
P

Python Packages for Networks

Vladimir Batagelj
Department of Theoretical Computer Science,
Institute of Mathematics, Physics and Mechanics,
Ljubljana, Slovenia
University of Primorska, Andrej Marušič
Institute, Koper, Slovenia

Synonyms

DeepGraph; graph-tool; igraph; Library; Network
description; NetworKit; NetworkX; Snap.py;
Tulip; Zen

Glossary

CSV Comma-separated values is a plain
text format for storing tabular data.

JSON JavaScript Object Notation is a data-
interchange plain text format.

Large
network

A network with several thousands or
millions of nodes.

Network
analysis

A study of networks as
representations of relations between
discrete objects.

Definition

Python is a high-level general-purpose program-
ming language and easy to understand and learn.

To deal with networks, different representations of
networks in Python were proposed. On their basis,
several Python libraries were developed to sup-
port programming of network analysis tasks.

Introduction

Python is an open-source, interpreted, interactive,
object-oriented programming language (Python
Software Foundation, https://www.python.org/).
Its name comes from the BBC TV show Monty
Python’s Flying Circus. It runs on all main plat-
forms: Windows, MAC, Linux/Unix, and
Android. It is a successor of the programming
language ABC that was based on ideas of struc-
tured programming (Dahl et al. 1972). Python was
initially, starting in December 1989, developed by
Guido van Rossum at CWI. It reached Version 1.0
in January 1994. In 2001, the Python Software
Foundation (PSF) was formed. Guido remains
Python’s principal author – a Benevolent Dictator
for Life. Python 2.0 was released on October
16, 2000, and Python 3.0 on December 3, 2008.

Python is based on the interpretation of pro-
grams that slows down their execution with
respect to compiled programs. In most cases, the
critical tasks are programmed in compiled lan-
guages and made available as packages
(libraries). Besides standard packages, Python
has a broad collection of packages for different
tasks – see PyPI (the Python Package Index
(https://pypi.python.org/pypi); in July 2017, it

Springer Science+Business Media LLC 2018
R. Alhajj, J. Rokne (eds.), Encyclopedia of Social Network Analysis and Mining,
https://doi.org/10.1007/978-1-4614-7163-9_110210-1

http://link.springer.com/DeepGraph
http://link.springer.com/graph-tool
http://link.springer.com/igraph
http://link.springer.com/Library
http://link.springer.com/Network description
http://link.springer.com/Network description
http://link.springer.com/NetworKit
http://link.springer.com/NetworkX
http://link.springer.com/Snap.py
http://link.springer.com/Tulip
http://link.springer.com/Zen
https://www.python.org/
https://pypi.python.org/pypi
https://doi.org/10.1007/978-1-4614-7163-9_110210-1

contained 113,701 packages). Python’s emphasis
is on faster program development and its readabil-
ity. It is also easy to learn – it is a kind of modern
Basic. Besides R, Python is the main program-
ming language used in data analysis.

A support for graphs in Python is an old
problem – see a page “A Python Graph API?”
(https://wiki.python.org/moin/PythonGraphApi).
It starts with a question what is a graph? There are
two approaches to this question: particular and
general. Fathers of graph theory choose the par-
ticular approach: Berge (1958) relational/directed
graphs and Harary (1969) simple undirected
graphs without loops. We can find a general
approach in Zykov (1969). In this entry, we shall
use a general approach. In a graph, we allow both
edges and arcs. A pair of nodes can be linked by
multiple links. Loops are also allowed.

In most applications of graphs, we have to
consider additional information about nodes or
links – we are essentially dealing with networks.

Networks

A network is based on two sets – a set of nodes
(vertices), which represent the selected units, and
a set of links (lines), which represent ties between
units. They determine a graph. A link can be
directed, an arc, or undirected, an edge. Addi-
tional data about nodes or links may be known –
their properties (attributes), for example, name/
label, type, age, value, etc.

