (Pajek data sets, 2016). Besides
the borrowing relation we have also information about the sex (man, woman) of each student.
There are nm = 6 men and nw = 9 women. Let us determine the widespread of each sex group,
Men and Women, in the network.

m02

m03

w07

w09

w10

w12

w22 w24

w28

w42

m51

w63

m85

m89

m96

Pajek

Figure 1: Class network

We first determine the numbers k and γ. The outdegree of nodes m02, w22 and w09 is 5.
Therefore by Note 1

(1 + outdeg(m02)) + (1 + outdeg(m02)) + (1 + outdeg(m02)) = 18 > 15 = n

we get k = 3.
Applying Note 2 we see that {m02,m51,m89} are in any dominating set. To cover the

remaining uncovered nodes we need to add at least two additional nodes – for example, w12
and w24. We get γ = 5.

Using Pajek it is relatively easy (see Appendix A) to determine the sets N [S] and N(S) \ S
and their sizes – needed for computing the indices. For the Class network we get:
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S Men Women
|S| 6 9

|N [S]| 11 12
|N(S) \ S| 5 3

W (S) 11
15

= 0.73333 12
15

= 0.8
W3(S) 5

12
= 0.41667 3

12
= 0.25

W ∗(S) 5
10

= 0.5 3
10

= 0.3

We see that W (Men) = 0.73 < 0.8 = W (Women) — women are more widespread than
men. But, the set Men is smaller than the set Women and has larger expansion — men are
more dominant in a network than women: W3(Men) = 0.42 > 0.25 = W3(Women) and
W ∗(Men) = 0.5 > 0.3 = W ∗(Women) .

4.2 US Airports
As a non-toy example, let us consider the US Airports network (?). It consists of 332 airports
and 2126 edges among them. There is an edge linking a pair of airports iff in the year 1997 there
was a flight company providing flights between those two airports. Because the edge weights
are not relevant for our example we set all weights to 1.

For this network it turns out that using Note 4 we can relatively easy determine its domina-
tion number γ. We call Outsiders the set V \ N [Roots]. Pajek commands for determining the
set N [Outsiders] are given in Appendix B. To determine a minimal dominating set D∗ we have
to add to the set Roots a minimal set Do that covers the set Outsiders – light (green or yellow)
nodes in Figure 2. Dark (red) nodes are neighbors of Outsiders that are covered by Roots.To
cover an outsider we can use also some of its not outsider neighbor.

The solution is not unique. For example to cover the outsider 32 we can select any of the
nodes 32, 31, and 33. To cover nodes 87, 66, 116 and 64 with a single node we have to select
the node 65. Here is a minimal set

Do = {32, 55, 65, 97, 98, 141, 171, 262, 302, 320}

The set of Roots contains 26 nodes + additional 10 nodes from Do give a minimal domination
set D∗ with γ = 36 nodes.

Let us compute both indices for the set Leaves and the set 5 airports which consists of 5
nodes

5 airports = {8, 118, 248, 255, 261}
that correspond to airports: Anchorage Intl, Chicago O’hare Intl, Los Angeles Intl, The William
B Hartsfield Atlanta, and Dallas/Fort Worth Intl.

For the US Airports network we have n = 332 and γ = 36. We get the following table:

S Leaves 5 airports
|S| 55 5

|N(S)| 26 218
|N [S]| 81 218

|N(S) \ S| 26 213
W (S) 81

332
= 0.243976 218

332
= 0.656627

W ∗(S) 26
296

= 0.087838 213
296

= 0.719595
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Figure 2: N [Outsiders]

For both indices their value for the set Leaves is smaller than the value for the set 5 airports.
There are 55 leaves that cover 81 nodes; their extension contains onply 26 nodes. The selected
5 airports cover 218 nodes and have the extension with 213 nodes.

In Figure 3 a cut-out from US Airports network picture is presented. The light (yellow)
node represents the Los Angeles Intl airport. The dark (red) nodes are airports linked with at
least one of the selected 5 airports; and the gray (green) nodes are airports not linked to any of
selected 5 airports.

5 Conclusions
In the paper we proposed two indices to measure a widespread of a subset of nodes in a given
network. The simple widespread index measures a proportion of the set of nodes covered by
a given subset. The dominance index considers also the “efficiency” of a given subset. The
problem with the dominance index is that (it is believed that) no efficient algorithm exists for
computing the network’s dominance number γ. For comparing subsets inside the same network
we can apply Proposition 3.d (W ∗ and Wk are determining the same ordering of subsets) and
instead of W ∗ use Wk for some lower bound k.
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Figure 3: US Airports 1997 / 5 airports, a cut-out
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A Computing widespread indices in Pajek
Here is a short description of a procedure to compute in Pajek the simple widespread index and
the domination k-index. Setting k = γ we get the domination index.

We first read the network into Pajek:

File/Network/Read [class.net]

In some way we determine the network’s domination number γ or its lower bound k. For
the class network we get γ = 5 and k = 3.

