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Symbolic data analysis

An approach to deal with big data is to aggregate the data into
a smaller, manageable data set that can be analyzed using
standard data analysis methods.

In symbolic data analysis a variable is not aggregated into a
single number (mean value), but its values are summarized
using complex data structures (for example a histogram or a
temporal quantity) preserving more information. Symbolic data
analysis provides methods for analysis of so obtained complex
data frames.

Such complex data frames can be obtained also in other ways.
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Approaches

• time series (John Graunt, 1662 [11])

• symbolic data analysis (Edwin Diday, 1987 [9, 6])

• compositions (John Aitchison, 1982 [1, 2])

• functional data analysis (James Ramsay, 1982 [14, 15])

• object (oriented) data (H. Wang and Steve Marron, 2007
[17, 12])
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Exactly mergeable summaries

In complex data analysis the measured values over a selected group A
are aggregated into a complex object Σ(A) and not into a single
value. An interesting question is, which complex data types are
compatible with merging of disjoint sets of units

Σ(A ∪ B) = F (Σ(A),Σ(B)), for A ∩ B = ∅.

We assume A ∩ B = ∅
1 Σ(A) = |A| = nA, Σ(A ∪ B) = Σ(A) + Σ(B)

2 Σ(A) = minX∈A v(X ), Σ(A ∪ B) = min(Σ(A),Σ(B))

3 Σ(A) = maxX∈A v(X ), Σ(A ∪ B) = max(Σ(A),Σ(B))

4 Σ(A) = (First(A),Second(A)),
Σ(A ∪ B) = (First(L),Second(L)), where
L = {First(A),Second(A),First(B),Second(B)}

5 Σ(A) = (nA, µA), Σ(A ∪ B) = (nA + nB ,
nAµA+nBµB

nA+nB
)

6 Σ(A) =
∑

X∈A v(X ), Σ(A ∪ B) = Σ(A) + Σ(B)
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Exactly mergeable summaries

An aggregation of numerical variable v(X ) realized as a vector x is
represented with a triple (nx , µx , σx). It is an exactly mergeable
summary. Holds also for higher order moments.

Counting number of members/values from C in A:
n(A;C ) = |A ∩ C | is an exactly mergeable summary

n(A ∪ B;C ) = n(A;C ) + n(B;C )

Let Σ1 and Σ2 be exactly mergeable summaries. Then also

Σ(A) = Σ1 ⊕ Σ2(A) = (Σ1(A),Σ2(A))

is an exactly mergeable summary.

Therefore, since set membership counts are exactly mergeable, the
barcharts C = {X : v(X ) = c} and histograms
C = {X : v(X ) ∈ [a, b)} are exactly mergeable summaries.

Intervals Σ(A) = [minX∈A v(X ),maxX∈A v(X )] are exactly mergeable
summaries.
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Symbolic networks

A network N = (V,L,P,W) is a symbolic network if some
property of nodes from P or some weight on links from W has
symbolic values.
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Semirings

Let a, b, c ∈ A. The set A with binary operations addition ⊕ and
multiplication �, neutral element 0 and unit 1, denoted with
A(⊕,�, 0, 1), is a semiring, when the following conditions hold:

• the set A is a abelian monoid for the addition ⊕ with a neutral
element 0 (the addition is commutative, associative and
a⊕ 0 = a for all a ∈ A);

• the set A is a monoid for the multiplication � with the unit 1
(the multiplication is associative and a� 1 = 1� a = a for all
a ∈ A);

• the addition distributes over the multiplication

a� (b ⊕ c) = (a� b)⊕ (a� c) and

(a⊕ b)� c = (a� c)⊕ (b � c);

• the element 0 is an absorbing element or zero for the
multiplication: a� 0 = 0� a = 0 for all a ∈ A.
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Semirings

In all cases we assume precedence of the multiplication over the
addition. The last point in the definition of semirings is omitted by
some authors.