Network ¼ Graphþ Data

Formally, a network N ¼ V,ℒ,P,Wð Þ con-
sists of:

• A graph G ¼ V,ℒð Þ , where V is the set of
nodes, A is the set of arcs, E is the set of
edges, and ℒ ¼ E [A is the set of links.
n ¼j V j ,m ¼j ℒ j

• P vertex value functions or properties:
p : V ! A

• W link value functions or weights: w : ℒ ! B

Types of Networks

In a two-mode networkN ¼ V1,V2ð Þ,ℒ,P,Wð Þ,
its set of nodes is split into two subsets. Each link
has its end-nodes in both sets.

In a multirelational network
N ¼ V, ℒi, i� Ið Þ,P,Wð Þ , the set of its links is
partitioned into several mutually disjoint subsets –
relations. Such networks are often obtained from
text decomposed into simple sentences of the
form (Subject Verb Object). Subjects and Objects
are represented with nodes, and Verbs determine
relations.

In a temporal network N ¼ V,ℒ, T ,P,Wð Þ,
the timeT is added. To each node and to each link,
its activity set is assigned. Also properties and
weights can change through time – temporal
quantities (Batagelj and Praprotnik 2016).

A collection of networks consists of some
(one-mode and two-mode) networks with com-
mon subsets of nodes.

Types of networks can be combined – for
example, a temporal two-mode multirelational
network.

Description of Networks

How to describe a network N ? In principle the
answer is simple – we list its sets V,ℒ,P, andW.
The simplest way is to describe a network N by
providing V,Pð Þ and ℒ,Wð Þ in a form of two
tables. Both tables are often maintained in Excel.
They can be exported as a text in CSV (comma-
separated values) format.

As an example, let us describe a part of biblio-
graphic network determined by the following
works: Generalized blockmodeling (Doreian
et al. 2005), Clustering with relational constraint
(Ferligoj and Batagelj 1982), Partitioning signed
social networks (Doreian and Mrvar 2009), and
The Strength of Weak Ties (Granoveter 1973).

There are nodes of different modes (types),
persons, papers, books, series, journals, and pub-
lishers, and different relations among them,
author_of, editor_of, contained_in, cites, and
published_by. The corresponding tables V,Pð Þ
and ℒ,Wð Þ are presented in Figs. 1 and 2.

2 Python Packages for Networks

https://wiki.python.org/moin/PythonGraphApi

In large networks, to avoid the empty cells, we
split a network to some subnetworks – we make a
collection of networks.

Factorization and Description of Large
Networks

To save space and improve the computing effi-
ciency, we often replace values of categorical vari-
ables with integers. In R this encoding is called a
factorization. We enumerate all possible values of
a given categorical variable (coding table) and
afterwards replace each its value by the
corresponding index in the coding table. This
approach is used in most programs dealing with
large networks. Unfortunately the coding table is
often a kind of meta-data.

In Fig. 3 (in two columns), a Pajek’s NET file
bib.net corresponding to our example network is
presented (de Nooy et al. 2012). Pajek’s data
format is based on factorization. The items in
link descriptions are a relation number, from-
node, to-node, weight, and label.

In Fig. 4 the mode (first column) and the sex
(second column) partitions of nodes are given.
The mode coding table is 1 = book, 2 = journal,
3 = paper, 4 = person, 5 = publisher, and
6 = series; and the sex coding table is 0 = not
applicable, 1 = female, and 2 = male.

In Fig. 5 a visualization, produced with Pajek,
of our example network is presented.

Python Packages for Networks, Fig. 1 bibNodes.csv

Python Packages for Networks, Fig. 2 bibLinks.csv

Python Packages for Networks 3

netJSON

JSON (JavaScript Object Notation) is becoming
very popular for describing and exchanging struc-
tured objects among programs and web applica-
tions. It is human-readable and preserves the
structure of complex data objects. In all main
programming languages, efficient libraries exist
for processing JSON files.

We developed netJSON – a JSON-based for-
mat for description of networks. In Fig. 6 a
description of our example network in netJSON
is presented.

In general ids in a netJSON description can be
any immutable data objects such that each node/
link gets different id.