Let V = {v1, v2, v3, ..., vn}. We assign to its subset S ⊆ V the corresponding characteristic
vector χ(S) = [h1, h2, h3, ..., hn] where hi = 1 if vi ∈ S, and hi = 0 otherwise.

We partition the node set to sets Men and Women according to the node shape (square -
man; circle - woman).

Network/Create Partition/Vertex Shapes
Partition/Binarize Partition [1] % 1=man, 2=woman -> 0=woman, 1=man

Clicking on the Info button for partition we learn that the group 1 contains 6 men, and the
group 0 contains 9 women.

Assume that we have active in Pajek registers: the network, the partition S and the scalar k.
Then both indices are computed as follows:

Network/Create New Network/Transform/Transpose 1-Mode [yes]
Partition/Copy to Vector
Operations/Network + Vector/Network*Vector [1,OK]
Vector/Make Partition/by Intervals/Selected Tresholds [0.5]
Vector/Create Scalar/Number % n
Partition/Binarize Partition [2] % N(S)
select partition S as Second
Partitions/Max(First,Second)
Partition/Copy to Vector
Vector/Create Scalar/Sum
select scalar n as Second
Vectors/Divide (First/Second)
File/Vector/Change Label [W]
select partition S as First
Partition/Binarize Partition [0]
select partition N(S) as Second
Partitions/Min(First,Second)
Partition/Copy to Vector
Vector/Create Scalar/Sum % |N(S)-S|
select scalar n as First
select scalar k as Second
Vectors/Subtract (First-Second) % n-k
select n-k as Second
select |N(S)-S| as First
Vectors/Divide (First/Second)
File/Vector/Change Label [Wk]

This sequence of commands is saved as the macro widespread. It expects in active
registers as ”inputs” a network, a subset S given as a binary partition (characteristic vector),
and a scalar k. It returns both indices W and Wk (Batagelj, 2016). The macro widespread
removes the auxiliary data. If you are interested in the intermediary results apply the macro
wide instead.
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B Creating in Pajek a picture from Figure 2
We first read the US Airports network from the file USair97.net into Pajek. We follow a
construction implied by Note 4 and produce the sets Leaves, Roots, Outsiders andN+(Outsiders):

Network/Create new network/Transform/Line values/Set all values to 1
Network/Create new network/Transform/Add/Vertex labels/Default [yes]
Network/Create Partition/Degree/All
Partition/Binarize [1] % Leaves
Partition/Copy to vector
Operations/Network+Vector/Network*Vector [1] % r
Vector/Make Partition/by Intervals/Selected Thresholds [0.5]
Partition/Binarize [2] % Roots
Partition/Copy to Vector
Operations/Network+Vector/Network*Vector [1]
select r as the second vector
Vectors/Add (First+Second)
Vector/Make Partition/by Intervals/Selected Thresholds [0.5]
Partition/Binarize Partition [1] % Outsiders
Partition/Copy to Vector
Operations/Network+Vector/Network*Vector [1]
Vector/Make Partition/by Intervals/Selected Thresholds [0.5]
Partition/Binarize Partition [2] % OutNeighbors
select Outsiders as the first and second partition
Partitions/Add (First+Second)
select OutNeighbors as the second partition
Partitions/Add (First+Second)
Operations/Network+Partition/Extract [1-*]
Operations/Network+Partition/Transform/Remove lines/Inside clusters [1]

This sequence is saved as the macro makePic. It expects the US Airports network as the
current network. To draw the network we select the last network and the last partition and run:

Draw/Network+First partition
Layout/Energy/Kamada-Kawai/Separate components

To improve the obtained picture some manual editing is needed.
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C Proofs
Proposition 1

(a) 0 ⊆ N [S] ⊆ V .

(b) N [V ] = V .

(c) W (S) = 1⇔ |N [S]| = n⇔ N [S] = V ⇔ S is a dominanting set.

(d) N(S1) ⊆ N(S2).

(e) trivial

Proposition 2

(a) in the paper.

(b) N(V ) \ V = ∅.

(c) S minimum dominating set⇒ |S| = γ ∧N [S] = V
|N [S] \ S| = |V \ S| = |V | − |S| = n− γ ⇒ W ∗(S) = 1

(d) S ⊆ N [S]⇒ |N [S] \ S| = |N [S]| − |S|
W ∗(S1)−W ∗(S2) = 1

n−γ (|N [S1]− |S1| − |N [S2] + |S2|) = 1
n−γ (|S2| − |S1|) > 0.

Proposition 3 k ≤ γ

(a) trivial.

(b) Wk1(S) = |N(S)\S|
n−k1 < |N(S)\S|

n−k2 = Wk2(S) .

(c) from Prop 3.b and Prop 2.a: Wk(S) < Wγ(S) = W ∗(S) ≤ 1 .

(d) trivial.

(e) see Prop 2.d.
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