Semirings are the right structure for extending the weights from links
to nodes, walks (paths) and sets of walks.
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Examples of semirings

1 Combinatorial: (N,+, ·, 0, 1) or (R+
0 ,+, ·, 0, 1)

2 Shortest paths: (R+
0 ,min,+,∞, 0)

3 Interval 1 [13]: [a,A], [b,B] ⊂ R+
0

[a,A]⊕ [b,B] = [a + b,A + B] and
[a,A]� [b,B] = [a · b,A · B]

4 Interval 2: [a,A], [b,B] ⊂ R
[a,A]⊕ [b,B] = [min(a, b),max(A,B)] and
[a,A]� [b,B] = [a + b,A + B]

5 Interval 3:

[a,A]⊕ [b,B] =


[a,A] A < B
[b,B] B < A
[min(a, b),A] A = B
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Histograms

Let the set of bins B = {B1,B2, . . . ,Bk} be a partition of the set B.
A histogram h : B→ N
hi = h(Bi ) = |{X : v(X ) ∈ Bi}|

h ⊕ g = h + g (h ⊕ g)(i) = h(i) + g(i)

h � g = h ∗ g convolution [10, 7] (h ∗ g)(i) =
∑
p◦q=i

h(p) · g(q)

◦ is a semigroup operation on bins
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Temporal quantities

A temporal quantity (TQ) a is a function a : T → A ∪ { } where
denotes the value undefined. The activity time set Ta of a consists of
instants t ∈ Ta in which a is defined Ta = {t ∈ T : a(t) ∈ A}.

We can extend both operations to the set A = A ∪ { } by requiring
that for all a ∈ A it holds a + = + a = a and a · = · a = .
The structure (A ,+, ·, , 1) is also a semiring.

Let A (T ) denote the set of all TQs over A in time T . To extend
the operations to networks and their matrices we first define the sum
(parallel links) a + b as

(a + b)(t) = a(t) + b(t) and Ta+b = Ta ∪ Tb.

The product (sequential links) a · b is defined as

(a · b)(t) = a(t) · b(t) and Ta·b = Ta ∩ Tb.
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Temporal quantities

Let us define TQs 0 and 1 with requirements 0(t) = and 1(t) = 1
for all t ∈ T . Again, the structure (A (T ),+, ·, 0, 1) is a semiring.

To produce a software support for computation with TQs we limit it
to TQs that can be described as a sequence of disjoint time intervals
with a constant value

a = [(si , fi , vi )]i∈1..k

where si is the starting time and fi the finishing time of the i-th time
interval [si , fi ), si < fi and fi ≤ si+1, and vi is the value of a on this
interval (over combinatorial semiring). Outside the intervals the value
of TQ a is undedined, . Therefore

Ta =
⋃

i∈1..k

[si , fi ).
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Instantaneous and cumulative temporal networks

Let the binary affiliation matrix A = [aep] describe a two-mode
network on the set of events E and the set of of participants P:

aep =

{
1 p participated at the event e
0 otherwise

The function d : E → T assigns to each event e the date d(e) when
it happened. Assume T = [first, last] ⊂ N. Using these data we can
construct two temporal affiliation matrices:

• instantaneous Ai = [aiep], where

aiep =

{
[(d(e), d(e) + 1, 1)] aep = 1
[ ] otherwise

• cumulative Ac = [acep], where

acep =

{
[(d(e), last + 1, 1)] aep = 1
[ ] otherwise
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Node activity

Let N be a temporal network on E × P. On it we can define some
interesting temporal quantities [4] such as in-sum:

iS(N, p) =
∑
e∈E

nep

and out-sum:
oS(N, e) =

∑
p∈P

nep

For N ≡WAi (W – set of works; A – set of authors) we get the
productivity of an author a:

pr(a) = iS(WAi, a) = number of publications of the author a by year

and for N ≡WAc we get the cumulative productivity of an author a:

cpr(a) = iS(WAc, a) = cumulative number of publications of the
author a by year.
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Fractional activity

The productivity of an author can be extended to the productivity of
a group of authors C

pr(C ) =
∑
a∈C

pr(a) =
∑
a∈C

iS(WAi, a)

There is a problem with the productivity of a group. In the case
when two authors from a group co-authored the same paper it is
counted twice. To account for a “real” contribution of each author
the fractional approach is used. It is based on normalized networks
(matrices) – in the case of co-authorship on n(WA) = WAn = [wanwa]

wanwa =
wawa

max(1, outdegWA(w))
.

