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3.1 Introduction

Clustering and classification are two related activities sometimes used as synonyms. In
clustering the goal is to identify in a given set of units groups (clusters, classes) of (usu-
ally) similar units. In classification a given unit has to be assigned to the corresponding
(predefined) group. These two activities are embedded in our language and are therefore
basic for most of our daily tasks.

The earliest classification systems were taxonomies of animals and plants: Shen Nung,
China, ~3000 BC and Ebers Papyrus, Egypt, ~1500 BC. A theoretical framework was
proposed by Aristotle (384-322 BC). The taxonomic systems were improved by Linnaeus
(1707-1778), Darwin (1809-1882), DNA (1953) and PhyloCode (1998).

The first steps towards “numeric” clustering procedures were done in the first half of
20th century by defining different (dis)similarity measures such as Czekanowski coeffi-
cient (1909), coefficient of racial likeness (Pearson, 1926), generalized distance (Maha-
lanobis, 1936), etc. First methods were proposed inside biometrics and psychometrics by
Driver and Kroeber (1932), Forbes (1933), Zubin (1938), Sturtevant (1939) etc. Kruskal’s
minimum spanning tree algorithm (1956) was predated by unnoticed Bortivka (1926) and
Jarnik (1930) algorithms.
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The development of cluster analysis started in fifties and resulted in some fundamental
books: Sokal and Sneath: Principles of Numerical Taxonomy (1963) [52], Jardin and Sib-
son: Mathematical Taxonomy (1971) [37], Benzécri: L’analyse des données (1973) [13],
Anderberg: Cluster Analysis for Application (1973) [2], Hartigan: Clustering algorithms
(1975) [34] and later Jain and Dubes: Algorithms for clustering data (1988) [36] and Kauf-
man and Rousseeuw: Finding Groups in Data: An Introduction to Cluster Analysis (1990)
[41].

Two streams of clustering research emerged — inside pattern recognition and data analy-
sis. The data analytic stream was initially attached to psychometric community until 1985
when the IFCS (International Federation of Classification Socities) was established with
its own conference and journals Journal of classification (published by CSNA from 1984)
and Advances in Data Analysis and Classification (from 2007). Conference proceedings
are published in a Springer series Studies in classification, data analysis, and knowledge
organization. In ninities the interests of the clustering community extended to data analy-
sis and data science (Hayashi [35]). For details about the development of IFCS see Bock
[15]. At the turn of the millenium clustering was somehow absorbed also in data min-
ing as one of its constituents. In social network analysis clustering problem is known as
blockmodeling [24].

In this chapter we first present an optimization framework for a general clustering prob-
lem. In the second part we discuss clustering of networks and in networks.

3.2 Clustering

In data analysis we usually follow the scheme

real or imaginary world objects of analysis data analysis
CONCEPTS UNITS DESCRIPTIONS
{X} — X — X]
formalization operationalization
{ produced cars of type T } car of type T [ seats=4, max-speed=...]

A unit X € % is represented by a vector/description X = [X] = [x1,x2, ..., X from the
set [%] of all possible descriptions of units from space % . x; = V;(X) is the value of the
i-th of selected properties or variables on X. Variables can be measured on different scales:
nominal, ordinal, interval, rational, absolute [51]. In concrete analysis the set of units of
our interset U C % is (usually) finite, n = |U|.

There exist other kinds of descriptions of units: symbolic object [? ], list of keywords
from a text, chemical formula, node in a given graph, digital picture, etc.

3.2.1 Clustering problem

Let us start with the formal setting of the clustering problem. We shall use the following
notation: a nonempty subset of units C, @ C C C U, is called a cluster. A set of clusters,
C = {C;} , forms a clustering. ® denotes the set of feasible clusterings. A criterion
function, P: ® — R, evaluates the quality of a clustering.

With these notions we can express the clustering problem (®, P,min) as follows:
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Determine the clustering C* € & for which

" .
P(CY) = min P(C)

Since the set of units U is finite, the set of feasible clusterings is also finite. Therefore the
set Min(®, P) of all solutions of the problem (optimal clusterings) is not empty. (In theory)
the set Min(®, P) can be determined by the complete search. We shall denote the value of
criterion function for an optimal clustering by min(®, P).

Generally the clusters of clustering C = {C,C3,...,C;} need not to be pairwise dis-
joint; yet, the clustering theory and practice mainly deal with clusterings which are the
partitions of U

k
UG=U and i#j=CNC;=0
i=1

Each partition determines an equivalence relation in U, and vice versa. We shall denote the
set of all partitions of U into k clusters (classes) by P (U).

3.2.2 Criterion functions

The criterion function is usually constructed as follows. Joining the individual units into a
cluster C we make a certain “error”’, we create certain “’tension” among them — we denote
this quantity by p(C). A simple criterion function P(C) combines these “partial/local
errors” into a ”global error”. Usually it takes the form:

S. P(C) = Z p(C), or
ceC

M. P(C) = max p(C)

which can be unified and generalized in the following way: Let (R, ®, e, <) be an ordered
abelian monoid then:

®. P(C) =& p(C)

ceC

The cluster-error p(C) has usually the properties:
p(C)>0 and vXeU: p({X})=0

In the continuation we shall assume that these properties of p(C) hold.
Often also

p(CIUG) > p(Cr) @ p(Ca)

holds for disjoint clusters, C; NC> = 0. In such a case we have for simple criterion functions
min (P, U),P) < min(F(U),P) — we fix the value of k and set @ C P, (U).

To express the cluster-error p(C) we define on the space of units % a dissimilarity
d:U x % — Ry for which we require:

DI. VX € % :d(X,X) =0
D2. symmetric: VX, Y€ % :d(X,Y)=d(Y,X)
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Table 3.1: Dissimilarities on R™

n | measure definition range note
m
1 | Euclidean (xi —yi)? [0,00) | M(2)
m
2 | Sq. Euclidean Z(xi—y,) [0,00) | M(2)?
i=1
3 | Manhattan Z|x,- il [0,00) | M(1)
i=1
4 | rook mjélx |x; — yil [0,00) | M(0)
m
5 | Minkowski Y lxi—yil? | [0,00) | M(p)
i=1
m |Xl_y1|
6 | Canberra 0,00
,-; |xi+)7t| [ )
4 ‘x17)71|
7 | Heincke Y ( 2 | [0,00)
i=1 ‘xi+yi|
m PRp— .
8 | Self-balanced y i — il [0, 0)
&~ max (x;,y;)
m . —_ .
9 | Lance-Williams W [0,00)
Yl xityi
XY
10 | Correlation c. coviX,¥) [1,-1]

var(X)var(Y)
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Usually the dissimilarity d is defined using another dissimilarity & : [%] x [%] — R{
defined on unit descriptions as

d(X,Y) = 8([X],[Y])
The dissimilarity d is:
D3. even: VX,Ye :(dX,Y)=0=>VZec % :d(X,Z)=d(Y,Z))
D4. definite: VX, Y €% : (d(X,Y)=0=X=Y)
D5. metric: VX, Y,Z€ % :d(X,Y) <d(X,Z)+d(Z,Y) - triangle ineaquality
D6. ultrametric:  VX,Y,Z€ % :d(X,Y) < max(d(X,Z),d(Z,Y))

D7. additive, iff the Buneman’s or four-point condition holds VX, Y, U,V € % :
d(X,Y)+d(U,V) <max(d(X,U)+d(Y,V),d(X,V)+d(Y,U))

A dissimilarity d is a distance iff D4 and D5 hold. Since the description [ ] : U — [U] does
not need to be injective, d can be indefinite. Often a weaker form of definiteness holds:

VX, Y €% 1 (d(X,Y) =0 = [X] = [Y])

A dissimilarity d is selected according to the nature of the set of units descriptions [%]
and our analytic goals. Many examples of dissimilarities can be found in [21].

3.2.2.1 Dissimilarities on R™ In the standard case, X € R", many different dissimilar-
ities were proposed. Some of them are presented in Table 3.1.

3.2.2.2 (Dis)similarities onB" LetB = {0, 1}. For binary vectors X,Y € B"™ we define
a=XY,b=XY,c=XY,d=XY. Itholds a+b+c+d = m. The counters a,b,c,d
are used to define several resemblances — (dis)similarity measures on binary vectors. See
Table 3.2.

In some cases the definition can yield an indefinite expression %. In such cases we can
restrict the use of the measure, or define the values also for indefinite cases. For example,
we extend the values of Jaccard coefficient such that s4(X,X) = 1. And for Kulczynski

coefficient, we preserve the relation 7 = i —1by
0 a=0,d=m
1 d=m _1
S4 = a therwi s =1 = o a=0,d<m
—4—  otherwise : .
athte bte  otherwise

We can transform a similarity s from [1,0] into dissimilarity d on [0,1] by d = 1 —s. For
details see [8].

