Chapter 5

Clustering Approaches

Regardless of whether ‘old’ methods are used or ‘new’ mettaé created, all
efforts to blockmodel social networks involve clusterinli.is useful, then, to
consider some the many tools addasthat have been created by cluster analysts.
We describe the essential ideas and discuss a variety obdsethat have value for
clustering social networks. With regard to conventionalckimodeling concerns,
the materials in Sections 5.1 through 5.4 are essentiadde@an move directly
to Chapter 6 from the end of Section 5.4. In Section 5.5 a nandard approach
of clustering attribute and relational (network) data diamiously is discussed.

5.1 An Introduction to Cluster Analytic Ideas

Grouping units into clusters so that those within a clusteras similar to each
other as possible, while units in different clusters asiuligar as possible, is a
very old problem. Many different (partial) solutions haveeb proposed. Al-
though the clustering problem is intuitively simple and ersiandable, providing
general solution(s) is difficult and remains a very currastivdly. New data sets
and new problems provide the impetus for finding more sahstid he increasing
number of recent papers on this topic, in both theoreticdl agpplied statistical
journals, is notable!

There are two main reasons for this lively interest and tleatton of many
new procedures in this area:

e Prior to 1960, clustering problems were solved separatetiifferent sci-
entific fields with little concern for integrating on acrogmsific solutions
— a characteristic of the early stages in the developmentyf#scipline.

YFurther, theJournal of Classificatigmvas established in 1984 and timernational Federation
of Classification Societiemas formed in 1985.
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Attempts to unify different problems and solutions first epped in the six-
ties with Sokal and Sneath (1963) providing the first exienstatement.
With this as a point of departure, cluster analysis develoge a specific
data analytic field.

e The development of cluster analysis was influenced greatlyldvelop-
ments in computing technology. That allowed the applicatb more de-
manding computational procedures and the processing gé ldata sets.
Theoretical results in computer science were importarat, @specially the
theoretical work on computational complexity. The reshiétttmost of the
clustering problems are NP-hard was proven early by Brug@@r8). NP-
hard means, in this case, that it is believed that there aedfiotent exact
algorithms for solving most of the clustering problems. Efiere, it is not
surprising that many problems were, and still are, beingesbivith heuris-
tic approaches, more or less adapted to the specifics ofylartiproblems.

Of course, these reasons interact with each other. Develosnm computing
technology and the creation of new theoretical results ppéied in different sci-
entific fields. These applications have features specifibealifferent fields with
the risk that clustering procedures will proliferate witluch redundancy across
fields of application. In turn, this motivates further umify work to integrate
many clustering developments. Such cycles of activity peedgreat benefits for
both the fields of application and cluster analysis. We keltbat the topics we
consider under ‘blockmodeling’ also have this featlBg.using known cluster-
ing procedures, network partitioning will benefit while the use of criterion
functions based on network concepts of equivalence may prevuseful for
cluster analysis.

5.2 Usual Clustering Problems

Cluster analysis (known also as classification and taxofategls mainly with
the following general problem: given a set of uniis, determine subsets, called
clusters,C, which are homogeneous and/or well separated accordirge tméa-
sured variables. The set of clusters forms a clustering.s phoblem can be
formulated as an optimization problem:

Determine the clusterin@* for which

P(CY) = glelg P(C)

whereC is a clustering of a giveset of units or actorg/, @ is the
set of all feasible clusterings ardel: ® — IR acriterion function
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As the set of feasible clusterings is finite, a solution of¢hestering problem
always exists. However, since this set is usually very l#rgenot easy to find an
optimal solution.

There are several types of clusterings, e.g., partitioeranchy, pyramid,
fuzzy clustering, clustering with overlaping clusters. eTimost frequently used
clusterings are partition and hierarchy - a feature shayetthib book. A cluster-
ing C = {C4,Cy,...C} } is a partition of the set of unit if

Uci=u

i£j=0CnNC;=10

A clusteringH = {C, Cs, ...C} } is a hierarchy if for each pair of clustet and
Cj fromH
;N Cj € {CZ, Cj, @}

and it is a complete hierarchy if for each unrit{z} € H, andi{ € H (see also
Section 3.1).

Clustering criterion functions can be constructedirectly as a function of a
suitable (dis)similarity measure between pairs of unitg.(éuclidean distance)
or directly (see below). In most cases, the criterion function is defindilectly.
For partitions intdk clusters, the Ward criterion function

PO =Y Y dia,tc)

CeCzxeC

usually is used, wherg: is the center of the clusté&r and is defined as

tC — (ﬂlC,ﬂQC, "‘aﬂmC)
wherew;¢ is the average of the variablg, i = 1,...m, for the units from the
clusterC' andd is the squared Euclidean distance.
5.2.1 An Example

Consider the set of five unité = {a, b, ¢, d, e} for which there are measurements
in terms of two variables({ andV'):
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Figure 5.1: Graphical Presentation of Five Units and thar@gtClustering into
Two Clusters

The units are presented graphically in Figure 5.1.
We group the units into two clusters (a partition) using iéofving criterion

function:
P(C)= ) > dxtc)
CeCzxeC
wheretc = (uc,vc) is the center of the cluster’ and the dissimilarityd is
Euclidean distance.
All possible partitions into two clusters, together witle tbalculated values of
the criterion function, are shown in Table 5.1. The lowesti®af the criterion
function is (for the last partition):

P(Cy5) = 5.41
The best clustering (partition) for this criterion functics therefore
C* = {{a,b,c},{d,e}}

From the graphical display, this is the obvious solutionr thes simple example
we can search the set of all 15 possible clusterings. In ger@wever, if there
aren units there are

o=t 1
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Table 5.1: All Partitions and Values of the Criterion Fuoati

C|Cy Cy t1 to P(C)
1| @ bede | (1.0,1.0) (3.75,3.25) | 6.65
2| b acde| (2.0,3.0) (3.50,2.75) | 8.18
3| ¢ abde|(3.0,2.0) (3.25,3.00) | 8.67
4] d abee | (5.0,3.0) (2.75,2.75) | 7.24
5| e abed | (5.0,5.0) (2.75,2.25) | 5.94
6|ab cde |(1.5,2.0) (4.33,3.33) | 6.66
7| ac bde | (2.0,1.5) (4.00,3.67) | 7.21
8| ad bce |(3.0,2.0) (3.33,3.33) | 9.58
9|ae bed |(3.0,3.0) (3.33,2.67) | 9.48

10| be  ade | (2.5,2.5) (3.67,3.00) | 8.48

11| bd ace | (3.5,3.0) (3.00,2.67) | 9.34

12| be acd | (3.5,4.0) (3.00,2.00) | 8.08

13| ed abe | (4.0,25) (2.67,3.00) | 8.58

14| ce abd | (4.0,35) (2.67,2.33) | 9.11

15| de  abe | (5.0,4.0) (2.00,2.00) | 5.41

different partitions with 2 clusters. The number of pastits exponentially in-
creases with the number of units. In the case of clustetingits intok clusters
the number of all possible partitions is equal to the secaddrdStirling number

k
S(n, k) = %Z(—l)’“"' (k) "

i=0 v

If we wanted to cluster the above 5 units into 3 clusters wedceaarch for the
best clustering over the set of 25 partitions. In contrést umber of all possible
partitions of 30 units into 10 clusters is

S(30,10) = 173,373, 343,599, 189, 364, 594, 756

This large number is daunting because a set of size 30 issuid. Often, clus-

tering involves several hundreds or thousands of unitsaiGlesearching across
all partitions to locate those partitions with the smallesdtie of a criterion func-

tion is impractical. This is the case for many of the socidlvoeks we consider

in this book.
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5.2.2 The Usual Steps of Solving Clustering Problems

We list the usual steps of solving a clustering problem (ldangaumard, and
Sanlaville, 1993) and use the following sections to descititem. The steps are:

1. Select the set of unitg;

2. Measure the appropriate variables for the given probManiables can be
measured using different scale types. If numerical vaemhlith different
scales are used, in most cases they should be standardized;

3. Choose an appropriate dissimilarity between udit§r the given problem
and the types of variables used;

4. Choose an appropriate type of clusterings;

5. Select or create an appropriate criterion function tduate the selected
type of clusterings;

6. Choose or devise an algorithm for the given clusterindplera;

7. Determine the clustering(s) which optimize(s) the chagéerion function
with the selected algorithm. An approximate solution maybeessary if
there is no exact algorithm or if an excessive amount of cdamguime is
needed to obtain an exact solution, and

8. Assess the obtained solutions to see if they have somelyindestructure.
Descriptive statistics can be used to summarize the cleaistats of each
cluster.