This leads to the fractional productivity of an author a:

fpr(a) = iS(WAni, a) = fractional contribution of publications of the
author a by year
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Derived networks – citations between journals

The network multiplication NC = NA ∗ NB over a selected semiring is
defined in a standard way

c[u, v ] =
⊕

z∈N(u)∩N−(v)

a[u, z ]� b[z , v ]

It is about traveling (sets of walks) in the network. It is also used to
get the derived networks from basic networks. For example:

Based on temporal networks WJins, WJcum, and CiteIns, we
constructed two types of temporal networks of citations between
journals JCJ and JCJn.

JCJ = WJinsT ∗ CiteIns ∗WJcum

JCJn = WJinsT ∗ n(CiteIns) ∗WJcum

The first network counts the number of citations between journals,
and the second contains the corresponding fractional values.
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Social networks bibliography
self-citation, SocNet → AJSoc, in, out

70792 works, 93011 authors, 8943 journals, 32409 keywords /
complete description

self-cite(SocNet) = JCJ[SocNet,SocNet]
SocNet → AJSoc = JCJ[SocNet,AJSoc]

citing(SocNet) = oS(JCJ,SocNet)

cited(SocNet) = iS(JCJ,SocNet)
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Clustering of temporal quantities

For a unit Xi , each variable Vj is described with a size hij and a TQ
xij

Xij = (hij , xij)

In our algorithms we use normalized values of temporal variables
V ′ = (h,p) where

p = [(sr , fr , pr ) : r = 1, 2, . . . , k] and pr =
vr
h

In the case, when h = tot(x) =
∑

vr , the normalized TQ p is
essentially a probability distribution.

For clustering TQs we implemented the leaders method and
agglomerative hierarchical clustering method. Both methods are
compatible – they are based on the same clustering error criterion
function.
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September 11th Reuters terror news network

The Reuters terror news network TN was obtained from the CRA
(Centering Resonance Analysis) networks produced by Steve Corman
and Kevin Dooley at Arizona State University. The network is based
on all the stories released during 66 consecutive days by the news
agency Reuters concerning the September 11 attack on the U.S.,
beginning at 9:00 AM EST 9/11/01.

The nodes of this network are important words (terms). There is an
edge between two words iff they appear in the same utterance [8].
The weight of an edge is its frequency. The network has n = 13332
nodes (different words in the news) and m = 243447 edges, 50859
with value larger than 1. There are no loops in the network.

To cluster all 13332 words (nodes) in Terror news described with
iS(TN, u), u ∈ V we first used the adapted leaders method searching
for 100 clusters. After 50 steps we stopped the search. We continued
with hierarchical clustering of the obtained leaders.
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Hierarchical clustering
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Comparisons of leaders and cluster representatives
L74:C98, C58:C81, C96:C95, C88:C94
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C95[3] = 0.1665, C95[4] = 0.1570, C95[5] = 0.2250
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Word clouds for C58 and C81
|C58| = 1396, |C81| = 2226
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Software

• NetsJSON – network description in JSON
https://github.com/bavla/NetsJSON

• TQ – basic support for temporal quantities in Python
https://github.com/bavla/TQ

• Nets - network analysis algorithms in Python
https://github.com/bavla/Nets

• Clustering of TQs in Python and R
http://vladowiki.fmf.uni-lj.si/doku.php?id=vlado:work:alg:ldtq
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