3.2.2.3 Dissimilarities between sets Let .7 be a finite family of subsets of the finite
setU; A,Be.# andlet A®B = (A\ B)U(B\A) denote the symmetric difference between
A and B. The ’standard’ dissimilarity between sets is the Hamming distance:

dy(A,B) :=card(A® B)
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Table 3.2: (Dis)similarities on B™

n | measure definition range
1 | Russel and Rao (1940) ° [1,0]
2 | Kendall, Sokal-Michener (1958) % [1,0]
3 | Kulczynski (1927), T~} = [o0,0]
4 | Jaccard (1908) aThre [1,0]
5 | Kulczynski 325+ L) [1,0]
6 | Sokal & Sneath (1963), uny Lo+t + 2+ 25 | [1,0]
7 | Driver & Kroeber (1932) m [1,0]
8 | Sokal & Sneath (1963), uns \/(a+b)(a+lj:(;(d+b)(d+c) [1,0]
9| Qo b [0, 0]
10 | Yule (1927), Q ad—be [1,-1]
ad—bc _
11| Pearson, ¢ V(@tb)ate)(drb)dre) [, -1]
12 | —bc— e [0,1]
13 | Baroni-Urbani, Buser (1976), §** % [1,0]
14 | Braun-Blanquet (1932) m [1,0]
15 | Simpson (1943) @b aTo [1,0]
16 | Michael (1920) Had—be) [1,—1]
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Other, normalized to [0, 1], dissimilarities between sets are

_ card(A®B) _card(A®B)  card(ANB)
ds(4,8) = card(A) + card(B) du(A,B) = card(AUB) ~ card(AUB)
d(ALB) — max(card(A \ B),card(B\ A))

max(card(A),card(B))
For all these dissimilarities d(A,B) =0if A=B = 0.

3.2.2.4 Equivalent resemblances Resemblances r and s are (order) equivalent, r = s,
iff they induce the same or reverse ordering in the set of unordered pairs of units, i.e., iff

VXY, U,V €% : (r(X,Y) < r(U,V) & (s(X,Y) < 5(U,V))

" VXY, U,V e : (r(X,Y) < r(U,V) & (s(X,Y) > s(U,V)).

3.2.2.5 Transformations Dissimilarities usually take values in the interval [0, 1] or in
the interval [0, 0]. They can be transformed one into the other by mappings:

d d
— 10,1 oo — 1[0, 1
or in the case dy;qx < o0 by
d
2 [0, dpmax] — [0,1].
dmax

To transform a distance d into another distance we often use the mappings:
log(14+d), min(l,d) and d",0<r<1.

Not all resemblances are dissimilarities. For example, the correlation coefficient has the
interval [1,—1] as its range. We can transform it to the interval [0, 1] by mappings:

1
E(l_d)’ V1—d?, 1-|d|, etc.

When applying these transformations to a measure d we wish that the nice properties of d
were preserved. In this respect the following theorems should be mentioned.

Proposition 3.1 Let d be a dissimilarity on % and let a mapping f: d(% x %) — R{
has the property f(0) =0, then d'(X,Y) = f(d(X,Y)) is also a dissimilarity.

Proposition 3.2 Ler d be a distance on % and let the mapping f: d(% x %) — R has
the properties:

(a) f(x)=0x=0,

(b) x<y= f(x) <f(y),

(c) flx+y) < fx)+f(),

then d'(X,Y) = f(d(X,Y)) is also a distance and d’ = d.

All concave functions have also the sub-additivity property (c). The following concave
functions satisfy the last theorem:
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(@ f(x)=oax, >0, (b) f(x)=1log(1+x), x>0,
© f(x)=15, x>0, (d f(x) =min(1,x),
e flx)=x*0<a<l, ()  f(x)=arcsinx, 0 <x< 1.

Proposition 3.3 Letd: % X % — R has the propertyDi, i =1, ...,7, then f(d), f € (a)-(f)
also has this property.

Proposition 3.4 (Joly and Le Calvé, 1986 [38]) For each (nonnegative) dissimilarity mea-
sure d there is a unique nonnegative real number p, called metric index, such that d* is a
metric for all o« < p, and d% is not a metric for all o > p.

Therefore, if a dissimilarity d is not metric, it can be transformed into it using the power
transformation.

3.2.2.6 Problems with dissimilarities What to do in the case of mixed units with vari-
ables measured on different types of scales? Two approaches are usually used:

» conversion to a common type of measurement scale (see Anderberg [2]);

» compute selected dissimilarities on homogeneous parts and combine them. See for
example Gower’s dissimilarity [32].

In both cases we have to consider the fairness of dissimilarity — all variables contribute
equally. A partial solution to this problem is to use the normalized variables. We can also
consider the dependencies among variables, such as in the Mahalanobis distance [56].

3.2.3 Cluster-error function / examples

Now we can define several types of cluster-error functions:

S. p(C) = ;X Yw(x)-w(y) -d(X,Y)

= 1

S. p(C) = w(X)-w(Y)-d(X,Y)

w(C) X,YEC,X<Y
where w : % — R™ is a weight of units, which is extended to clusters by:
w({X}) = w(X), Xew
W(C1UC2) ZW(C1>+W(C2), CinC,=0
Often w(X) = 1 holds for each X € % . Then w(C) = card(C).
M. p(C) = max d(X,Y) = diam(C) — diameter
X,YeC

T. p(C) = min Y dX)Y)

T is a spanning tree over C (XY)eT

We shall use the labels in front of the forms of (cluster-) criterion functions to denote
types of criterion functions. For example:

SM. P(C) = dX,Y
(©)= ¥y dx.Y)
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It is easy to prove:

Proposition 3.5 Let P € {SS,SS, SM,MS,MS,MM} then there exists an af (U) > 0 such
that for each C € P(U) holds:

P(C) > of (U)- d(X,Y).
(C) > oy ( )glgg)gg{agc (X,Y)

Note that this inequality can be writen also as P(C) > o (U) - MM(C).
The criterion function P(C), based on a dissimilarity d, is sensitive iff for each feasible
clustering C it holds

P(C)=0<=VYCeCVX,YEC:d(X,Y)=0
and is o-sensitive iff there exists an & (U) > 0 such that for each C € P(U) :
P(C) > of (U)-MM(C)
Proposition 3.6 Every o-sensitive criterion function is also sensitive.

Proposition 3.5 can be reexpressed as:
Proposition 3.7 The criterion functions SS,SS,SM,MS,MS, MM are o-sensitive.

Another form of cluster-error function, which is frequently used in practice, is based on
the notion of a leader or representative of the cluster C:

R. p(€)=pip ¥ w(X) d(X.1)

where F C % is the set of representatives. The element C € F, which minimizes the right
side expression, is called the representative of the cluster C. It is not always uniquely
determined.

Proposition 3.8 Ler p(C) be of type R then

a)  p(C)+w(X)-d(X,CU{X}) < p(CU{X}),  X¢C
b)  p(C\{X})+w(X)-d(X,C) < p(C), Xecl

3.2.3.1 The generalized Ward'’s criterion function. To obtain the generalized Ward’s
clustering problem we, relying on the equality
1

=Y &ZXC)=-—— d3(X,
p(C) ch Z(X C) 2C211'd(C) X;éc Z(X Y)

replace the expression for p(C) with

Note that d can be any dissimilarity on % .
From the definition we can easily derive the following equality: If C,, NC, = 0 then

w(C,UG,y) - p(C,UC,) = w(Cy) - p(Cy) +w(Cy) - p(Cy) + Z w(X) -w() -d(X,Y)
XeC,,YeC,
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In [5] it is also shown how to replace C by a generalized, possibly imaginary (with de-
scriptions not neccessary in the same set as %), central element in the way to preserve the
properties characteristic for Ward’s clustering problem.

Let % * denote the space of units extended with generalized centers. The generalized
center of cluster C is called an (abstract) element C for which the dissimilarity between it
and any U € % * is determined by

d(U,T) = d(C,U) — W(1C)<chw<x> -d(X,U) ~ p(C))

When for all units w(X) = 1, the right part of the definition can be read: the average dis-
similarity between unit/center U and cluster C diminished by the average radius of cluster
C.

Suggestion: For each dissimilarity find its metric index p and in the generalized Huy-
gens theorem use d if p > 1, otherwise (if p < 1) use d”.