Prior to an analysis, both the units and the appropriatabbas will have been
selected by the analyst. For our purposes, the first two si@pst require further
discussion.

5.3 (Dis)similarities

For solving a clustering problem, the choice of an appropi(dis)similarity mea-
sure between two units is crucial. The issues to considenwbiecting a (dis)-
similarity measure include its mathematical properti¢s,behavior when con-
fronted with data, the nature of the data and the use madesqik)similarity
matrix. Several authors (e.g., Gower and Legendre, 198&yuds the properties
of dissimilarities and ways the information concerningnthguide the choice of a
dissimilarity in applications.
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A dissimilarity can be described by a mappiregmeasure of dissimilarity
where a real number is assigned to each pair of (nitg)

d:(z,y)— R

We usually assume the following conditions hold:

1. d(z,y) >0 nonnegativity
2. d(xz,z) =0
3. d(z,y) =d(y,x) symmetry

If, for a dissimilarity measure, the following two conditi® also hold,

4. dz,y) =0=2zx=1y
5 Vz:d(z,y) <d(z,z) +d(zv) triangle inequality

the dissimilarity is calledlistance

There is a large literature dealing with a wide range of §ilisjlarities. Some
elaborated overviews of these measures can be found inSekgal and Sneath
(1963), Clifford and Stephenson (1975:49-82), Everitt7d4:49-59), Gordon
(1981:13-32), Lorr (1983:22-44) or Hubalek (1982).

Most often, the dissimilarity is based on the descriptioharits by selected
variables. In the case when units have more complicatedtstas (e.g., net-
works), some invariants (e.qg., triadic counts in a netwame used as variables
(See Section 5.3.1.). The other possibility is to define sitigarity of structures
in a direct way (e.g., the smallest number of steps to tramsfane structure to
the other).

In most cases, the types of variables describing the umiti$ the choice of
an appropriate (dis)similarity measure. We discuss brigfty of the most used
types of measures: measures for numerical data and meésubisary data.

5.3.1 (Dis)similarity Measures for Numerical Data

When the clustered units are described with numerical blesa Euclidean dis-
tance is used frequently. For the unitendy decribed bym numerical variables

x = (21,22, ..., Tpy)

y = (y17 y27 sy ym)
the Euclidean distance is defined in the following way:

m

d(z,y) = | D_(xi — )

i=1
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Figure 5.2: Florentine Families According to Wealth and Ndemof Council
Seats

The Manhattan distance is used often:
m
=1
Both distances are special cases of the Minkowsky distance
i 1
d(z,y) = QO |lzi—wl)r , 7>0
=1

If » = 1 we have the Manhattan distance and foe= 2 we have Euclidean
distance. When deciding on the most appropriate distan@sune for solving
a given clustering problem, it is useful to consider thedwihg property of the
Minkowsky distance: the larger the valuethe stronger the influence of larger
differencegz; — y;| on the distance between units. In the limite case: (o) the
Minkowsky distance becomes:

Itis also calledCebisev distance.

The attribute data in Table 5.2 present the Florentine fam{see also Section
1.1.1) and two variables: family wealth (measured in the yid27) and number
of council seats held by family members in the years 12824134
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Table 5.2: Attribute Data for Florentine Families

family  council

wealth  seats
Acciaiuoli 1| 10.448 53
Albizzi 2| 35.730 65
Barbadori 3| 55.351 N/A
Bischeri 4| 44.378 12
Castellani 5| 19.691 22
Ginori 6| 32.013 N/A
Guadagni 7 8.127 21
Lamberteschi 8 41.727 0
Medici 9| 103.140 53
Pazzi 10| 48.233 a
Peruzzi 11| 49.313 42
Pucci 12 2.970 0
Ridolfi 13| 26.806 38
Salviati 14 9.899 35
Strozzi 15| 145.896 74
Tornabuoni 16| 48.258 N/A

N/A indicates "not available data”
a indicates a special case of Pazzi family

The place of the families are graphicaly presented in tvwoedisional space
where the dimensions are family wealth and the number of dbseats of fam-
ilies (see Figure 5.2). Two clusters of similar families aezn nicely from this
figure: the Strozzi and Medici families with very high valuas both variables
and all others with much lower values. The second clustebeadivided in two
subclusters: a group of families with low values in both ables and a group with
low values on wealth but higher values on the number of cdgeaits.

As the variables are measured on different scales, we stiineaoth vari-
ables before calculating the distances between families §tep 2 in Section
5.2.2). The most usual standardization is

Li5 — M4
wherex;; is the value of the variabl&’; for the unit i, i¢; is the arithmetic mean
ando; is the standard deviation of the variablg. The standardized data for
wealth and number of council seats of the 12 Florentine famdre given in Ta-
ble 5.3. We consider only the 12 families with all availab&al The Euclidean
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Table 5.3: Standardized Data on Wealth and Number of CoGegits

family council

wealth seatsg
Acciaiuoli 1 -0.76 0.79
Albizzi 2 -0.14 1.31
Bischeri 3 0.07 -0.97
Castellani 4| -0.53 -0.54
Guadagni 5/ -0.82 -0.59
Lamberteschi 6 0.01 -1.49
Medici 7 151 0.79
Peruzzi 8 0.19 0.32
Pucci 9| -0.94 -1.49
Ridolfi 10| -0.36 0.15
Salviati 11| -0.77 0.02
Strozzi 12 2.55 1.70

Table 5.4: Euclidean Distances among Florentine Families

1 2 3 4 5 6 7 8 9 10 11 12
Acciaiuoli 1 0.0
Albizzi 2 0.6 0.0
Bischeri 3 3.8 53 00
Castellani 4, 1.8 3.6 0.6 0.0
Guadagni 5/ 19 40 09 01 0.0
Lamberteschi 6f 58 79 03 12 15 0.0
Medici 7 51 30 52 59 73 75 0.0
Peruzzi 8 1.1 11 17 13 18 3.3 2.0 0.0
Pucci 9 52 85 13 11 0.8 09 112 4.6 0.0
Ridolfi 10 06 14 14 05 07 28 39 03 30 0.0
Salviati 11 06 21 17 04 04 28 58 10 23 0.2 0.0
Strozzi 12| 11.8 7.4 13.3 145 16.6 16.7 19 7.5 22.4 10.9 13.9 (0.0

distances between the families are given in Table 5.4. Wergtiirn to this ex-
ample in Section 5.4.1.