In the description in Fig. 6, we could omit the
ids. In such a case, they are determined

implicitly as index of the item position in a
list. Since the value of info.org is 1, the counting
starts with 1.

JSON allows that the field values are struc-
tured objects. Therefore, for example, we can
use temporal quantities as property values or
weights

{ "id": "Borgatti_S", "nPapers":

[[1991, 1992, 1], [1994, 1995, 1],

[1997, 1998, 1], [1999, 2000, 2],

[2003, 2004, 1], [2005, 2007, 2],

[2007, 2008, 1]]] }

or specify a function that transforms a property
value or a weight.

A general netJSON format that will support a
description of collections of (linked) networks is
still under development.

Representations of Networks in Python

A representation of a network in Python depends
on network size, variability (static/dynamic), and
intended operations on it. Selecting the right rep-
resentation can improve the efficiency of network
processing. In libraries a representation that leads
to efficient algorithms for most of the tasks is
usually selected.

A “classic” graph implementation as a “dictionary
of list” was proposed by Guido van Rossum (1998).

Python Packages for Networks, Fig. 3 bib.net

Python Packages for Networks, Fig. 4 bibMode.clu
and bibSex.clu

4 Python Packages for Networks

For example, a graph V ¼ A,B,C,D,E,Ff g andA
¼ A,Bð Þ, A,Cð Þ, B,Cð Þ, B,Dð Þ, ðC,D

�
, ðD,CÞ

�
,

ðE,FÞ, ðF,CÞg is represented as

graph = {’A’: [’B’, ’C’],

’B’: [’C’, ’D’],

’C’: [’D’],

’D’: [’C’],

’E’: [’F’],

’F’: [’C’] }

Even better is a “dictionary of dictionary” repre-
sentation that is a basis of PADS collection of
Python algorithms and data structures implemented
by David Eppstein of the University of California,
Irvine (http://www.ics.uci.edu/~eppstein/PADS/).
Another interesting approach to network represen-
tation is proposed in a library graphABC (http://
www.linux.it/~della/GraphABC/). See also the
book by Hetland (2010).

For implementing in Python prototype net-
work analysis algorithms and programs, we
developed in 2009 a Python library Nets that
supports basic operations with networks based

on an elaborated “dictionary of dictionary”
representation (https://github.com/bavla/Nets).
In Nets each node/link has its id. If a link id
is not specified by a user, it is determined
by Nets.

The library Nets is based on a network object
containing three dictionaries:

• _info – keys are general properties of a net-
work. System properties: network, title,
simple, directed, multirel, mode,

temporal, meta, nNodes, nArcs,

nEdges, time, etc. User properties such as
nWeak, planar, etc. can be also included.

• _nodes – keys are ids of nodes. A value is a
list of four dictionaries: edgeStar, inArcStar,
outArcStar, and nodeProperties. Each star is
again a dictionary that has for keys ids of
neighboring nodes and for values lists of
link ids.

• _links – keys are ids of links. A value is
a list [nodeId1, nodeId2, directed, relId,
linkProperties] where linkProperties is a dic-
tionary of weights.

Python Packages for Networks, Fig. 5 Example bibliographic network – Pajek’s picture

Python Packages for Networks 5

http://www.ics.uci.edu/~eppstein/PADS/
http://www.linux.it/~della/GraphABC/
http://www.linux.it/~della/GraphABC/
https://github.com/bavla/Nets

For an example network from Fig. 7, the
corresponding Nets representation is presented
in Fig. 8.

Python Packages

There exist several Python packages that support
network analysis. They can be classified in two
main classes:

• Pure-Python packages: easy to install, platform
independent, less efficient, and in reasonable
time can deal with networks with up to some
millions of nodes

• Compiled libraries with Python interface:
sometimes difficult to install, very efficient,
and can deal with very large networks

A support for network analysis is available also
in the SageMath (http://www.sagemath.org/;

Python Packages for Networks, Fig. 6 bib.JSON

6 Python Packages for Networks

http://www.sagemath.org/

Joyner et al. 2013) – a Python-based-free open-
source mathematics software system licensed
under the GPL.