For the generalized Ward’s criterion function the generalized Huygens theorem holds:

Proposition 3.9
It =1y +1p
where |
Ir = p(U) = w(X)-w(Y)-d(X,Y)
2w(U) X,YeU
Iy = Z p(C) and  Ip= Z w(C)-d(C,U)
ceC ceC

For a given set of units U the value of their “total inertia” Ir is fixed. Therefore min-
imazing the “standard” criterion function (within inertia) Iy we are also maximazing the
function (between inertia) Ip — the traditional definition of clustering problem.

3.2.3.2 Other criterion functions. Several other types of criterion functions were pro-
posed in the literature. A very important class among them are the ’statistical” criterion
functions based on the assumption that the units are sampled from a mixture of multivariate
normal distributions [45] .

Not all clustering problems can be expressed by a simple criterion function. In some
applications a general criterion function of the form

PIC)= P qC.G), q(C1,6)>0
(C],Cz)ECXC

is needed. We use it in the optimization approach to blockmodeling [24].

In some problems several criterion functions can be defined (®, P}, P, ..., P;) and the
clustering problem is formulated as multicriteria clustering problem [28].

Note that for a criterion function of type SS we have a similar situation as in the gener-
alized Huygens theorem:

Proposition 3.10
Pr =Py +Pg
where, denoting p(C,D) = Yxccyepd(X,Y)

ceC C,DeC
C#D
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3.2.3.3 Partitioning of a generation of pupils into a given number of classes. As
a kind of nontraditional clustering problem in which the clusters are not characterized as
“groups of similar units” let us consider the problem of partitioning of a generation of
pupils into a given number of classes so that the classes will consist of (almost) the same
number of pupils and that they will have a structure as similar as possible. An appropriate
criterion function is

P(C) = max min  maxd(X, f(X
( ) {C1.G)eCxC  fiC1—=Cy  XEC ( ’f( ))
card(Cy)>card(Cy) f is surjective

where d(X,Y) is a measure of dissimilarity between pupils X and Y.

3.2.4 Compilexity of the clustering problem

Because the set of feasible clusterings @ is finite the clustering problem (®,P) can be
solved by the brute force approach inspecting all feasible clusterings. Unfortunately, the
number of feasible clusterings grows very quickly with n. For example

1 k—1

card(P) = S(n,k) = — Z(—l)’(

k=

’f)(k—i)'z 0<k<n

1

where S(n,k) is a Stirling number of the second kind. For this reason the brute force
algorithm is only of theoretical interest.

We shall assume that the reader is familiar with the basic notions of the theory of com-
plexity of algorithms [30]. Although there are some types of clustering problems of poly-
nomial complexity, for example (P,,MM) and (F;,ST), it seems that they are mainly NP-
hard. Brucker [17] showed that ( o< denotes the polynomial reducibility of problems [30])

Theorem 3.11 Let the criterion function

P(C) =P r(0)

ceC

be a-sensitive, then for each problem (P,(U), P) there exists a problem (P11 (U'),P), such
that (P(U), P) o< (Pt (U'), P).

Theorem 3.12 Let the criterion function P be sensitive then 3-COLOR o< (P3,P).

Note that, by Theorem 3.11, (P, MM), k > 3 are also NP-hard, etc.

The complexity results for some types of clustering criterion functions are summarized
in Table 3.3.

From these results it follows (it is believed) that no efficient (polynomial) exact algo-
rithm exists for solving the clustering problem. Therefore the procedures should be used
which give ”good” results, but not necessarily the best, in a reasonable time. In the follow-
ing section we present some standard approaches for solving clustering problem.
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Table 3.3: Complexity of clustering problems

Polynomial | NP-hard | note

(P,,MM) (P3,MM) | Theorem 3.12
(P3,SM) | Theorem 3.12
(P»,SS) MAX-CUT o< (P5,SS)
(P, SS) (P,,SS) o (P,,SS)
(P,,MS) | PARTITION o< (P,,MS)

(Ry.SS)

(R},SS)

(R}, SM)

(R}, MM)

3.3 Approaches to Clustering

3.3.1 Local optimization

Often for a given optimization problem (&, P, min) there exist rules which relate to each el-
ement of the set ® some elements of ®. We call them local transformations. The elements
which can be obtained from a given element are called neighbors — local transformations
determine the neighborhood relation S C @ x ® in the set ®. The neighborhood of element
X € @ is called the set S(X) = {Y: XSY} . The element X € @ is a local minimum for the
neighborhood structure (®,S) iff

VY € S(X) : P(X) < P(Y)

In the following we shall assume that S is reflexive, VX € ® : X §X.
The relation S is a basis of the local optimization procedure

select Xg; X := Xp;
while 3Y € S(X): P(Y) < P(X)do X:=Y;

which starting in an initial element Xy € ® repeats moving to an element, in its neighbor-
hood determined by local transformation, which has better value of the criterion function
until no such element exists. To get good solution we repeat the procedure many times
with random initial element X and keep the best solution found.

3.3.1.1 Clustering neigborhoods. Usually the neighborhood relation in local opti-
mization clustering procedures over P,(U) is determined by the following two transfor-
mations:

= fransition: clustering C’ is obtained from C by moving a unit X; € C, from one cluster,
C,, to another, C,,

C = (C\{C,,C,}) U{C,\ {X,},C, U{X,}}
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* transposition: clustering C’ is obtained from C by interchanging two units, X, € C,
and X, € C,, from different clusters

C' = (C\{C, G} UGN {Xp D U} (CA{X D U {Xp 1}

The transpositions preserve the number of units in clusters. The local optimization based
on transitions and/or transpositions is usually called the relocation method.

Using Proposition 3.8 we can prove the following important property of the minimal
solutions of the clustering problem (P, SR, min):

Proposition 3.13 [n the locally with respect to transitions minimal clustering for the prob-

lem (P, SR, min) B
SR. P(C)=) ) w(X)-d(X,C)
CeCXeC
each unit is assigned to the nearest representative: Let C*® be locally with respect to tran-
sitions minimal clustering then it holds:

VC, € C* VX € C, VC, € C*\ {C,} : d(X,C,) <d(X,Cy)

Two basic implementation approaches are usually used: sfored data approach and stored
dissimilarity matrix approach.

If the constraints are not too stringent, the relocation method can be applied directly on
®; otherwise, we can transform using penalty function method the problem to an equivalent
nonconstrained problem (P, Q, min) with Q(C) = P(C) + aK(C) where @ > 0 is a large
constant and K(C) = 0, for C € @, and K(C) > 0 otherwise.

There exist several improvements of the basic relocation algorithm: simulated anneal-
ing, tabu search, etc. [1].

3.3.1.2 Testing P(C') < P(C) is equivalent to P(C) — P(C’) > 0. For the S criterion
function
AP(C,C') = P(C) - P(C') = p(Cu) + p(C,) — p(C,) — p(C)

Additional simplifications can be done considering relations between C, and C},, and be-
tween C, and C,.

Let us illustrate this on the generalized Ward’s method. For this purpose it is useful to
introduce the quantity

a(Cva) = Z W(X) ! W(Y) : d(X, Y)
XeCy,YEC,
Using the quantity a(C,,C,) we can express p(C) in the form p(C) = CE(WC(CC)) and the equality
mentioned in the introduction of the generalized Ward clustering problem: if C,NC, =0
then

w(C,UC,) - p(C,UC,) =w(C,) - p(Cy) +w(Cy) - p(Cy) +a(Cy, Cy)

Let us analyze the transition of a unit X, from cluster C, to cluster C,. We have C, =
C\{Xs}, G =CU{X},

w(Ca) - p(Cu) =w(C,) - p(C) +a(Xs,C) = (w(C) —w(Xs)) - p(C,) +a(X,, C,)

and
W(CL) 'P(CC) =w(G) p(G) +a(Xs,Cy)
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From d(X;, X;) = 0 it follows a(Xy,C,) = a(X;,C,,). Therefore

w(Cy) - p(Cy) — a(Xs,Cy)
W(CL ) - W(XS)

W(Cv) . p(CV) +a(Xsan)
w(Cy) +w(X;)

p(C,) = p(C) =
and finally
AP(C,C') = p(C) +p(Cy) = p(C,) — P(C)) =

_ W(Xs) : p(Cv) - a(XA\‘an) W(X\) : p(Cu) - a(XsaCu)

w(Cy) +w(X) w(C,) —w(X;)

In the case when d is the squared Euclidean distance it is possible to derive also expression
for corrections of centers [53].