It is also possible to use the Pearsonian (1926) correlatiafficient as a

2\We note that this correlation coefficient is not affectedibgar transformations of either vari-
able.
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similarity measure:

i1 (i — ) (yi — 1)

r(z,y) =
\/Zz 1 xz ;u:v) Z ( ﬂy)
where
1 m
Mz = R ;wz
and

1 m
:R;yz

There are many other distance measuredR8h For example, the Maha-
lanobis generalized distance (1936) is defined as: Mahiano

d(z,y) = (x —y)S "z —y)

whereX is a variance-covariance matrix of variables within cltstel his mea-
sure considers (which most of other measures do not) théordaip between
variables. If the Pearsonian correlation between varsaisl® and the variables
standardized, then the Mahalanobis distance is the sqfidihe &uclidean dis-
tance.

There are two interesting dissimilarity measures definedrids having only
positive values of the variables. One is the Lance-Willigd®66) dissimilarity

measure:
iy |z — il
iy (T + i)
with Canberra distance the other (Lance in Williams, 1967):

Z |5Uz yz

’wz +yz‘

d(x>y) =

They are both very sensitive for very small values (around 0)

5.3.2 (Dis)similarity Measures for Binary Data

Many similarity measures have been defined for units desdrity binary vari-
ables. They are determined mostly by the frequences of thingency table for
a pair of units for which the similarity is measured. The auggncy table for the
unitsz andy where the values of ath variables are+ and— i
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Unity
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The sum of all four frequences is equal to the number of veesala + b+ ¢+
d = m). The frequency: counts for how many variables the unitsandy both
have a positive response adaounts the joint occurance of negative responses.
The frequence$ andc count the number of variables for which the units have
different responses.

Many matching similarity measures are known in the litera(e.g., Hubalek,
1982; Batagelj and Bren, 1995) and include:

1. Sokal-Michener similarity (1958)

a+d
a+b+c+d

2. First Sokal-Sneath similarity (1963)

2(a+d)
2(a+d)+b+c

3. Rogers-Tanimoto similarity (1960)

a+d
a+d+2(b+c)
4. Russell-Rao similarity (1940)
e
a+b+c+d
5. Jaccard similarity (1908)
v
a+b+ec
6. Czekanowski similarity (1913)
2a

2a +b+c
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7. Second Sokal-Sneath similarity (1963)

¢
a+2(b+c)

8. Kulczynski similarity (1927)

a
b+c

All of these similarity measures, except the last, are ddfinethe interval
from 0 to 1. The first three measures would give us the same ofdeairs of
units. We say that these measures are order equivalenig@jedad Bren, 1995).
Also the fifth, the sixth and the seventh similarity measuanesorder equivalent.
The notion of equivalency of similarity measures is an intgar one in cluster
analysis. Some of the clustering methods give exactly theessolutions when
using different but equivalent similarity measures betwanits (e.g., the mini-
mum and maximum hierarchical methods described in Sectibi)s

Itis possible to measure the dissimilarities betweeniaeiat In Section 3.2.2.
four such dissimilarities were definedy (Hamming distance){;, (hormalized
Hamming distance),,, andd,,,.

5.4 Clustering Algorithms

In general, most of the clustering problems are NP-hardttisreason, different
efficientheuristicalgorithms for producing ‘good’ clustering solutions hdezn
created (see step 7 in Section 5.2.2). Most of the statigystiems such as SAS
and SPSS have implemented the hierarchical and leadeithigerdiscussed be-
low. We note that there are many other algorithms and appesadOf these, the
relocation algorithm described in Section 5.4.3 is paldidy useful.

5.4.1 The Hierarchical Approach

Agglomerative hierarchical clustering algorithms uspasume that all relevant
information on the relationships between theinits from the set/ is summa-
rized by a symmetric pairwise dissimilarity matiX = [d;;]. The scheme of the
agglomerative hierarchical algorithm is:

Each unitis acluster®; = {z;} ,z; €U ,i=1,2,...,n;
repeatwhile there exist at least two clusters:
determine the nearest pair of clustétsandCy:
d(Cp, Cy) = miny,, d(Cy, Cy) ;
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Figure 5.3: Three Clusters

fuse the clusters’, andC, to form a new cluster
Cr=CpUCy;

replaceC), andC, by the clustelC,;

determine the dissimilarities between the cluster
and other clusters.

According to the last step of this algorithm, we have to datee the dissimi-
larity d between the newly formed clustét. and all other, previously established,
clusters. This can be done in many different ways, each aflwihetermines a dif-
ferent hierarchical clustering method. Suppose that we Haee clusterg’;, C;
andC}, in a certain iteration of the hierarchical procedure with tssimilarities
between them as shown in Figure 5.3.

Suppose further, that the clust&rsandC; are the closest. They are fused to
form a new cluste’’; U C;. The methods of creating the dissimilarity between
the new cluster and an extant clustérinclude the following:

e The Minimum method, or single linkage, (Florek et al., 1951; Sneath,
1957):
d(C; U Cj, Ck) = min(d(C;, Cy), d(C5, Cy))

e TheMaximum method, or complete linkage, (McQuitty, 1960):
d(CZ U Cj, Ck) = max(d(Ci, Ck), d(Cj, Ck))
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e TheMcQuitty method (McQuitty, 1966; 1967):

d(C;, Cy) +d(Cy, Cy,)
2

d(CZ U Cj, Ck) =

The dissimilarities between the new cluster and the othestets can be de-
termined according to the structure of each cluster. Thigswf obtaining these
dissimilarities are:

e TheAverage method(Sokal and Michener, 1958):

dCUCC)=— Y d(uv)

(ni +ng)ny, ueC;UC; veCy
wheren; denotes the number of units in the clustér

e TheGower method (Gower, 1967):
d(C; U Cy,Cy) = d*(tij, ty,)

wheret;; denotes the centroid of the fused clusteru C; andt;, the center
of the clusterC},.

e TheWard method (Ward, 1963):

(ns + nj)ng

d(CZ . Cj’ Ck) - (nz + n; + nk)

d*(tij, tx)

The resulting clustering (hierarchy) can be representagtically by means
of the clustering tree (dendrogram).

In cases with well separated clusters, all hierarchicahodg give the same
solution.

Clustering of Florentine Families

At this point, we return to the Florentine families. The deygfams based on
the dissimilarities between the Florentine families pnéseé in Table 5.4 were
obtained by using the minimum, maximum and Ward methodsertsely and
are presented in Figure 5.4. All three hierarchical metigalge the same two
clusters solution: the Strozzi and Medici families in onastér and all others in
the second, consistent with the graphical representatiadheofamilies in two-
dimensional space in Figure 5.2. The dendrograms diffeletaiblbut the three
clusters solution is:



178 Clustering Approaches

Table 5.5: Dissimilarity Matriced;,, d,, andd,,, of Five BWR Relations

dp, help games positive negative conflict
help 0.00000 0.22449 0.16327 0.30612 0.22449
games 0.00000 0.17347 0.37755 0.27551
positive 0.00000 0.32653 0.24490
negative 0.00000 0.30617
conflict 0.00000

dy, help games positive negative conflict
help 0.00000 0.70968 0.78049 0.98361 0.83019
games 0.00000 0.58621 0.88095 0.72973
positive 0.00000 1.00000 0.85714
negative 0.00000 0.88234
conflict 0.00000

dpm, help games positive negative conflict
help 0.00000 0.67857 0.65385 0.97368 0.76316
games 0.00000 0.57143 0.82143 0.64286
positive 0.00000 1.00000 0.78947
negative 0.00000 0.78947
conflict 0.00000

C; = { Bischeri, Castellani, Guadagni, Lamberteschi, Pycci
Cy = { Acciaiuoli, Albizzi, Peruzzi, Ridolfi, Salviat}
C3 = { Medici, Strozzi}

and is the same for the maximum and Ward methods. Howevemiditiobtained
when using the minimum method. The second cluster from thectwsters solu-
tion does not consist of two well separated subclusterskgpee 5.2). In such
cases, different methods can provide different clustesiigtions.