NetworkX

NetworkX (https://networkx.github.io/) is a
Python package for the creation, manipulation,
and study of the structure, dynamics, and func-
tions of complex networks. It is based on “dictio-
nary of dictionary” data structure and is written in
pure Python. It was created by Aric Hagberg, Dan
Schult, and Pieter Swart in 2002 and 2003 and
released in April 2005. Its background was
described in a paper (Hagberg et al. 2008).

NetworkX is the most popular among Python
packages for network analysis. It contains many
network analysis algorithms and is very well
documented. Some books (Caldarelli and Chessa
2016; Al-Taie and Kadry 2017; Fouss et al. 2016;
Tsvetovat and Kouznetsov 2011) are based on
it. It is the de facto standard for the analysis in
Python of small- to medium-size (up to some
millions of nodes) networks.

NetworkX is a cross-platform (Linux/Unix,
Mac OS X, Windows) package and runs with
Python 2.7/3.4 or later.

DeepGraph

The package DeepGraph was developed by
Dominik Traxl and made public in 2016 (https://
github.com/deepgraph/deepgraph/). He describes
it as follows: DeepGraph is a scalable, general-
purpose data analysis package. It implements a
network representation based on Pandas
DataFrames – the nodes and edges are each
represented by a DataFrame. It provides methods
to construct, partition, and plot graphs, to interface
with popular network packages, and more. Since
it provides interfacing methods to NetworkX,
scipy sparse matrices, and graph-tool, a user
can easily exploit the different advantages of
these packages. Its theoretical background was
published in Traxl et al. (2016).

DeepGraph is a cross-platform (Linux/Unix,
Mac OS X, Windows) package and runs with
Python 2.7/3.4 or later.

Zen

Zen (https://github.com/networkdynamics/
zenlib, http://zen.networkdynamics.org/), devel-
oped in 2012 by Derek Ruths, is a library that
provides a high-speed, easy-to-use API for load-
ing, analyzing, visualizing, and manipulating net-
works in Python. By using a hybrid of Python and
Cython code, it combines the speed and lowmem-
ory overhead of C with the ease of use of Python.
The result is a library that truly makes working
with networks easy and fast. Many operations in
Zen are over 100 times faster than the identical
operation in NetworkX.

Zen requires Python 2.7 or later (but not
Python 3). In principle it should be a cross-
platform, but not easy to install.

Python Packages for Networks, Fig. 7 Example
2 network

Python Packages for Networks 7

https://networkx.github.io/
https://github.com/deepgraph/deepgraph/
https://github.com/deepgraph/deepgraph/
https://github.com/networkdynamics/zenlib
https://github.com/networkdynamics/zenlib
http://zen.networkdynamics.org/

igraph

igraph (http://igraph.org) is a network analysis
library written in C and designed for extremely
large networks. It is a collection of network anal-
ysis tools with the emphasis on efficiency, porta-
bility, and ease of use. It can be programmed in R,
Python, and C/C++. Very popular is the igraph/R
package. igraph was developed by Gábor Csárdi
and Tamás Nepusz (2006) and first released
in 2006.

igraph/Python is a cross-platform (Linux/
Unix, Mac OS X, Windows) package and runs
with Python 2.7/3.4 or later. Installing igraph/
Python is relatively simple (Gohlke 2011). Basic
documentation is provided.

graph-tool

graph-tool (https://graph-tool.skewed.de/) is an
efficient Python module for manipulation and sta-
tistical analysis of networks. The core data struc-
tures and algorithms are implemented in C++,
based heavily on the Boost Graph Library
(BGL, http://www.boost.org/libs/graph/doc/
index.html), and can be used to work with very
large networks. Many algorithms are
implemented in parallel using OpenMP, which
provides excellent performance on multi-core

architectures. It was developed by Tiago de
Paula Peixoto and released in 2006.

graph-tool package runs on Linux/Unix and
Mac OS X with Python 2.7/3.4 or later. graph-
tool is quite complicated to install.