3.3.2 Dynamic programming

Suppose that Min(®y, P) # 0, k = 1,2,.... Denoting P*(U, k) = P(C;(U)) we can derive
the generalized Jensen equality [10]:

p(U) {U} e &
P*(Uk) = min (P*(U\C,k—1)@p(C)) k> 1

0cCccU
3ICedy_ 1 (U\C):CU{C}ed; (U)

This is a dynamic programming (Bellman) equation which, for some special constrained
problems, that keep the size of ®; small, allows us to solve the clustering problem by the
adapted Fisher’s algorithm [10].

3.3.3 Hierarchical methods

The set of feasible clusterings ® determines the feasibility predicate ®(C) = C € ® defined
on Z(2(U)\ {0}); and conversely ® = {C € Z(Z(U)\ {0}) : (C)}.
In the set ® the relation of clustering inclusion C can be introduced by

CICC=VCeC,GeCr: NG €{0,C1}

we say also that the clustering C; is a refinement of the clustering C,.

It is well known that (P(U),C) is a partially ordered set (even more, semimodular
lattice). Because any subset of partially ordered set is also partially ordered, we have: Let
@ C P(U) then (®,C) is a partially ordered set.

The clustering inclusion determines two related relations (on P):

CiCcG=CCCAC #C, — strict inclusion, and
CEC,=CiCCGA-ICeD: (CCCACECy) — predecessor.

Part of the following text we presented already in Section 9.3 of our book [11]. We
include it also here to make the text self contained. We shall assume that the set of feasible
clusterings @ C P(U) satisfies the following conditions:

F1. 0={{X}:XeU}e®
F2. The feasibility predicate ® is local — it has the form ®(C) = Accc @ (C) where ¢(C)
is a predicate defined on &?(U) \ {0} (clusters). The intuitive meaning of ¢(C) is: ¢(C) =

the cluster C is good’. Therefore, the locality condition can be read: a ’good’ clustering
C € ® consists of "good’ clusters.
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F3.  The predicate ® has the property of binary heredity with respect to the fusibility
predicate y(C1,C»), i.e.,
CiNG =0 @(C1) N Q(C2) AY(C1,C2) = 9(CLUG)

This condition means: in a *good’ clustering, a fusion of two ’fusible’ clusters produces a
’good’ clustering.

F4. The predicate y is compatible with clustering inclusion C, i.e.,
VC,Cr €®: (Ci = CrACI\C, ={C,C} = w(C1,Co) V y(Cr,Cy))
F5. The interpolation property holds in @, i.e., VC;,Cp, € D:
(CiC CyAcard(Cy) >card(Cy)+1=3Ced®: (C;CCACLC Cy))

These conditions provide a framework in which the hierarchical methods can be applied
also for constrained clustering problems ®;(U) C P,(U). In the ordinary problem both
predicates ¢(C) and y(C,,C,) are always true — all conditions F1-F5 are satisfied.

3.3.3.1 Greedy approximation. We shall call a dissimilarity between clusters a func-
tion D : (Cy,C2) — Ry which is symmetric, i.e., D(C},C2) = D(C,,C)).

Let (R}, ®,e,<) be an ordered abelian monoid. Then the criterion function P(C) =
Dcecp(C), ¥X € U: p({X}) = 0 is compatible with dissimilarity D over & iff for all
C C U holds:

C)Acard(C) > 1 C)= i C C D(Cy,C
P(O) Aeard(C)>1=p(C) = min - (p(C)©p(C2) BD(CI,C))

Proposition 3.14 An S criterion function is compatible with dissimilarity D defined by
D(Cp,Cq) = p(CrUCq) — p(Cp) — p(Cy)
In this case, let C' = C\ {C,,,C,} U{C,UC,}, Cp,,C, € C, then
P(C") = P(C)+D(Cp,Cy)

Proposition 3.15 Let P be compatible with D over ®, & distributes over min, and
F1 —F5 hold, then

P(Cy) = Jin P(C) = “ »nglcl%))kﬂ (P(C)®D(C1,(2))
L4 )

The equality from Proposition 3.15 can also be written in the form

P(C;) = Cg}ggl (PIC)& (min, D(C1,(y))
v(C1.C7)

from where we can see the following ’greedy’ approximation:

P(C})~P(C;.;)® min
(C)=P(Cy) @ min
v(C1.C)

D(ChCz)

which is the basis for the agglomerative (binary) procedure for solving the clustering prob-
lem.
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3.3.3.2 Agglomerative methods

1. k:=n; C(k) :={{X}:Xe U}
2. while 3C;,C; € C(k): (i # jAy(C;,Cj)) repeat

2.1. (Cp,Cy) := argmin{D(C;,Cj): i # jAW(C;,Cj)};
2.2. C:=CoUC; k:=k—1;

2.3. C(k):=C(k+1)\{C,,C,} U{C};

2.4. determine D(C,Cy) for all C; € C(k)

3. m:=k

Note that, because it is based on an approximation, this procedure is not an exact procedure
for solving the clustering problem.

For another, probabilistic view on agglomerative methods see [39].

Divisive methods work in the reverse direction. The problem here is how to efficiently
find a good split (C,,C,) of the cluster C.

In derivations of between cluster dissimilarity D(C,,C,) for different “classical” ag-
glomerative methods we shall use the generalized Ward’s cluster error function p(C) and
generalized centers [5].

Minimal: D"'(C,,C,) = min d(X,Y)

XeCuYeC,
Maximal: DY(C,,C,) = max d(X,Y)
XeCyYeC,
1
Average: D(C,,C,) = —————~ w(X) -w(Y)-d(X,Y)
o w(Cy)w(Cy) XeC, YEC,

S
2

_ G
Gower-Bock: DO(Cy,Cy) = d(Ca Co) = D(CasCy) — LG

_ w(C,)w(C,)
w(C,UC))
Inertia: D'(C,,C,) = p(C,UC,)

Variance: DV (Cy,Cy) = var(C,UC,) =

Ward: DV (C,,C,) D%(C,,C))
p(C,UGC)

w(C,UCy)
Weighted increase of variance:

w(C,) - var(C,) +w(C,) -var(C,)  DY(C,,C,)

DV(CL[,CV) = var(CMUCv) - W(C ucC ) - W(C UcC, )
u v u v

For all of them Lance-Williams-Jambu formula holds:

D(C,UCy,Cs) = aiD(Cp,Cy) +aD(Cy,Cs) +BD(Cy,Cp) +
FHD(CypCy) — DICyCy)| + 8iv(Cy) + Bov(Cy) + B59(C)

The coefficients o, 0, B, v and § are given in Table 3.4.

3.3.3.3 Hierarchies. The agglomerative clustering procedure produces a series of fea-
sible clusterings C(n), C(n—1), ..., C(m) with C(m) € Max ® (maximal elements for C).
Their union 7 = |J;_,, C(k) is called a hierarchy and has the property

v¥C,,C, € T :C,NC, €{0,C,,C,}

The set inclusion C is a free or hierarchical order on 7. The hierarchy .7 is complete iff
UeJ.
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Table 3.4: Lance-Williams-Jambu coefficients

method o o0 B y 5, W(G)
minimum i i 0 —1 0 _
maximum i 3 0 ! 0 _
w W,
average —£ | L 0 0 0 _
& Wpq Wpq
w W, wpw,
Gower-Bock | —£& | -4 | —=b~4 0 0 _
Wpq Wpq Wig
Wps | MWas w _
Ward o | W Vo 0 0
. . Wps Wgs Wpq Wy
inerti _
ertia Wpgs Wpas Wpgs 0 Wpgs p (Cl )
2 2 2
w W w
. s qs bq W
vatiance WT WT W2 0 - WZ p(CI)
pgs pqs Pags Bas
2 2
i 4 w W, Wsw
w.1. variance g | e 0 0 .
WP’I‘V qux wpq.r

wp =w(Cp), Wpg = w(CpUCy), Wpgs = w(CpUC UC)

For W C U we define the smallest cluster C7 (W) from .7 containing W as:

cl. WCCr(W)
2. VCeT:(WCC=Cs(W)CC(C)

Cz is a closure on J with a special property

Z¢C7({X,Y}) = Cs({X,Y}) CC7({X,Y,Z}) = C7({X,Z}) = C7({Y,Z})
A mapping h: 7 — R is a level function on T iff

1. VXeU:h({X})=0
2. C,CC,= h(C,) <h(C,)

A simple example of level function is #(C) = card(C) — 1.
Every hierarchy / level function determines an ultrametric dissimilarity on U

5(X,Y) =h(C7({X,Y}))

The converse is also true (see [23]): Let d be an ultrametric on U. Denote a closed ball in
X with radius r with B(X,r) = {Y € U:d(X,Y) < r}. Then for any given set A C R" the
set

CA)={B(X,r):XeU,reA}U{{U}}U{{X}: X e U}

is a complete hierarchy, and %(C) = diam(C) is a level function.