Clustering Relations

In Section 3.2.2. four dissimilarity measures betweertiggla are defined. We
computed three of themif, d,,, andd,,,) for five of the BWR relations described
in details in Section 2.1.2: playing games, positive affaegative affect, helping,
and conflict over windows. These are shown in Table 5.5. Nwéednly upper
triangle is shown as these measures are symmetric — thadistd R from S is
the same as the distance®from R.
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Figure 5.5: Dendrograms of Five BWR Relations for Three iDidarity Mea-
sures

The five relations were clustered for each of the dissintylarieasures using
the Ward hierarchical method. The resulting clusteringeréinchies) are rep-
resented graphically by dendrograms in Figure 5.5. Theeaarig/alues of the
dissimilarity measures are given with the dendrograms.

Clearly, the partitions differ showing that both the measuand the relations
differ. Usingdy, the helping and positive ties are the least dissimilar.fget,
andd,,, the game playing and positive ties are the least dissimilhis implies
that, on the technical side, we need to select dissimilamigasures with care,
and on the substantive side, we can explore the nature oékaions among the
relations.
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Some Properties of Hierarchical Procedures

Agglomerative hierarchical procedures are very populaheg are very simple
and their solutions can be presented nicely by dendrogramgeneral, they are
very quick also for some hundreds of units and users do nd meédave an
explicit idea about the number of clusters hidden withindlag. The most fre-
guently used methods are the minimum, maximum and Ward rdstHdut here
also, the user can have difficulties in choosing the righthogt The minimum
method is very effective for finding long, non-elliptic, sters (with a ‘sausage’
shape). If there are overlapping clusters, the effect afgugie minimum method
is chaining, where, in each iteration, only one unit is aduted cluster. For ex-
ample, there is some chaining effect in the hierarchicatehing of Florentine
families obtained by the minimum method. From Figure 5.4ait be seen that
the larger cluster consists of two overlapping clusters.e Taximum method
searches for very cohesive clusters. The minimum and maximethods are in-
variant under all transformations of the (dis)similaritgasure that do not change
the ordering of pairs of units.

The agglomerative clustering procedures can be connedthdhe& optimiza-
tional clustering approach by means of a (clustering) Goitefunction. Using
this, the ‘greediness’ of the agglomerative algorithm carseen. The early fu-
sion of clusters can preclude the later formation of morénagdtclusters: Clus-
ters fused early cannot be separated later even if the egilyrfis incorrect. The
negative effects of greediness are usually noticed at tiieehilevels of agglom-
eration (with smaller numbers of clusters). This also mdhatthe clusterings
into lower numbers of clusters are less reliable. This ssiggthat some other
clustering algorithm (e.g., local optimization proceduseich as the leader — see
Section 5.4.2 — or relocation algorithms — see Section psh8uld be used also
to check solutions from the agglomorative procedures.

Several authors (e.g., Everitt, 1974; Mojena, 1977) hawvdietl, compar-
atively, the performance of agglomerative methods usitificially generated
data. These studies show that the Ward method is the moabkguior finding
ellipsoidal clusters, that the minimum method is prefezdiolr longer chaining
clusters and the maximum method is best for spherical chiste

5.4.2 The Leader Algorithm

Among thenonhierarchical procedureghe most popular is the leader algorithm
(Hartigan, 1975), or K-MEANS (e.g., MacQueen, 1967) or theainic clusters
algorithm (Diday, 1974). It assumes that users can deterthi& number of clus-
ters of the partition they want to obtain.

The basic scheme of the leader algorithm is:
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Determine the initial set of leades= {/;};
repeat
determine the clustering in a way that classifies
each unit with the nearest leader;
for each clustet’; € C compute its centroid’;.
The centroidC; determines the new leadgr
of the clusterC;;
until the leaders do not change.

Very large sets of units can be efficiently clustered usirgdlader algorithm,
while the standard agglomerative hierarchical procedoaes some limits on the
number of units. The leader algorithm ifoaal optimization procedure. Different
initial sets of leaders can provide different local optinmal @orresponding parti-
tions. Consequently, several initial sets of leaders shbalused to assess the set
of obtained solutionsto the clustering problem.

Clustering of Florentine Families

For example, the problem of clustering of Florentine fagsilinto three clusters
based on the standardized data (see Table 5.3) was analgpelyausing the
leader algorithm. The obtained clusters are exactly theesssthe ones obtained
by maximum or Ward hierarchical methods:

C, = { Bischeri, Castellani, Guadagni, Lamberteschi, Pycci
Cy = { Acciaiuoli, Albizzi, Peruzzi, Ridolfi, Salviat}
C3 = { Medici, Strozzi}

The leaders (also centroids) of each cluster are shown ifollogving table:

L ly ls

wealth | -0.44 -0.37 2.03
priors | -1.02 0.52 1.25
Amaz 0.69 0.82 0.69

wheren; denotes the number of units in the clustrandd,, ., the maximal
distance between the leadgr,and the units in the clustér;. The latter measures
the homogeneity of the cluster. The results show that thediuster consists of
families with the lowest economic and political power. Tleeand cluster is low
on wealth and high on number of council seats, and the thittd weiry high values
on both variables.

SUsers usually forget that the leader algorithm is a locahoigation procedure and are satisfied
with the solutions obtained from only one set of inital le@de
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5.4.3 The Relocation Algorithms

These algorithms assume that the user can specify the nwhbkrsters of the
partition.
The scheme of the relocation algorithm is:

Determine the initial clusterin@;
while
there existC andC’
such thatP?(C’) < P(C), whereC' is obtained
by moving a unitz; from clusterC,,
to clusterCy, in the clusteringC or by interchanging
unitsz; andz; between two clusters;
repeat:
substituteC’ for C .

While different criterion functions can be used in this aggwh, the Ward criterion
function is used most often.

The relocation algorithm is very efficient in solving spexifiustering prob-
lems. As it is local optimization procedure different ialticlusterings must be
used. We discuss this method in the following sectionswselit extensively in
Chapters 6 through 11.

Clustering of Florentine Families

For example, the clustering of Florentine families inteethclusters according to
their wealth and the number of council seats can be obtailsedogt a relocation
method. The obtained clustering (based on Euclidean distaand Ward crite-
rion function) is exactly the same as the one obtained by theimmum or Ward
hierarchical approaches and the leader algorithm.

5.5 Constrained Clustering

For constrained clustering, grouping similar units intestérs has to satisfy some
additional conditions. This class of problems is relativeld also. One of the
most frequently treated problem in this field is regiondl@a clusters of similar
geographical regions have to be found, according to somsechcharacteristics,
where the regions included in a cluster also have to be gpbally connected.
A number of analytical approaches to this problem have belant The majority

“The value of the Ward criterion function for the best obtdististering into three clusters is
the same as that one obtained by the leader algorith(@( = 4.49).
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of authors (e.g., Lebart, 1978; Lefkovitch, 1980; Ferligoid Batagelj, 1982;
Perruchet, 1983; Gordon, 1973, 1980, 1987; Legendre, 198v@ this problem
by adapting standard clustering procedures, especiajpaggrative hierarchical
algorithms and local optimization clustering procedurégile determining the
clusters, they use a test to ensure that the units placea isaime clusters also
satisfy the additional condition of, for example, geogiaphcontiguity. The
geographic contiguity can be presented by the followingtieh:

x; Rx; = the unit x; is geographically contiguous with the unit x;

and such a constraint is generally calledetational constraint Ferligoj and

Batagelj (1982, 1983) first treated this clustering problemgeneral symmet-
ric relations and then for non-symmetric relatiGn$durtagh (1985) provides a
review of clustering with symmetric relational constraintt is possible to work
also with other non-relational conditions, as discussaébemext section. A more
recent survey of constrained clustering was given by Goid®96) and a dis-
cussion of some constrained clustering problems by BgtagédlFerligoj (1998,

2000).

