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Synonyms
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vector and matrix; Network; Network multiplica-
tion; Semiring; Simple walk; Value matrix; Walk

Glossary

Algebraic
structure:

A set with one or more operations
defined on it and rules that hold for
them

Network
analysis:

A study of networks as
representations of relations between
discrete objects

Sparse
matrix:

A matrix with most of entries equal
to zero

Large
network:

A network with several thousands or
millions of nodes

Complete
graph:

Kn – A graph in which every pair of
nodes is linked

Definition

A network can be represented also with a
corresponding matrix. Using matrix operations
(addition and multiplication) over an appropriate
semiring a unified approach to several network
analysis problems can be developed. Matrix mul-
tiplication is about traveling on network.

Introduction

Semirings are algebraic structures with two oper-
ations that provide the basic conditions for study-
ing matrix addition and multiplication and path
problems in networks. Several results and algo-
rithms from different fields of application turn out
to be special cases over the corresponding
semirings.

Semirings

Let  be a set and a, b, c elements from  .
A semiring (Abdali and Saunders 1985; Baras and
Theodorakopoulos 2010; Batagelj 1994; Carré
1979) is an algebraic structure ,� ,� , 0, 1ð Þ
with two binary operations (addition � and multi-
plication �) where:

• ,� , 0ð Þ is an abelian monoid with the
neutral element 0 (zero):
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a� b ¼ b� a commutativity

a� bð Þ � c ¼ a� b� cð Þ associativity

a� 0 ¼ a existence of zero

• ,� , 1ð Þ is a monoid with the neutral ele-
ment 1 (unit):

a� bð Þ � c ¼ a� b� cð Þ associativity

a� 1 ¼ 1� a ¼ a existence of a unit

•Multiplication � distributes over addition �:

a� b� cð Þ ¼ a� b� a� c
b� cð Þ � a ¼ b� a� c� a

In formulas we assume precedence of multipli-
cation over addition.

A semiring ,� ,� , 0, 1ð Þ is complete if the
addition is well defined for countable sets of ele-
ments and the commutativity, associativity, and
distributivity hold in the case of countable sets.
These properties are generalized in this case; for
example, the distributivity takes the form

�
i
ai

� �
� �

j
bj

� �
¼ �

i
�
j

ai � bj
� �� �

¼ �
i, j

ai � bj
� �

:

The addition is idempotent if a � a = a for all
a�. In this case the semiring over a finite set
is complete.

A semiring ,� ,� , 0, 1ð Þ is closed if for the
additional (unary) closure operation * it holds for
all a�:

a� ¼ 1� a� a� ¼ 1� a� � a:

The power an, n � ℕ of an element a�
is defined by a0 = 1 and an + 1 = an � a for
n � 0.

Different closures over the same semiring can
exist. A complete semiring is always closed for
the closure

a� ¼ �
k�ℕ

ak:

In a closed semiring we can also define a strict
closure a as

a ¼ a� a�:

In a semiring ,� ,� , 0, 1ð Þ the absorption
law holds if for all a, b, c�:

a� b� a� c� b ¼ a� b:

Because of the distributivity, it is sufficient for
the absorption law to check the property
1 � c = 1 for all c�.

Combinatorial Semiring
(ℕ, +, �, 0, 1)

This is the most commonly used semiring. Also
some other sets are used: ℝ, ℝþ

0 , ℚ. For ℕ ¼ ℕ
[ 1f g, the semiring is closed for a� ¼ P

k�ℕ ak

because it is a complete semiring. An example of a
closure for ℝ ¼ ℝ [ 1f g is a� = 1/(1 � a) for
a 6¼ 1,1 and 0*= 1, 1*=1, and1*=1. This
semiring is commutative because it holds a� b=
b � a for all a and b in the set. Combinatorial
semiring is not an idempotent semiring.

Reachability Semiring
({0, 1}, _ , ^ , 0, 1)

The logical (boolean, reachability) semiring is
suitable for solving the connectivity questions in
networks. The multiplication is commutative and
the absorption law holds. The reachability semi-
ring is closed for a� = 1 _ a ^ a� = 1.

Shortest Paths Semiring
(ℝ

þ
0 , min, +, 1, 0)

The commutativity of multiplication holds in this
semiring. The semiring is closed for a� = min
(0, a + a�) = 0 (0 is the smallest element in the
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set ℝþ
0 ). Since min(0, a) = 0, the absorption law

also holds. For the set ℕ, the semiring is called a
tropical semiring. Another set isℝ and in this case
the semiring is isomorphic (x ! �x) to max-plus
semiring (ℝ [ {�1}, max , + , �1, 0).