The pair (7, h) is called a dendrogram or a clustering tree because it can be visualized
as a tree.

Unfortunately, the function 4p(C) = D(Cp,C,), C = C, UC, is not always a level func-
tion — for some Ds the inversions, D(Cp,Cq) > D(C, UCy,Cs), are possible. Batagelj
showed [4]:

Proposition 3.16 hp is a level function for the Lance-Williams procedure (o, ap, 3, 7)

iff:
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(i) Y-+min(a, ) >0
(ii) a+a; >0
(iii) o+om+p>1

The dissimilarity D has the reducibility property iff
D(C,,C,) <t, D(C,,Cs) > t, D(C;,Cs) >t = D(C,UC,,Cs) >t

Proposition 3.17 (Bruynooghe, 1977) If a dissimilarity D has the reducibility property
then hp is a level function.

In the book [11] (Subsection 9.3.5) we presented a fast agglomerative clustering proce-
dure based on the nearest neighbor graph for dissimilarities that have reducibility property.

3.3.4 Adding hierarchical methods

Suppose that we already built a clustering tree 7 over the set of units U. To add a new
unit X into the tree .7 we start in the root and branch down. Assume that we reached the
node corresponding to cluster C, which was obtained by joining subclusters C), and C,,
C = CpUC,. There are three possibilities: or to add X to Cp, or to add X to Cy, or to form
anew cluster {X}. See Figure 3.1.

Consider again the ’greedy approximation’

P(C}) = P(Ciyy) +D(Cp, Cy)

where D(C,,C,) = ming, c,ecs,, D(C,,C,) and C? are greedy solutions. Since we wish to
minimize the value of criterion P it follows from the greedy relation that we have to select
the case corresponding to the maximal among values D(C, U{X},C,), D(C,U{X},C))
and D(C, UC,,{X}).

This is a basis for the adding clustering method. We start with a tree on the first two
units and then successively add to it the remaining units. The unit X is included into all
clusters through which we branch it down.

3.3.5 Leaders method

In order to support our intuition in further development we shall briefly describe a simple
version of dynamic clusters method — the leaders or k-means method [34; 22] which is a
basis of several recent ’data-mining’ and ‘big data’ methods. In the leaders method the
criterion function has the form SR. The basic scheme of leaders method is simple:

select Cy; C := Cy;
repeat

determine for each C € C its leader C;

the new clustering C is obtained by assigning each unit to its nearest leader
until leaders stabilize

To obtain a *good’ solution and an impression of its quality we can repeat this procedure
with different (random) Cy.
The dynamic clusters method is a generalization of the above scheme. Let us denote:

A — set of representatives
LCA — representation
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\ cux
Cp C,
CuX CuX
l—‘—l l—‘—l ® ®
Cp ¢ X
C,uX (o Cp C,UX

Figure 3.1: Adding hierarchical method

v — set of feasible representations
W:dx¥— Rg — extended criterion function
G:PxY¥Y =Y  —representation function
F:dxW¥Y—® - clustering function

and the following conditions have to be satisfied:
WO. P(C) = mil’lLE\y W(C,L)

the functions G and F tend to improve (diminish) the value of the extended criterion func-
tion W:

W1. W(C,G(C,L)) <W(C,L)
W2. W(F(C,L),L) <W(C,L)

then the dynamic clusters method (DCM) can be described by the scheme:

select C:= Cy; L:=Ly;

repeat
L:=G(C,L);
C:=F(C,L)

until the clustering C stabilizes
To this scheme corresponds the sequence v, = (C,,L,),n € N determined by relations
Ln+1 :G(Cn,Ln) and Cn+1 :F(Cn,Ln+])

and the sequence of values of the extended criterion function u, = W(C,,L,). Let us also
denote u* = P(C*). Then it holds:

Proposition 3.18 For every n € N, u,y1 < uy,, u* < u,, and if for k > m, vy = vy, then
Yn>m:u, = uy.
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Proposition 3.18 states that the sequence u, is monotonically decreasing and bounded,
therefore it is convergent. Note that the limit of u, is not necessarily #* — the dynamic
clusters method is a local optimization method.

Two types of sequences v, are possible: m

Type A: =dk,m e Nk > m vy =vy,
Type B: dk,m e Nk > m vy = vy,
Type By: Type B with k =m 41 /j{

A B B,
For DCM to be an algorithm the corresponding sequences v, should be of type B. The
DCM sequence (vy) is of type B if

» sets @ and ¥ are both finite. For example, when we select a representative of C among
its members.

* 360>0:VneN: (vyy1 £ vy = up —upy1 > 0)

Because the sets U and consequently & are finite we expect from a good dynamic clus-
ters procedure to stabilize in finite number of steps — is of type B.

The conditions W0, W1 and W2 are not strong enough to ensure this. We shall try to
compensate the possibility that the set of representations W is infinite by the additional
requirement:

W3. W(C,G(C,L)) =W(C,L)=L=G(C,L)

With this requirement the ’symmetry’ between ® and ¥ is distroyed. We could reestablish
it by the requirement:

Ww4. W(F(C,L,L))=W(C,L)=C=F(C,L)
but it turns out that W4 often fails. For this reason we shall avoid it.

Proposition 3.19 If W3 holds and if there exists m € N such that u,;+1 = wy, then also
Lm+1 = L.

Usually, in the applications of the DCM, the clustering function takes the form F :
Y — @. In this case the condition W2 simplifies to: W(F(L),L) < W(C,L) which can be
expressed also as F (L) € Mincee W (C,L). For such, simple clustering functions it holds:

Proposition 3.20 If the clustering function F is simple and if there exists m € N such that
Ly+1 = Ly, then for everyn > m: v, = vy,

What can be said about the case when G is simple — has the form G : & — W?

Proposition 3.21 If W3 holds and the representation function G is simple then:

a. G(C)=argmincy W(C,L)

b.  JkmeNk>mVieN:v ;i =vps

c. dImeNVYn>m:u, =u,

d. ifalso F is simple then Am € NVn > m v, = vy,

In the original dynamic clusters method [22] both functions F and G are simple — F :
¥Y—->PandG: P — VY.
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If also W3 holds and the functions F and G are simple, then:

GO0. G(C) = argmin; .y W(C,L)
and
FO. F(L) € Minceo W(C,L)

In other words, given an extended criterion function W, the relations GO and FO define an
appropriate pair of functions G and F such that the DCM stabilizes in finite number of
steps.

3.4 Clustering of Graphs and Networks

When the set of units U consists of graphs (for example chemical molecules) we speak
about clustering of graphs (networks). For this purpose we can use standard clustering ap-
proaches provided that we have an appropriate definition of dissimilarity between graphs.

The first approach is to define a vector description [G] = [g1,82,...,8m] of each graph
G, and then use some standard dissimilarity 6 on R™ to compare these vectors d(G,Gz) =
0([G1],[G2]). We can get [G], for example, by:

» Invariants: compute the values of selected invariants (indices) on each graph [54].

= Fragments count: select a collection of subgraphs (fragments), for example triads,
and count the number of appearences of each — a fragments spectrum [6; 50].

Let Gph be the set of all graphs. An invariant of a graph is a mapping i: Gph — R
which is constant over isomorphic graphs

G~H= i(G)=i(H)

The number of nodes, the number of arcs, the number of edges, maximum degree A, chro-
matic number J, etc. are all graph invariants. Invariants have an important role in examin-
ing the isomorphism of two graphs. To prove that G is not isomorphic to H it is enough to
find an invariant i such that i(G) # i(H).

Invariants on families of graphs are called structural properties: Let # C Gph be a
family of graphs. A property i: .% — R is structural on F iff

VG, He 7 : (GrH=i(G)=iH))
A collection .# of invariants/structural properties is complete iff
(Vie #:i(G)=i(H)=G~H

In most cases (families of graphs) there is no efficiently computable complete collection.
Different dissimilarities between strings are based on transformations: insert, delete,
transpose [44; 40]. For binary trees Robinson considered a dissimilarity based on the
transformation of neighbors exchange over an edge (see Figure 3.2).
There is a natural generalization of this approach to graphs and other structured objects
[6]: Let 7 = {T;} be a set of basic transformations of units T, : % — % andv: T x U —
R™ a value or cost of transformation, which satisfy the conditions:

VT e 7 (T:X=Y=35€¢.7:(S:Y—XAv(T,X)=v(S,Y)))



72 CLUSTERING APPROACHES TO NETWORKS

Figure 3.2: Neighbors exchange over an edge
Gl. o <> o o
o e

e

Figure 3.3: Examples of transformations

and v(id,X) = 0.
Suppose that for each pair X,Y € % there exists a finite sequence © = (71,T,...,T;)
such that: 7(X) =T,oT;—10...0T;(X) =Y. Then we can define:

d(X,Y) = min(v(¢(X)) : 7(X) = Y)

where

0 T=id
v(z(X)) = { B
v((T(X)+v(T.X) T=noT

It is easy to verify that so defined dissimilarity d(X,Y) is a distance.