5.5.1 The Constrained Clustering Problem

The constrained clustering problem can be expressed as/foll

Determine the clusterin@* for which the criterion function” has
the minimal value among all clusterings from the set of felagjper-
missible) clusteringC € &, where® is determined by the con-
straints In short, we seelkC* such that:

P(CY) = glelg P(C)

Various types of the constraints are discussed below.

Relational Constraints

Generally, the set of feasible clusterings for this typeafstraint can be defined
as:

®(R) = {C: Cis apartition of/ and
each cluste” € C is a subgraphiC', RN C x C)inthe
graph(U, R) with the required type of connectedngss

SFriendship among human actors, as a social network, preeidexample of this.



5.5 Constrained Clustering 185

We can define different types of sets of feasible clusterfogthe same rela-
tion R (Ferligoj and Batagelj, 1983). Some examples of clustarimigh relational
constraint®’(R) aré®

type of clusteringg type of connectedness

®(R) weakly connected units

P2(R) weakly connected units that contajn
at most one center

®3(R) strongly connected units

d*(R) clique

®5(R) the existence of a trail containing
all the units of the cluster

In the clustering type?(R) a center of a clustef’ is the set of unitd, C C
iff the subgraph induced by is strongly connected and

R(L)N(C—-L)=0
whereR(L) = {y : 3= € L : xRy}.
The first four types of connectedness are presented in Figére
WhenR is symmetricd! (R) = ®3(R).

The set of feasible clusterings(R) are linked in terms of the nature of the
relations specified in the constraints. For example:

e ®*(R) C ®3(R) C ®%(R) C ®Y(R);

e ®*(R) C ®°(R) C ®%(R);

e If the relationR is symmetric, then

SFor the definitions of types of connectedness see Sectich 4.1
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Figure 5.6: Types of Connectedness

From the relationRk, we can determine also, for each clustering tyyé,R), the
minimum number of clusters in the clusterings belongin@toR)

W'(R) = Cér&)iir(lR) card(C)

For some clustering types the minimum number of clusters is:
w!(R) = the number of weakly connected components;
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w?(R) = the number of strongly connected subsets in thé/set
w3(R) = the number of strongly connected components;
w*(R) = the cardinality of a minimal cover of the graj#1, R) with cliques.

Constraining Variables

The set of feasible clusterings for this partiticular tygeonstraint is defined as
follows (Ferligoj, 1986):

®[a,b] = {C: Cis a partition ot/ and
for each clusteC' € C holds:v¢ € [a, ]}

wherev is a value determined by values of the constraining varjdb)dor the
units in the clustet”.

Consider a geographical region where areas have to beredstareas in a
specific cluster must be geographical neighbors (satigfgirelational constraint)
and be as similar as possible with regard to some charaasr{sonsistent with
the usual clustering problem). Additionally, there is astoaining variabld/” that
must be considered. As an example, the number of inhahiténts the region
(cluster() has to be greater than a given vaiue

vc:va>a.

zeC

The following property always holds:
[a,b] C [c,d] = Pgla,b] C Pkle, d]

Before solving a constrained clustering problem, it is ssaey to analyze the
constraints. In doing so, the following questions shoulddesidered:

e Is the constraining intervdk, b] selected in accordance with; and the
number of clusterg?

e Do the constraints assure a non-empty set of feasible dlug$edy[a, b]?

Of course, this kind of analysis depends on the type of thetfomv that is
chosen.

An Optimizational Constraint

The set of feasible clusterings for an optimizational caist is defined as:

®(F) = {C: Cisapartition of/ and for a second
criterion F' the conditionF'(C) < f has to be satisfigd
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The valuef of the second criterion is a threshold value which determthe
number of clusterings in the set of feasible clusteringsctéally, this is a two
criteria clustering problem: the first criterion is the ¢kring criterionP and the
second the constrained criteriéh This type of clustering problems is treated in
Section 5.6.

We note that a combination of the mentioned three types oftcaints (re-
lational, constraining variable and optimizational) candonsidered simultane-
ously.

5.5.2 Solving Constrained Clustering Problems

Standard clustering algorithms can be adapted for solvimgtcained clustering
problems. We consider the agglomerative hierarchical baddlocation type of
algorithms.

A Modified Hierarchical Algorithm

One straightforward modification of a standard agglomesatierarchical algo-
rithm is described by this scheme:

Each unitis acluster®; = {z;} ,z; €U ,i=1,2,...,n;
repeatwhile there exist at least two clusters, which
by fusion, give a feasible clustering:
determine the nearest pair of clustétsandCy:
d(Cp, Cy) = min{d(C,, C,) : C,, andC,,, u # v, and
fuse to form a feasible clusterihg
fuse clusters’,, andC, into a new clustet’,. = C), U Cy;
replace the cluster§,, andC, by the clusteiC;;
determine the dissimilaritie$ between the cluster,
and other clusters.

Ferligoj and Batagelj (1983) have shown that it is possiblagply such a modi-
fied agglomerative algorithm only for cases where the camgthas a divisibility
property. The constrairif(C) is divisible if, for each cluster consisting at least of
two units, the following holds:

3C1,Co # 0
(ClUCQZC A ClﬂCQZQ) VAN T(Cl) A T(CQ))

Unfortunately, the constraint on a variable is usually nisible.
For relational constraints, it is also necessary to detegntiie relation be-
tween the newly formed cluste&r, = C, U C, and other clusters in a way that
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the feasibility of the clusterings is preserved in each sfgpe clustering proce-
dure. Ferligoj and Batagelj (1983) found strategies of stilig relations for the
following clustering types from Section 5.5.0!(R) (a tolerant strategy)p?(R)
(a leader strategy), anbP (R) (a strict strategy).

A Modified Relocation Algorithm

The main idea of a scheme for an adapted relocation algoGdmbe presented
as:

Determine the initial feasible clustering;

while
there existC andC’
such thatP(C’) < P(C), whereC’ is obtained by
moving of a unitz; from clusterC, to clusterC,
in the clusteringC or by interchanging units; andz;
between two clusters, and the units in each new cluster
satisfy the constraints;

repeat
substituteC’ for C .

The following two features must be part of any algorithm a$ tiype:

e an efficient testing procedure to assess whether each rchist@ned by
transitions, or by interchanges, does satisfy the comésraind

e a method for generating initial clusterings that are fdasib

However, for some constraints, the second problem may béai#.- Also,
the first feature can lead to very complicated graph thexaeproblems. For
these reasons, clustering problems with relational caimssrmay be better solved
by adapting agglomerative algorithms or by appropriategstructed new algo-
rithms. A modified relocation algorithm can be used for swvclustering prob-
lems with optimizational constraints. These problems dan bhe solved effi-
ciently by multicriteria clustering algorithms where thesficriterion is the clus-
tering criterion and the second is the constraint crite(gae Section 5.6).