Pathfinder Semiring (ℝ
þ
0 , min, r , 1, 0)

The Pathfinder semiring (Schvaneveldt et al.
1988) is a special case from the family of semi-
rings obtained as follows. Let B � ℝ be such that
(B, +, �, 0, 1) or (B,min, +, U, 0) is a semiring (U=
max(B)). Therefore 0 � B and 1 � B. Let A � ℝ
be such that g : A! B is a bijection. Let us define
operations �, ∇, � so that g is a homomorphism:

g a� bð Þ ¼ g að Þ þ g bð Þ,
g a∇bð Þ ¼ min g að Þ, g bð Þð Þ,
g a� bð Þ ¼ g að Þ � g bð Þ:

This is equivalent to

a� b ¼ g�1 g að Þ þ g bð Þð Þ,
a∇b ¼ g�1 min g að Þ, g bð Þð Þð Þ,
a� b ¼ g�1 g að Þ � g bð Þð Þ:

The function g�1 is also a homomorphism. If
g is strictly increasing function, then

a∇b ¼ g�1 min g að Þ, g bð Þð Þð Þ ¼ minða, bÞ:

Since the homomorphisms preserve the algebraic
properties, also the structures

ðA, � , � , g�1ð0Þ, g�1ð1ÞÞ

and

ðA,∇, � , g�1ðUÞ, g�1ð0ÞÞ

are semirings.
For g(:r) = xr, g�1 yð Þ ¼ ffiffiffi

yr
p

, we get the Path-
finder semiring ( ℝ

þ
0 , min, r , 1, 0). The

multiplicative operation is the Minkowski opera-
tion a r b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ar þ brr
p

. This semiring is closed for
a* = 0 and the absorption law holds in it.

In Pathfinder algorithm the value r for the
Minkowski operation is selected according to a
dissimilarity measure. For a value r = 1, the
semiring is the shortest path semiring, and for a
value r = 1, the semiring is the min-max
semiring.

More about semirings and several other exam-
ples can be found in (Baras and
Theodorakopoulos 2010; Batagelj and Praprotnik
2016; Burkard et al. 1984; Carré 1979; Glazek
2002; Golan 1999; Gondran and Minoux 2008;
Kepner and Gilbert 2011).

Matrices

An m 	 n matrix A over a set  is a rectangular
array of elements from the set  that consists of
m rows and n columns. The entry in the i-th row
and j-th column is denoted by aij. If m = n the
matrix A is called a square matrix. The matrix
with all entry values equal to 0 is called the zero
matrix and is denoted by 0mn.

The transpose of a matrix A is a matrix AT in
which the rows of A are written as the columns of
AT : aTij ¼ aji . A square matrix A is symmetric if

A = AT.
A diagonal matrix is a square matrix A such

that only diagonal elements are nonzero: aij = 0,
for i 6¼ j. If aii= 1, i= 1,. . ., n, a diagonal matrix is
called the identity matrix In of order n. A square
matrix A is upper triangular if aij = 0, i > j, and
its transpose is a lower triangular matrix.

LetMmn ð Þbe a set of matrices of orderm	 n
over the semiring ( , �, �, 0, 1) in which we
additionally require

8a� : a� 0 ¼ 0� a ¼ 0,

and let M ð Þ be a set of all matrices over the .
The operations � and � can be extended to the
M ð Þ:

A, B�Mmn ð Þ :A�B¼ auv�buv½ 
�Mmn ð Þ
A�Mmk ð Þ,
B�Mkn ð Þ :A�B¼ �k

t¼1aut�btv
� �

�Mmn ð Þ:

Semirings and Matrix Analysis of Networks 3



Then:

• Mmn ð Þ,� , 0mnð Þ is an abelian monoid.
• (Mn2 ð Þ, �, In) is a monoid.
• (Mn2 ð Þ, �, �, 0n, In) is a semiring.

For matrices A and B, it holds

A� Bð ÞT ¼ BT � AT :

Network Multiplication

A (simple directed) network N is an ordered
pair of sets (V, A) where V is the set of nodes
and A � V 	 V is the set of arcs (directed
links). We assume that the set of nodes is finite
V = {v1, v2,. . ., vn}. Let N = ((I , J ), A, w) be
a simple two-mode network, where I and J are
disjoint (sub)sets of nodes (V = I [ J , I \
J = ∅),A is a set of arcs linking I and J , and
the mapping w: A !  is the arcs value
function also called a weight. We can assign to
a network its value matrix W = [wij] with
elements

wij ¼ w i, jð Þð Þ i, jð Þ�A
0 otherwise:

	

The problem with value matrices in computer
applications is their size. The value matrices of
large networks are sparse. There is no need to
store the zero values in a matrix, and different
data structures can be used for saving and working
with value matrices: special dictionaries and lists.