For example, see Figure 3.3, using the transformations G1 and G2 we can transform
any pair of connected simple graphs one to the other. For triangulations of the plane on n
nodes S is such a transformation.

3.5 Clustering in Graphs and Networks

Since in a graph G = (V, L) we have two kinds of objects — nodes and links we can speak
about clustering of nodes and clustering of links. Usually we deal with clustering of nodes.

3.5.1 Indirect approach

Again we can use the standard clustering methods provided that we have an appropriate
definition of dissimilarity between nodes. The usual approach is to define a vector descrip-
tion [v] = [t1,12,...,t,] of each node v € V, and then use some standard dissimilarity § on
R™ to compare these vectors d(u,v) = 8([u], [v]).
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We can assign to each node v also different neighborhoods, such as N(v) = {u € V :
(v,u) € L}, and other sets. In these cases the dissimilarities between sets are used on them.

For a given graph G = (V,L) a property ¢ : V — R is structural iff for every automor-
phism ¢ of G it holds

YweV:t(v)=t(e(v))
Examples of such properties are

t(v) = degree (number of neighbors) of node v
t(v) = number of nodes at distance d from node v
t(v) = number of triads of type x at node v

t(v) = number of graphlets of type x at node v [50]
For a given graph G = (V, L) a property of pairs of nodes q : V XV — R is structural if
for every automorphism ¢ of G it holds
Vu,v €V q(u,v) = q(@(u), 9(v))
Some examples of structural properties of pairs of nodes

q(u,v) = if (u,v) € L then 1 else 0
q(u,v) = number of common neighbors of units # and v
q(u,v) = length of the shortest path from u to v

Using a selected property of pairs of nodes g we can describe each node u with a vector

[u] = [q(uvvl)7Q(u7v2)v'"7q(uﬂvn)7Q(Vlvu)v"'7Q(anu)]

and again define the dissimilarity between nodes u,v € V as d(u,v) = 8([u],[v]).
Corrected dissimilarities based on properties of pairs of nodes for measuring the simi-

larity between nodes v; and v; (p > 0) should be used [24] such as:

Corrected Manhattan:

n

de(p)vi,vi) = Y (lqis — qjs| + gsi — as;1) + P~ (|gi — a1 + |aij — q;i)
s=1

S

Corrected Euclidean:

de(p)(vi,vj) = Zn: ((gis — qjs)* + (gsi — qs5j)?) + p- ((qi — 9;)* + (qij — 9i)*)
;l

The corrected dissimilarities with p = 1 are usually used.

3.5.2 Direct approach — blockmodeling

A partition C = {C;} splits the set of links (arcs) L C V x V into blocks Bjj = LNC; x C;j
— a subgraph of arcs from cluster C; to clusterC;. In blockmodeling we are trying to find
a partition that produces blocks of selected types (complete, empty, regular, etc.), may be
with some errors [24]. Usually the relocation method is used for solving the corresponding
optimization problems.

In terms of blockmodeling the criterion functions for indirect approach based on dis-
similarities are usually expressing the notion of structural equivalence.
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3.5.3 Graph theory approaches

The basic decomposition of graphs is to (weakly) connected components — partition of
nodes (and links); and to (weakly) biconnected components — partition of links. For both
very efficient algorithms exist [20]. For directed graphs the fundamental decomposition
results can be found in [19].

From a network N = (V,L,w) we can get for a treshold ¢ a link-cut — a subnetwork
N(¢) = (V,L;,w) where L, = {p € L : w(p) > t}. From it we can get a clustering C(t)
with connected components as clusters. For different tresholds these clusterings form a
hierarchy. An elaborated version of cuts is provided with islands approach [11], Subsec-
tion 2.9.1. Islands also form a hierarchy for a selected node property of a given network.

In seventies and eighties Matula studied different types of connectivities in graphs and
structures they induce [46]. In most cases the algorithms are too demanding to be used on
larger graphs. A nice overview of connectivity algorithms was made by Esfahanian [25].

3.6 Agglomerative method for relational constraints

Suppose that the units are described by attribute data a: U — [U] and are related by a
binary relation R C U x U that determine the relational data or network (U,R,a).

We want to cluster the units according to a (dis)similarity of their descriptions, but also
considering the relation R which imposes constraints on the set of feasible clusterings,
usually in the following form:

®(R)= {Ce P(U): each cluster C € C induces a subgraph (C,RNC x C)
in the graph (U, R) of the required type of connectedness}

and criterion function of type SR:

P(C) =), p(C), p(C)=} d(XT)

ceC XeC

We can define different types of sets of feasible clusterings for the same relation R.
Some examples of types of relational constraint ®(R) are [27]

clusterings | type of connectedness
@' (R) weakly connected units
®%(R) weakly connected units that contain at most one center
D*(R) strongly connected units
@*(R) clique
P>(R) the existence of a trail containing all the units of the cluster

A trail is a walk in a graph in which all arcs are distinct.

The set R(X) = {Y: XRY} is a set of successors of unit X € U and for a cluster C C U
R(C) = UxecR(X). A set of units L C C is a center of a cluster C in the clustering of type
®2(R) iff the subgraph induced by L is strongly connected and R(L) N (C\ L) = 0.

The sets of feasible clusterings @' (R) are linked as follows: ®*(R) C ®*(R) C ®*(R) C
®!(R) and ®*(R) C @ (R) C ®*(R). If the relation R is symmetric, then ®3(R) = ®!(R).
If the relation R is an equivalence relation, then ®*(R) = ®!(R).
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The corresponding fusibility predicates are as follows:

v!(C,0) =3X € C1FY € G, : (XRY VYRX)

(

(C1,C2)=(FXeCiIY € G : XRY)A (IX € C1TY € G2 : YRX)
vH(C1,C) =VX € C\VY € G : (XRY AYRX)

(C1,C)=(3X e T1IY € L, : XRY)V (IX € 1Y € T> : YRX)

where I denotes initial nodes in a cluster C and T denotes terminal nodes in a cluster C.
For y? the property F5 fails.

We can use both hierarchical and local optimization methods for solving some types
of problems with relational constraint [26; 27; 11]. Here we present only the hierarchical
method:

1. k:=n; C(k) :={{X}: XU},
2. while 3C;,C; € C(k): (i # jAy(C;,C;)) repeat

2.1, (Cp.Cy) = argmin{D(C,,C}): i # j AV(CiC))}:
2.2. C:=CoUCy k:=k—1;

2.3. C(k):=C(k+1)\{C,,C,} U{C};

2.4. determine D(C,C;) for all Cs € C(k)

2.5. adjust the relation R as required by the clustering type
3. m:=k

To get clustering procedures we have to further elaborate the questions how to adjust
the relation after joining two clusters and how to update the dissimilarity D(C,Cs) .

In Figures 3.4 and 3.6 four adjusting strategies are presented. They are compatible with
the corresponding types of constraints: ®' — tolerant, ®> — leader, ®* — strict, and & —
two.way. In Figure 3.5 an example of application of strategies is presented.