5.5.3 The Structure Enforcement Coefficient

To study the influence of constraints on the clustering gmistthe structure en-
forcement coefficient can be used (Ferligoj, 198&y{iC > 0:
P(C7) — P(CY)

C

P(Cy)

C

K =
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whereC* is the best obtained clustering without constraints @ridhe best ob-
tained clustering with constraint®*(C?) > P(C*)). The coefficientk is not
defined if P(C?) = 0. In this case letX = 0. The coefficientk is defined for
the interval[0, 1] and measures the relative growth of the criterion functioe i

the influence of constraints imposed on the clustering.

5.5.4 An Empirical Example

This example is drawn from a study of the educational carkeesgdor all Slovene
students who made the transition to high school in 1981 ifeg¢rand Lapajne,
1986). Each student has a set of preferences as to which tigiolsthey want
to attend. As it is not possible to honor all of these prefeesn some students
then have to choose another school. It is assumed that theoerie structure to
these preferences: if students cannot go to their mostreeehool, they choose
another school that is close to their first choice.

For a particular cohort, data were collected at three tinietgo

1. a time prior to actually making their choices (using a tjoesaire con-
cerning their preferences on vocational choices);

2. atthe time of when students made their applications, and

3. atthe time of enrollment in the first class of the high s¢liatiich may or
may not be their preferred choice).

For this example, we consider the ‘movements’ between teetfine point
preference (vocational choice) and the third time pointu@cenroliment).

The data come from the follow-up study of the first generatibgrade eight
(age 15-16) students who enrolled in the first class of tremeéd career-oriented
educational programs in Slovenia in 1981/82. The whole igeioe was followed
(about 28,500 students) on the basis of data collected bynmogment service
(Lapajne, 1984). From this study, we selected the 17 prografrsecondary
career-oriented education with the greatest number ofestsd- about 19,000
students remained in the database. The programs consatered

"The program on Administration means simple clerical seciatwork (lowest level white
collar).
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AG Agriculture FT  Food Technology

CH Chemistry BU Business

MT Metallurgy AD  Administration

EE Electrical Energy| CS  Computer Science

EL Electronics PE Pedagogical

CN Civil Engineering| MD Medical

CA Carpentry NS Natural Sciences and Mathematics
TE  Textiles SS  Social Sciences and Linguistics
CM Commercial

The movements between these programs can be representealoygd net-
work (U, R,w). The set/ are units (in our case programs) and the elements of
the setR are arcs (movements between programs). The valoa an individual
arc is the percentage of students which have moved from @wggmn to another.

There are data available on the students that came from thiyment ser-
vice. We focus on the following variables that were aggredaiver the 17 se-
lected programs:

e the average school grades over the four last years of pristduigol and the
first year of high school (8 variables),

e the average of the Slovene version of the General AptituctsTRattery
(GATB), taken in the seventh class of the primary school (fades),

e socio-demographic variables (including % of girls, % offeliént type of
the father’s education), (5 variables).

We focus on these characteristics of students in careented educational
programs and the movements between the desired vocatibo@es and actual
enrolments. We use clustering tools to examine the extemthioh the move-
ments are due to the similarity of the programs (which is @efiby the student
preference structures over them).

To study this problem empirically, we used simultaneoushthuds for an-
alyzing characteristics of the students (in programs) aednetwork movement
of students between programs. We used the clustering witiaeal constraints
approach as follows. The clustering criterion function wasstructed in terms of
the program similarities according to the characteristicthe students in them.
The movements between the programs were treated as cotssttaigeneral, the
clustering with constraints problem, stated in this way te/o criteria optimiza-
tion problem. One is the optimization according to the stu@dbaracteristics (the
clusters consist of the most similar programs) and othdrdsoptimization over
the valued network (the clusters consist of programs wighhighest movements
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between them). A two criteria optimization problem can bdumed to a single
optimization problem in at least two ways (see the next seabin multicriteria
clustering):

e combine both criteria into a single criterion function, and

e have one criterion determine the criterion function wita dther setting the
feasible (permissible) clusterings: clusterings areifgad# the value of the
second criterion function is smaller or greater (dependinghe nature of
the criterion function) than a specified threshold.

We used the second approach where a thresholdias used to reduce the
valued movement matrix to a binary relatiéhin the following way:

xRy = ifthe movement, w, from the program
to the programy is greater thap

For each threshold value of we obtained a binary relation and the clustering
problem was solved by using algorithms that implement ehirsg by relational
constraints.

To determine an appropriate threshold we analyzed the netfonovements
first. By decreasing the threshold level, the constrainglgtion is enriched (by
having more arcs). It seems that important changes in solutions appear when
there is a change in the connectivity structure of the cairstrg relation, i.e.,
when two components are joined by an arc that is newly creaittda change in
the threshold.

Before clustering, all variables were standardized. Thksidfilarity between
programs was measured by using Euclidean distance. We #deshtbe maxi-
mum agglomerative clustering method. Figure 5.7 presémtdhree cluster so-
lution where the thick lines represent symmetric ties (fflews in both direc-
tions). The cluster at the bottom of the figure consists ofms of computer
science (CS), natural sciences and mathematics (NS)] so@aces and linguis-
tics (SS) and civil engineering (CN). The students in thesgmams have the
best school grades, the best GATB results and, mostly, lzkers with at least
a high school education. The programs in the cluster at theotd-igure 5.7
comprises metalurgy (MT), carpentry (CA), electrical gye(EE), commercial
(CM), administration (AD), textiles (TE), food technologlT), and agriculture
(AG). Compared to the first group, this group is at the oppositreme on the
set of student attributes. The third group consisting aftedamics (EL), chemistry

81t is possible to solve the problem sequentially for all fiolgsdistinct relations. This would be
extraordinarily time consuming and unnecessary.



5.5 Constrained Clustering 193

5 © 2
/.
@ R ) @)~
@

S

Figure 5.7: Clusteringvithout Constraints into Three Clusters

© @® D
@ R &) @)
©
@
cs @ CE

\O 3

Figure 5.8: Clusteringvith Constraint into Four Clusters

(CH), medical (MD), business (BU), and pedagogical progrdRE), is located
between the other two groups in Figure 5.7.

We considered three threshold levels fgreach defining a set of elements
to be taken from the relational matrix: those with at least df%the volume of
movements, those having at least 3% and those with at le&%b of movements.

In the case op = 1%, the relation is so rich that it does not constrain, in any,way
the clustering solution. When = 3% is used, the differences between obtained
clustering without constraints and with relational coasits are also minimal. In

the case op = 5%, there are fewer represented movements between programs
(see Figure 5.7). In clustering with this relational coaistr we considered both

the tolerant and the leader strategies. Although the ceraidrelation f = 5%)



194 Clustering Approaches

has fewer arcs, the same clustering (into four clu&jéssfound using both strate-
gies. Comparing the clustering without constraints withstaained clustering we
can see some differences. In the constrained clusterixijegebecomes a single-
ton in a cluster and the electronics program moves from tligimicluster to the
bottom cluster of the diagram (see Figure 5.8). This suggeést the vocational
movements are strongly (but not completely) related to theent characteristics
of the programs. This is true if we considered a very stribhgelational constraint
(p = 5%). Forp less tharb% this is even more true. Forgreater thars% there

would be very few moves between programs and the analysiklwetirrelevant.

5.6 Multicriteria Clustering

Some clustering problems cannot be solved appropriatedlyalassical clustering
algorithms if they require optimization over more than oriedon. We discussed
an example of two criteria optimization problem in Sectiof.b. There, it was
treated as a clustering with optimizational constraintofgm. In general, solu-
tions optimal for the distinct criteria will differ from eamther. This creates the
problem of trying to find the ‘best’ solution so as to satis§ymaany of the criteria
as possible. In this context, it is useful to define the séPafeto efficientlus-
terings: a clustering is Pareto efficient if it cannot be ioya&d on any criterion
without sacrificing on some other criterion.