NetworKit

NetworKit (https://networkit.iti.kit.edu/) is an
open-source toolkit for large-scale (up to billions
of links) network analysis. It is a Python package,
with performance-critical algorithms
implemented in C++/OpenMP. NetworKit is
maintained by the Research Group Parallel Com-
puting of the Institute of Theoretical Informatics
at Karlsruhe Institute of Technology (KIT). It
started as a collection of community detection
algorithms developed in C++ by Henning
Meyerhenke and Christian L. Staudt. It was first
released in March 2013. Its background is
described in the paper (Staudt et al. 2016).

NetworKit is comparable to packages such as
NetworkX, albeit with a focus on parallelism and
scalability. It is a hybrid combining the perfor-
mance of kernels written in C++ with a conve-
nient Python frontend.

NetworKit is a cross-platform (Linux/Unix,
Mac OS X, Windows) package and runs with
Python 3.3 or later. Some installing problems
were reported. Basic documentation is provided.

Python Packages for Networks, Fig. 8 Example 2 network representation with library Nets

8 Python Packages for Networks

http://igraph.org
https://graph-tool.skewed.de/
http://www.boost.org/libs/graph/doc/index.html
http://www.boost.org/libs/graph/doc/index.html
https://networkit.iti.kit.edu/

Snap.py

Stanford Network Analysis Platform (SNAP)
(Leskovec and Sosič 2016) is a general-purpose,
high-performance system for analysis and manip-
ulation of large networks. It is written in C++ and
optimized for maximum performance and com-
pact graph representation. It easily scales to mas-
sive networks with hundreds of millions of nodes
and billions of edges. SNAPwas originally devel-
oped by Jure Leskovec in the course of his PhD
studies. The first release was made available in
November 2009. Snap.py (https://snap.stanford.
edu/snappy/) is a Python interface for SNAP. It
provides performance benefits of SNAP, com-
bined with flexibility of Python.

Installation packages for Mac OS X, Linux
(as CentOS), and Windows 64-bit are available.
Snap.py sticks to Python 2.7 or later (but not
Python 3). Basic documentation is provided.

Tulip Python

Tulip was originally developed in 2001 by David
Auber at LaBRI, University of Bordeaux. At its
web site (http://tulip.labri.fr/Documentation/cur
rent/tulip-python/html/), we find the following
description: Tulip is an information visualization
framework written in C++ dedicated to the analy-
sis and visualization of graphs. Tulip Python is a
set of modules that exposes to Python almost all
the content of the Tulip C ++ API. The main
features provided by the bindings are creation
and manipulation of graphs, storage of data on
graph elements (float, integer, Boolean, color,
size, coordinate, list, etc.), application of algo-
rithms of different types on graphs (layout, metric,
clustering, etc.), and the ability to write Tulip
plug-ins in pure Python. The bindings can be
used inside the Tulip software GUI in order to
run scripts on the current visualized graph.
Starting from Tulip 3.6, the bindings can also be
used outside Tulip through the classical Python
interpreter.

For details about Tulip, see the essay Tulip 5.
Tulip Python is a cross-platform (Linux/Unix,

Mac OS X, Windows) package and runs with

Python 3.3 or later. Basic documentation is
provided.

Cross-References

▶Network Data File Formats
▶ Pajek and PajekXXL
▶R Packages for Social Network Analysis
▶Tulip 5
▶ Sources of Network Data

Acknowledgments The work was partially supported by
Slovenian Research Agency (ARRS) projects J7-8279 and
J1-6720 and grant P1-0294.