The effects of strategies can be described also as updates of the sets of succecors R(C):
tolerant

R(C,) = {Cr}UR(Cp)UR(Cq)\{Cpva}
R(C) = {G}UR(C)\{Cp,Cy}, fors#rA {Cp,Cq}NR(C;) # 0
strict
RC) = { {C}UR(C,) UR(C)\{Cp,Cy},  for G,RC,,
{C,}UR(Cy)\ {Cp,Cy}), otherwise

{CHUR(C)\{Cp.C,}),  for s#rA(Cp eR(G) V

R(C,) = Cy € R(Cs) NC4RC))
R(C,)\{Cp,C,}), otherwise for s # r
leader
R(C)) {C,}UR(C,) UR(Cy)\{C),Cy}, for C4RC,
' {CYUR(C)\{Cp,Cy}, otherwise
R(C) {CFUR(Cs)\{C}p,Cy}, fors#rA{C,.C4} NR(Cs) #0
* R(Cy)\{Cp,Cy}, otherwise for s # r
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strict leader tolerant
s S s S
O O
1 L@
b q ) (b.0) (b.0)
s S s S
2 L@
p q (p,9) (p,q) (p,9)
s S s S
Q
p q (p.9) (p,9) (p.9)
s S s S
O
b q ) (.0) )

Figure 3.4: Types of relational constraints
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Figure 3.5: A composite example
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two-way
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Figure 3.6: The two-way strategy
two-way
R(G) = {CFUR(C)NR(C))\{Cp,Cy}
R(C) = {CYUR(C)\{Cp,Cy}, fors #rA{Cy.C4} CR(Cy)
Vo R(Cy)\{Cp,Cy}, otherwise for s # r

In the original approach [26; 27] a complete dissimilarity matrix is needed. To ob-
tain fast algorithms that can be applied to large data sets we propose to consider only the
dissimilarities between linked units. For large data sets we assume that the relation R is
sparse.

The step 2.4. “determine D(C,C) for all C; € C(k)” in the agglomerative procedure re-
quires the adjustment of dissimilarities — computing the dissimilarities between new cluster
C and other remaining clusters. In the case of the relational constraints we can limit the
computation only to clusters that are related/linked to C.

This can be done efficiently in the following two cases:

= first approach: we define a dissimilarity D(S, T) between clusters S and T that allows
quick updates (as in Lance-Williams formula)

» second approach: to each cluster we assign a representative and we can efficiently
compute a representative of merged clusters and a dissimilarity between clusters in
terms of their representatives.

The first approach was described already in [11]. Let (U,R), R C U x U be a graph and
0 CS,TCUandSNT =0. We call a block of relation R for S and T its part R(S,T) =
RNS x T. The symmetric closure of relation R we denote with R = RUR™'. It holds:
R(S,T)=R(T,S).

For all dissimilarities between clusters D(S,T) we set:

d(s,t) sRt

oo otherwise

D({s},{r}) = {
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where d is a selected dissimilarity between units.

Minimum
Duin(S,T) = min d(s,1)
(s,£)ER(S,T)
Diin (S, T1 UT2) = min(Dyyin(S, 71 ), Dmin (S, 12))
Maximum
Dnax(S,T) = max d(s,t)
(5,£)ER(S,T)
Dmax(& U TZ) = max(Dmax(Sa T )7Dmax(Sa TZ))
Average

w:V — R —is a weight on units; for example w(v) = 1, for all v € U.

1
a ) == A d S7
P = s ) s,

w(R(S,TyUD)) =w(R(S,T)) +w(R(S,T>))

w(R(S.T1)) w(R(S,T2))
w(R(S,T1UT)) w(R(S, T UT))

All three disimilarities have the reducibility property. In this case also the nearest neigh-
bors network for a given network is preserved after joining the nearest clusters. This allows
us to develop a very fast agglomerative hierarchical clustering procedure [48]. It is avail-
able in the program Pa jek. The same approach can be extended also to clustering of links
of network [16] by transforming a given network into its line-graph in which the original
links become new nodes.

For the second approach we need the representatives of clusters and a dissimilarity
between clusters that can be expressed in terms of representatives. For symbolic objects
described by discrete distributions (histograms, barcharts) there exist some possibilities
[12].

D,(S,hUD) = D,(S,T1) + Dy(S,T7)

3.6.1 Software support

The first approach is implemented for weighted networks (weight is a dissimilarity) in
Pajek — a program for analysis and visualization of large networks [49]. We also imple-
mented it in R packagec1uRC [7]. An implementation in R of the second approach is still
a work in progress.

3.7 Examples

To illustrate the hierarchical clustering with relational constraint we present two examples:

» Clustering of US states according to the selected variables into geographically con-
tiguous clusters.

» Clustering of authors from network clustering literature (see Chapter 2) according to
their citations into clusters with a single leaders group.
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Table 3.5: Averages for Ward’s clustering

crime violent | smoking | drinking | diabetes opioid | income
C 8.7857 496.45 0.2251 0.1447 0.1173 10.857 44631
G 5.9118 427.96 0.1826 | 0.1714 | 0.1048 13.853 53535
G 2.6333 239.99 0.1755 0.2023 0.0847 10.767 55908
Cy 3.8000 300.99 0.1521 0.1699 0.0903 23.657 69947
Cs 4.9000 273.02 0.2645 0.1195 0.1210 33.500 43727
all 4.9563 354.23 0.1856 | 0.1748 0.0989 14.700 54963

C 1.5723 1.0924 1.1363 | —0.9927 1.2826 | —0.4229 | —1.1990
G 0.3923 0.5663 | —0.0843 | —0.1123 0.4134 | —0.0932 | —0.1657
G | —0.9537 | —0.8776 | —0.2887 0.9094 | —0.9924 | —0.4328 0.1097
Cs | —0.4747 | —0.4090 | —0.9605 | —0.1617 | —0.6005 0.9856 1.7389
Cs | —0.0231 | —0.6239 2.2668 | —1.8260 1.5416 2.0687 | —1.3039

3.7.1 US data 2016

From the site https://datausa.io/profile/geo/united-states/ we ob-
tained the data about US states in 2016 for the following variables: crime — homicide
deaths, violent — violent crimes, smoking — adult smoking prevalence, drinking —
excessive drinking prevalence, diabetes — diabetes prevalence, opioid — opioid over-
dose death rate, and i ncome — median household income.

In his book The Stanford GraphBase [42] D.E. Knuth provided a description of neigh-
boring relation for the contiguous part of USA contiguous—-usa.dat (without Alaska
and Hawai). Because of missing data we removed also Washington DC.

We first applied the Ward’s hierarchical clustering method on the squared Euclidean
dissimilarity between units with standardized variables. On the basis of the corresponding
dendrograme (see left top part of Figure 3.7, we decided to consider a clustering into 5
clusters:

Ci = {AL,AR,LA,MS,NM,TN,SC},

C, = {AZ,CA,DE, FL,GA,IL,IN,KS,MI,MO,NC,NV,NY,OH 0K, PA,TX},
Cs3 = {CO,IA,ID,ME,MN,MT,ND,NE,OR,SD,WY RI.WI,WA,VT},

C; = {CT,MA,MD,NH NJ,UT,VA},

Cs = {KY,WV}.

In the middle left part of Figure 3.7 is presented the dissimilarity matrix reordered ac-
cording to the obtained clustering.

To interpret the obtained clusters we produced Table 3.5 with averages of each variable
over each cluster for raw and standardized units. The interpretation is left to the reader.

In the bottom left part of Figure 3.7 the obtained clustering/partition is represented with
node colors on the network of neighboring US states. We can see that the subnetworks
induced by clusters are not all connected (forming contiguous regions). For example the
subnetwork induced by C4 has 4 components {CT,MA,NH}, {NJ}, {MD,VA} and {UT}.
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Figure 3.7: Ward clustering (left) and Maximum/Tolerant clustering (right)
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Figure 3.8: Maximum/Tolerant partition on the map

Table 3.6: Averages for Maximum/Tolerant clustering

81

crime violent | smoking | drinking | diabetes opioid | income
C 8.1667 462.00 0.2140 | 0.1488 0.1160 10.788 46104
G 5.9701 42591 0.1804 | 0.1719 0.1032 15.794 57054
Cs 2.8385 265.25 0.1765 0.2005 0.0852 7.408 55913
Cy 2.3833 234.31 0.1660 | 0.1932 | 0.0880 | 26.717 62751
Cs 4.9000 | 273.02 0.2645 0.1195 0.1210 33.500 43727
Ces 1.9000 204.72 0.0970 | 0.1210 | 0.0710 16.400 62518
all 4.9563 354.23 0.1856 | 0.1748 0.0989 14.700 54963
C 1.3181 0.8278 0.8162 | —0.8584 1.1929 | —0.4304 | —1.0281
G 0.4165 0.5506 | —0.1502 | —0.0928 0.3026 0.1204 0.2427
C3; | —0.8695 | —0.6836 | —0.2620 | 0.8523 | —0.9584 | —0.8024 0.1103
Cy | —1.0564 | —0.9212 | —0.5625 0.6087 | —0.7599 1.3223 0.9039
Cs | —0.0231 | —0.6239 | 2.2668 | —1.8260 1.5416 | 2.0687 | —1.3039
Ce | —1.2548 | —1.1485 | —2.5445 | —1.7764 | —1.9456 | 0.1871 0.8767
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Using hierarchical clustering with relational constraint with Maximum/Tolerant strategy
we get a clustering that considers a given dissimilarity among units and produces clusters
that form contigues regions. On the basis of the dendrograme in the right top part of
Figure 3.7 we decided to consider a clustering into 6 clusters:

C1 = {AL,AR,FL,GA,LA,MS,NC,TN,SC},

C, = {AZ,CA,DE,IL,IN,MD,MI,MO,NJ,NM,NV,NY,OH,OK ,PA,VA,TX },
C; = {CO,IA,ID,KS,MN,MT,ND,NE,OR,SD,WY,WI,WA},

C4 = {CT,MA,ME ,NH RI.VT},

Cs ={KY,WV},

Cs = {UT}.