A multicriteria clustering problem can be approached ifedént ways:

e by reducing it to a clustering problem with a single critersimne that is
obtained as a combination of the given criteria;

e by using consensus clustering techniques (e.g., Day, 1&8&8)ed to clus-
terings obtained by single criterion clustering algorithfor each criterion;

e by using constrained clustering algorithms where a sedezriterion is con-
sidered as the clustering criterion and all others detegrttie constraints
(see Section 5.5) or

e by the use of (or the creation of) direct algorithms. Han&R8i7Q) proposed
an algorithm based on the dynamic clusters algorithm (segdBeb.4.2).
Ferligoj and Batagelj (1992) proposed modified relocatitgorithms and
modified agglomerative hierarchical algorithms.

°Note that the network data are not used to obtain the clagtstiown in Figure 5.7.
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5.6.1 A Multicriteria Clustering Problem

In amulticriteria clustering problent®, P;, P, ..., P;.) we have several criterion
functionsP;,t = 1,..., k over the same set of feasible clusteridgsand our aim
is to determine the clusterinG € @ in such a way that

P,(C) — min, t=1,...,k.

In the ideal case, we are searching for the dominant set stiezings. The solution
Cy is thedominantsolution if for each solutiorC € ® and for each criteriod;,
it holds that

P,(Cy) < P(C), t=1,... k.

Usually the set of dominant solutions is empty. Therefdne,droblem arises of

finding a solution to the problem that is as good as is possitdéerding to each

of the given criteria. Formally, thBareto-efficiensolution is defined as follows:
ForCy, C,y € &, solutionC; dominatessolutionCs if and only if

Pt(cl) SPt(CQ)v t= 17"'7k7

and for at least oné € 1..k the strict inequality?;(C;) < P;(Cs) holds. We
denote the dominance relation By < is a strict partial order. The set of Pareto-
efficient solutions]I, is the set of minimal elements for the dominance relation:

I={Ce®:-3C'€®:C' < C}

In other words, the solutio®®* ¢ ® is Pareto-efficientf there exists no other
solutionC € @ such that

P,(C) < B(C¥), t=1,...,k

with strict inequality for at least one criterion. Pareto-clusterings a Pareto-
efficient solution of the multicriteria clustering problem

Since the optimal clusterings for each criterion are Pagffioient solutions
the sefll is not empty. If the set of dominant solutions is not emptythés equal
to the set of Pareto-efficient solutions.

5.6.2 Solving Discrete Multicriteria Optimization
Problems

Multicriteria clustering problems are approached hererasiiicriteria optimiza-
tion problem, one which has been treated by several auteays MacCrimon,
1973; Zeleny, 1974; Podinovskij and Nogin, 1982; Homenjl883; Chankong
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and Haimes, 1983). In the clustering case, we are dealifgdistrete multicri-
teria optimization (the set of feasible solutions is finitehich means that many
very useful theorems in the field of multicriteria optimipat do not hold, espe-
cially those which require convexity (Ferligoj and Batag&992).

It was proven that if, for each of the given criteria, thera ignique solution,
then the minimal number of Pareto-efficient solutions to dhen multicriteria
optimization problem equals the number of different miriswutions of the sin-
gle criterion problems (Ferligoj and Batagelj, 1992).

Although several strategies haven been proposed for gphainticriteria op-
timization problems explicitly (e.g., Chankong and Haire383), the most com-
mon is the conversion of the multicriteria optimization lplem to a single crite-
rion problem.

5.6.3 Direct Multicriteria Clustering Algorithms

The multicriteria clustering problem can be approachediefitly by using direct
algorithms. Here, two types of direct algorithms are diseds a version of the
relocation algorithm, and the modified agglomerative @ehical) algorithms.

A Modified Relocation Algorithm

The idea of thanodified relocatioralgorithm for solving the multicriteria clus-
tering problem follows from the definition of a Pareto-effici clustering. The
scheme of the algorithm is:

Determine the initial clusterin@;
while

in the neighborhood of the current clusteri@g

there exists a clusterinG’ which dominates the clustering
repeat move to clustering’’ .

In a relocation algorithm, thaeighborhoof a given clustering is usually
defined bymovinga unit from one cluster to another cluster oribferchanging
two units from different clusters. This neighborhood stiwe does not always
lead to a Pareto-efficient solution. The richer the neighbod clustering struc-
ture, and the simpler the structure of the data, the largepthbability that the
procedure attains Pareto-efficient clustering. As thetgwia obtained by the pro-
posed procedure cannot be improved by local transformatianshall call them
local Pareto clusterings

The basic procedure should be repeateainytimes (at least hundreds of
times) and the obtained solutions should be reviewed. Aoieffi review of the
obtained solutions can be systematically done with theidiig metaprocedure
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Determine the optimal clusterings according to each @oiter

function P,,t = 1,..., k, and put them into the set of local
Pareto clusteringd];
repeat

determine with the basic procedure the current
local Pareto clustering ;
if there does not exist a clusterig, € IT: C, < C
thenincludeC in the set of local Pareto clusterings:
II:=TuU{C}
and exclude from the sét clusterings dominated b§:
m:=1\{C' ell: C=<C'}.

With this metaprocedure, the clusterings obtained thrahghmodified re-
location algorithm are put in the criterion space insiderggon initially deter-
mined by optimal clusterings according to each single roite(see Figure 5.10
in the following example). At the same time it is tested to iétgthe currently-
obtained clustering) should be included in the set of lo@ak® clusteringsll.
With the inclusions and exclusions of clusterings throughiterations, the séi
approaches the true set of Pareto clusterings.

An Agglomerative Hierarchical Approach

Agglomerative hierarchical clustering algorithms uspalbsume that all relevant
information on the relationships between thenits from the sett/ is summarized
by a symmetric pairwise dissimilarity matri® = [d;;]. In the case of multicrite-
ria clustering we assume we havealissimilarity matricesD!,t = 1,...,k, each
summarizing all relevant information obtained, for exaeji thek different sit-
uations. The problem is to find the best hierarchical salutidnich satisfies as
much as is possible all dissimilarity matrices.

One approach to solving the multicriteria clustering peoblcombines the
given dissimilarity matrices (at each step) into a composattix. The modified
agglomerative hierarchical algorithm is:

Each unitis a cluster”; = {z;} ,z; e ,i=1,2,...,n;
repeatwhile there exist at least two clusters:
construct matrixD = f(D%t =1,...,k);
find in D the nearest pair of cluste€s, andC:
d(Cp, Cy) = miny,, d(Cy, Cy) ;
fuse clusters’,, andC, into a new clustet,. = C, U Cy;
replace the clusterS, andC,, by the clusteiC,;
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for each dissimilarity matrixD!, t = 1,... k:
determine the dissimilaritied between the cluster,
and other clusters.

The derived matrixD = [d;;] can, for example, be defined as follows:

dij = max(dgj;t =1,...,k)

dij - min(dgj;t - 1, e ,k)

k k
t
dij = Zatdzj ; Zat =1
t=1 t=1

Following this approach, one of sevedalcision rulegsee below e.g., pessimistic,
optimistic, Hurwicz, Laplace) for making decisions undacertainty (Chankong
and Haimes, 1983; French, 1986) can be used at the compoaitith selection
step of the procedure. Then the scheme of the modified aggtinealgorithm
is:

Each unitis a cluster”; = {z;} ,z; €U ,i=1,2,...,n;
normalize each dissimilarity matri?, ¢t = 1, ..., k;
repeatwhile there exist at least two clusters:
determine the nearest pair of clustétsandCy, d,, = d(C), Cy)
according to a given decision rule;
fuse clusters’,, andC, into a new clustet’,. = C), U Cy;
replace the clusterS, andC,, by the clusteiC,;
for each dissimilarity matrixD!, t = 1,...  k:
determine the dissimilaritied between the cluster,
and the other clusters.