References

Al-Taie MZ, Kadry S (2017) Python for graph and network
analysis. Springer, Cham

Batagelj V, Praprotnik S (2016) An algebraic approach to
temporal network analysis based on temporal quanti-
ties. Soc Netw Anal Min 6(1):1–22

Berge C (1958) Théorie des graphes et ses applications.
Dunod, Paris. The theory of graphs. Courier Co., 1962

Caldarelli G, Chessa A (2016) Data science and complex
networks: real cases studies with Python. Oxford Uni-
versity Press, Oxford

Csárdi G, Nepusz T (2006) The igraph software package
for complex network research. InterJournal Complex
Systems, 1695

Dahl OJ, Dijkstra EW, Hoare CAR (1972) Structured pro-
gramming. Academic, London

de Nooy W, Mrvar A, Batagelj V (2012) Exploratory
network analysis using Pajek. Cambridge University
Press, Cambridge

Doreian P, Mrvar A (2009) Partitioning signed social net-
works. Soc Networks 31(1):1–11

Doreian P, Batagelj V, Ferligoj A (2005) Generalized
blockmodeling. Cambridge University Press,
New York

Ferligoj A, Batagelj V (1982) Clustering with relational
constraint. Psychometrika 47(4):413–426

Fouss F, Saerens M, Shimbo M (2016) Algorithms and
models for network data and link analysis. Cambridge
University Press, Cambridge, UK

Gohlke C (2011) Unofficial windows binaries for Python
extension packages. http://www.lfd.uci.edu/~gohlke/
pythonlibs/

Granoveter M (1973) The strength of weak ties. Am
J Sociol 78(6):1360–1380

Hagberg A, Schult D, Swart P (2008) Exploring network
structure, dynamics, and function using NetworkX. In:
Varoquaux G, Vaught T, Millman J (eds) Proceedings

Python Packages for Networks 9

https://snap.stanford.edu/snappy/
https://snap.stanford.edu/snappy/
http://tulip.labri.fr/Documentation/current/tulip-python/html/
http://tulip.labri.fr/Documentation/current/tulip-python/html/
http://link.springer.com/Network Data File Formats
http://link.springer.com/Pajek and PajekXXL
http://link.springer.com/R Packages for Social Network Analysis
http://link.springer.com/Tulip 5
http://link.springer.com/Sources of Network Data
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/

of the 7th Python in science conference (SciPy 2008),
pp 11–15

Harary F (1969) Graph theory. Addison-Wesley, Reading
Hetland ML (2010) Python Algorithms: mastering basic

algorithms in the Python Language. Apress, New York
Joyner D, Nguyen MV, Phillips D (2013) Algorithmic

graph theory and Sage. https://code.google.com/
archive/p/graphbook/

Leskovec J, Sosič R (2016) SNAP: a general purpose net-
work analysis and graphmining library. ACMTrans Intell
Syst Technol 8(1): 1 https://dl.acm.org/citation.cfm?id=
2898361

Staudt C, Sazonovs A, Meyerhenke H (2016) NetworKit: a
tool suite for large-scale complex network analysis.
Netw Sci 4(4):508–530

Traxl D, Boers N, Kurths J (2016) Deep graphs – a general
framework to represent and analyze heterogeneous
complex systems across scales. Chaos 26(6):065303

Tsvetovat M, Kouznetsov A (2011) Social network analy-
sis for startups: finding connections on the social web.
O’Reilly, Sebastopol

van Rossum G (1998) Python patterns – implementing
graphs. https://www.python.org/doc/essays/graphs/

Zykov AA (1969) Teorija konechnyh grafov I. Nauka,
Novosibirsk

10 Python Packages for Networks

https://code.google.com/archive/p/graphbook/
https://code.google.com/archive/p/graphbook/
https://dl.acm.org/citation.cfm?id=2898361
https://dl.acm.org/citation.cfm?id=2898361
https://www.python.org/doc/essays/graphs/

	110210-1:
	Python Packages for Networks
	Synonyms
	Glossary
	Definition
	Introduction
	Networks
	Types of Networks
	Description of Networks
	Factorization and Description of Large Networks
	netJSON
	Representations of Networks in Python
	Python Packages
	NetworkX
	DeepGraph
	Zen
	igraph
	graph-tool
	NetworKit
	Snap.py
	Tulip Python
	Cross-References
	Acknowledgments

	References