The clusters of obtained clustering/partition induce connected subnetworks, as expected.
See right bottom part of Figure 3.7 and Figure 3.8.

The averages of each variable over these clusters for raw and standardized units are
given in Table 3.6. In the states of the first cluster C; is the highest rate of homicide deaths
and violent crimes, high adult smoking and diabetes prevalence, and low median household
income. The states of the second cluster C; have all variables around the everage; above
average are the homicide deaths and violent crimes. Typical for the cluster C3 is the lowest
opioid overdose death rate, the highest excesive drinking and low crime rates. The states
of the cluster C4 have the highest income and high excesive drinking and opioid death rate,
but low crime, smoking and diabetes. Two states in cluster Cs have the lowest income and
excesive drinking, the highest values of smoking, diabetes and opioid death rate, and low
crime. Utah, cluster Cg, has the lowest values of crime, smoking and diabetes, very low
drinking, and high income.

3.7.2 Citations among authors from clustering literature

Let us consider again the bibliometric data on the network clustering literature analyzed
in Chapter 2. In Section 2.5.3 we analyzed the network Acite of citations among au-
thors. Here we will analyze the normalized network of citations among authors nAcite =
n(WAc)T + n(CiteC)  n(WAc). Every work has 1 point. They are distributed on arcs of
the derived network. The weight nAcite[u, v] of the arc (u,v) is equal to the fractional share
of works co-authored by u that are citing a work co-authored by v.

We remove loops (self-citations) and compute weighted indegrees. Let’s first look at
the largest weighted input degrees — the most cited authors, presented in Table 3.7. Far
the most cited ones are Mark Newman and Santo Fortunato. Quite high are also the most
important researchers from the field of social network analysis, beginning with Ronald
Burt.

In this example we will identify clusters such that the corresponding induced subnet-
works are connected and contain a single center — type ®. The nAcite weights are sim-
ilarities, s € [eo,0]. To convert them to distances d we can use different transformations.
For example d = 222 —1 € [0,e0] or d = 1 — %~ € [0,1]. We selected the second option
with s, = 2.52. On the obtained network we applied in Pajek the hierarchical clustering
with relational constraint procedure with Maximum/Leader strategy and determined the
partition of units into clusters of size at most 50. There are 257 such clusters. To reduce
their number we decided to consider only clusters with at least 20 units. There are 57 such
clusters.

We extracted the corresponding subnetworks of citations among authors for visual in-
spection. Most of them are (double) star like formed around the most prominent scientists
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Table 3.7: The most cited authors / fractional approach

i w; | author i w; | author
1 | 329.8886 | NEWMAN_M 26 | 19.7797 | MALIK_J
2 | 155.4974 | FORTUNAT_S 27 | 19.7317 | ROSVALLM
3 80.8228 | GIRVAN_M 28 | 19.2631 | VONLUXBU_U
4 | 51.6716 | BARABASI_A 29 | 19.1634 | BERGSTRO_C
5| 45.1972 | BURT R 30 | 19.1422 | BARTHELE.M
6 | 42.5944 | ALBERT_R 31 | 18.6968 | LEFEBVRE_E
7 39.6466 | ZACHARY W 32 | 18.6552 | GUILLAUM.J
8 38.8163 | LANCICHI_A 33 | 18.6261 | DOREIAN_P
9 | 38.1660 | CLAUSET_A 34 | 18.3258 | KLEINBER_J
10 | 31.8938 | SCHAEFFE_S 35 | 18.1618 | BREIGER R
11 31.7021 | STROGATZ_S 36 | 17.4888 | VICSEK_T
12 | 30.9933 | FREEMAN_L 37 | 17.4204 | BORGATTI.S
13 29.1247 | WASSERMA S || 38 | 16.9268 | PALLA_G
14 | 29.0661 | MOORE_C 39 | 16.8126 | OKADA_Y
15 26.1896 | FAUST_K 40 | 16.7620 | BOORMAN_S
16 | 24.8884 | WATTS D 41 | 15.8376 | CHUNG_F
17 24.7421 | WHITE_H 42 | 15.8216 | GUIMERA R
18 24.5679 | NEWMARK_N || 43 | 15.7187 | RADICCHI_F
19 | 23.8077 | BLONDEL_V 44 | 14,9995 | CARLSON.J
20 | 23.0214 | BATAGELJ.V 45 | 14.9914 | EVERETT M
21 22.6844 | LAMBIOTT R || 46 | 14.6212 | DUCH.J
22 | 22.5521 | VANDONGE.S || 47 | 14.5231 | AMARAL_L
23 20.9136 | ARENAS_A 48 | 14.4554 | GRANOVET_M
24 19.8478 | LESKOVEC._J 49 | 13.7216 | DERENYI.I
25 19.8113 | SHIJ 50 | 13.7216 | FARKAS_I

83
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in the field: Albert R + Barabdsi A, Bergstrom C + Rosvall M, Bezdek J, Blei D, Blondel
V, Bonacich P + Kleinberg J, Breiger R, Burt R + Doreian P, Chung F + von Luxburg U,
Clauset A, Dietrich J + Maede B, Fortunato S, Freeman L, Ghosh J, Girvan M, Goldberg
D, Jaccard P, Jain A, Johnson D, Jordan M, Kaufman L, Knuth D, Leskovec J, Mac Queen
J, Newman M, Newmark N, Okada Y, Palla G + Viscek T, Prescott W, Schaeffer S, Scott J,
Sporus O, Stein C, Strehl A, Strogatz S, Van Dongen S, and some “cliques” of co-authors
with attachments. We visually selected 12 clusters (Adamic L, Batagelj V + Ferligoj A,
Bollobas B, Burt R + Doreian P, Faust K + Watts D, Fiedler M + Harary F, Granovetter
M, Mizruchi M, Murtagh F, Nowicki K + Wasserman S, Robins G, Ward J, White H +
Zachary W) with more interesting network structure for detailed inspection.

Most of the subnetworks of clusters for the Leader strategy have almost acyclic struc-
ture. This has to be considered also in their visualization. Because of the limited space we
present here only subnetworks induced by four among the selected clusters.

The central author in the first selected subnetwork is Wasserman S. He forms a strong
component with Iacobucci D and Weaver S. The leader of this subnetwork is the founder of
SNA (sociometrics) Moreno J [47]. Other important authors are Holland P (with Leinhardt
S the “father” of statistical approaches to SNA), Nowicki K and Airoldi E. The subnetwork
is about statistical modeling of networks.

One of the most often used clustering methods is the Ward’s method [55]. Ward J is
the leader of the second subnetwork. It contains also other founders of clustering methods
Johnson S and Rohlf F, authors of fundamental books Hartigan J [34] and Gordon A [31],
and a theoretician Hubert L. The subnetwork is about cluster analysis.

The central author in the third subnetwork is Harary F, the author of the fundamental
book on graph theory [33]. He is accompanied with other founders of graph-theoretic
approches to network analysis: Heider S (signed networks), Alba (cliques), Cartwright
(structure of directed networks), Seidman S (cores) and Fiedler (eigen values/vectors).

Central to the fourth subnetwork is a strong component Batagelj V and Ferligoj A. They
are citing the leader Lefkovitz L. It contains also a strong component of authors Brusco M
and Stainley D, working on efficient implementations of clustering algorithms, and several
authors citing the paper [3] of Bader G and Hogue C describing the MCODE algorithm.
The subnetwork is primarily about clustering with relational constraint.

3.8 Conclusion

In this chapter an attempt is made to present the “classical” approaches and results on clus-
tering problem and show ways how to adapt them for clustering of/in networks. Most of the
chapters in this monograph are essentially proposing different clustering criterion functions
and some of them also new methods for obtaining the solutions. As already mentioned,
most of criterion functions are based on structural equivalence. One of the challenges for
future research is to develop efficient algorithms for other types of equivalences for large
networks.
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