The normalization step is not always necessary, espedcidibn dissimilari-
ties are obtained using the same variables and the sammitisiy measure on

different occasions.
In the pair selection step of the algorithm, the decisiorswan have different

forms (Batagelj and Ferligoj, 1990):
e Wald's (pessimistic) rule:

_ i t
dpq = min max d;;
,] t



5.6 Multicriteria Clustering 199

e The optimistic rule:
dpq = min min dgj
1,7 t

e Hurwicz's rule, with a pessimismindex, 0 < a < 1:

dpg = min(amaxd’; + (1 — &) mind},)
2,7 t J t J
e Laplace’s principle of insufficient reason:

k
1 . ‘
dpg = 7 qujn ;:1 di;

The obtained hierarchical solution can be representechgraly by the den-
drogram whose levels are the dissimilariti#g’,, C,) from the selection step.

Another approach is to perform the selection step by saagdboir the Pareto
nearest pair of clusters: The pair of cluste€s, C;) is Pareto nearestf there
exists no other pair of cluste(s’,, C,) such that

t t _
d,<d; t=1,....k

and for at least one dissimilarity matrix strict inequaligyids.

In this case, at each selection step there can exist moretieaRareto nearest
pair of clusters. This means that the proposed procedues gigveral (Pareto)
hierarchical solutions. If a smaller set of solutions isid®s additional decision
rules have to be built into the procedure. If, at each seecsiep, the pair of
clusters which has minimal value according to a particuléemon is chosen, the
obtained hierarchical solution is the same as the hiereatllustering obtained
according to the dissimilarity matrix on which this critemiis based. One possible
decision rule is: at each step, select that pair of clusfeos(the set of Pareto
nearest pairs of clusters) for which the sum or product ofalllies of criterion
functions is minimal 1° As there is no single fusion level at each step there is no
simple graphical presentation of a solution by a dendrogram

5.6.4 An Example

To illustrate the proposed algorithms for multicriteriagtiering we need raw data
(or similarity matrices) obtained under different cormtits or in different ways.
Our simple example has 6 units:

U = {1, 22,23, 24,25, 26}

%N the case of a multiplicative rule, the normalization o tlissimilarity matrices is not neces-
sary.
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Table 5.6: Six Units at Two Time Points and Their Squared iHaah Distances

units | Y1 Y3 | YE Y 1 2 3 4 5 6
1 0 0 1 0 110 2 4 10 20 18
2 1 1 2 1 212 0 2 4 10 8
3 0 2 0 3 3110 8 0 10 16 10
4 3 1 3 0 41 4 2 18 0 2 4
5 4 2 4 3 5(18 8 16 10 0 2
6 3 3 2 4 6117 9 5 17 5 0
5 Yy °6
06 3 o5
3 o5
o2 o4 o2
1 1 4
vy vy

Figure 5.9: Six Units in Two-dimensional Space for Both TiR@nts

Two variables Y7 andY;) are measured for these units at two time points. The
data are given on the left side of Table 5.6 and displayed érdimnensional space
(Figure 5.9).

The squared Euclidean distance matrices for both time paiat presented on
the right side of Table 5.6 (The distances for the first timmtpare in the upper
triangle while the lower triangle has the distances for #mad time point).

All feasible clusterings into two clusters with the corresging value of the
Ward criterion function at each time point are listed in Bbl7. From this table,
it is clear that the best clustering for the first time point is

Cr = {{z1, 22,23}, {24, w5, w6} }
with P;(Cy) = 5.33. For the second time point, the best solution is

Cu = {{z1, 22,24}, {23, 25,26} }
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Table 5.7: The Set of All Feasible Clusterings into Two Glust

C P(C) [ P,(C) 16 | {13456}1{2} [ 19.20 | 24.00
1] {12345H{6} | 16.00 | 19.20 | |17 | {1345}{26} | 19.50 | 23.50
2 | {12346}{5} | 14.40 | 18.40 | |18 |{1346}{25} | 19.00 | 21.75
3 {1234}{56} | 9.00| 13.50 | |19 | {134}{256} | 14.67 | 18.00
4| {12356}{4} | 18.40 | 19.60 | |20 | {1356}{24} | 19.50 | 18.75
5| {1235}{46} | 15.50 | 24.00 | |21 |{135}{246} | 18.67 | 24.00
6 | {1236}{45} | 12.00| 17.75 | |22 {136}{245} | 16.00 | 17.33
7| {123}{456} | 5.33| 17.33| |23 {13}{2456} | 9.50 | 17.75
8 | {12456}{3} | 16.00 | 18.40 | |24 | {1456}{23} | 15.00 | 21.75
9| {1245}{36} | 17.00| 13.50 | |25 | {145}{236} | 17.33 | 18.00
10 | {1246}{35} | 19.50 | 20.75 | |26 | {146}{235} | 20.00 | 23.33
11| {124}{356} | 14.67 | 11.33 | |27 | {14}{2356} | 17.00 | 14.75
12 | {12561{34} | 20.00 | 23.75 | |28 |{156}{234} | 18.67 | 22.67
13 | {125}{346} | 18.67 | 22.67 | |29 | {15}{2346} | 19.50 | 23.75
14 | {126}{345} | 18.67 | 24.00 | |30 | {16}{2345} | 20.00 | 24.00
15 | {12}{3456} | 12.00 | 18.75 | |31 | {1}{23456} | 13.60 | 19.60

with P»(Cy1) = 11.33. Because these two solutions are not identical, a dominant
solution does not exist.

Feasible clusterings can be graphically presented in twiaksional criterion
space P;, P,) as is shown in Figure 5.10. Three Pareto clusterings cardreise
this figure:C3, C; andCy;. Thus, in the Pareto set, we have both of the optimal
solutions, each according to a single criterion, and a negteting,Cs

C3 = {{$1,$2, zs3, $4}, {$5, xG}}

We now consider the clusterings obtained by the last vadattie modified
agglomerative hierarchical algorithm, where in each ftereof the algorithm, the
Pareto nearest pair of clusters is obtained. The maximurhadewas used. We
obtained three hierarchical solutions:

(((z1,22), 23), (24, (25, 76)))

((((x17x2)7 x4)a x3)7 (5657 xﬁ))

(((z1,m2), 24), (73, (T5,76)))

Although we used a different criterion function, the threerd&rchical solu-
tions obtained give the same three Pareto results into twgberks as were obtained
by complete search.
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Figure 5.10: All Feasible Clusterings Presented in Twoetigional Criterion
Space Py, P,)

5.7 Transition to Blockmodeling

Clearly, there are many ways in which clustering problenmsteasolved. There is
a large number of (dis)similarity measures and many cligearocedures. This
variety gives us some pause for thought: we need to be cleaut die cluster-
ing methods used, or adapted, for partitioning social nekatoThe methods we
propose in Chapter 6 all use criterion functions that arestwanted explicitely in
terms of network equivalence ideas. They can be constructiigbctly via ap-
propriately defined (dis)similarity measures (compatibith considered equiva-
lence), or by using network data directly. Hence the use @ftéhms ‘indirect’
and ‘direct’. In the direct approach we use primarily theocaltion algorithm
described in Section 5.4.3.

The clustering with relational constraint approach givésah to analyze the
mixed data: attribute and relational (network) data. Thétigriteria clustering
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approach can be used for the analysis of multiple networks.