Let N A ¼ I ,Kð Þ,AA,wAð Þ and N B ¼
K,Jð Þ,AB,wBð Þ be a pair of networks with

corresponding matrices A I	K and BK	J , respec-
tively. Assume also that wA: AA ! , wB: AB

! , and (, �, �, 0, 1) is a semiring. We say
that such networks/matrices are compatible. The
productN A *N B of networksN A and N B is a
networkN C= (( I ,J ),AC, wC) forAC= {(i, j); i
� I , j � J , cij 6¼ 0} and wC((i, j)) = cij for (i, j)
� AC, where C = [cij]= A� B. If all three sets

of nodes are the same ( I =K=J), we are dealing
with ordinary one-mode networks (square
matrices).

When do we get an arc in the product network?
Let’s look at the definition of the matrix product

cij ¼ �
k�K

aik � bkj:

There is an arc (i, j) � AC if cij is nonzero.
Therefore at least one term aik � bkj is nonzero,
but this means that both aik and bkj should be
nonzero, and thus (i,k) � AA and (k,j) � AB

(see Fig. 1):

cij ¼ �
k�NA ið Þ\N�

B jð Þ
aik � bkj,

where NA(i) are the successors of node i in the
network N A and N�

B jð Þ are the predecessors of
node j in the networkN B. The value of the entry cij
equals to the value of all paths (of length 2) from
i � I to j � J passing through some node k � K.

The standard procedure to compute the product
of matricesA I	K andBK	J has the complexityO
(| I | � |K| � |J |) and is therefore too slow to be used
for large networks. Since the matrices of large
networks are usually sparse, we can compute the
product of two networks much faster considering
only nonzero entries (Batagelj and Cerinšek 2013;
Batagelj and Mrvar 2008):

i

ai.k

bk.j

k

j

A B

Semirings and Matrix Analysis of Networks,
Fig. 1 Multiplication of networks
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for k�K do

for i�N�
A kð Þ do

for j�NB kð Þ do
If ∃cij then

cij ¼ cij � aik � bkj
else

cij ¼ aik � bkj:

In general the multiplication of large sparse
networks is a “dangerous” operation since the
result can “explode” – it is not sparse.

From the network multiplication algorithm, we
see that each intermediate node k � K adds to a
product network a complete two-mode sub-
networkKN�

A kð Þ,NB kð Þ (or, in the caseA=B, a com-
plete subnetwork KN(k)). If both degrees
degA kð Þ ¼ N�

A kð Þ

 

 and degB(k) = |NB(k)| are

large, then already the computation of this com-
plete subnetwork has a quadratic (time and space)
complexity – the result “explodes.”

If for the sparse networks N A and N B, there
are in K only few nodes with large degree and no
one among them with large degree in both net-
works, then also the resulting product network
N C is sparse.

The Algebraic Path Problem

The use of a special semiring and a multiplication
of networks can lead us to the essence of the
shortest path problem (Baras and
Theodorakopoulos 2010). Many other network
problems can be solved by replacing the usual

addition and multiplication with the
corresponding operations from an appropriate
semiring.

Let N = (V , A, w) be a network where w: A
!  is the value (weight) of arcs such that (,�,
�, 0, 1) is a semiring. We denote the number of
nodes as n ¼ Vj j and the number of arcs as
m ¼ Aj j.

A finite sequence of nodes s =
(u0, u1, u2, . . ., up � 1, up) is a walk of length p
onN if every pair of neighboring nodes is linked:
(ui�1, ui) � A, i= 1,. . .,p. Finite sequence s is a
semiwalk or chain onN if every pair of neighbor-
ing nodes is linked neglecting the direction of an
arc: ui�1, uj

� �
�A _ ui, ui�1ð Þ�A, i ¼ 1, . . . , p .

A (semi)walk is closed if its end nodes coincide:
u0 = up. A walk is simple or a path if no node
repeats in it. A closed walk with different nodes,
except first and last, is called a cycle.

We can extend the weight w to walks and sets
of walks onN by the following rules (see Fig. 2):

• Let sn = (v) be a null walk in the node v � V;
then w(sn) = 1.

• Let s = (u0, u1, u2,. . ., up�1, up) be a walk of
length p � 1 on N ; then

w sð Þ ¼ �k
i¼1

w ui�1, uið Þ:

• For empty set of walks ∅ it holds w(∅) = 0.
• Let S = {s1, s2,. . .} be a set of walks in N ;

then

w Sð Þ ¼ �
s�S

w sð Þ:

w(σ1)

w(σ1)

w(σ1)⊕w(σ2)

w(σ2)

w(σ2)

u

u

v

vt

vu

vu

w(σ1)    w(σ2)

Semirings and Matrix
Analysis of Networks,
Fig. 2 Semiring operations
and values of walks
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Let s1 and s2 be compatible walks on N : the
end node of the walk s1 is equal to the start node
of the walk s2. Such walks can be concatenated in
a new walk s1 ○ s2 for which holds

w s1∘s2ð Þ
¼ w s1ð Þ � w s2ð Þ s1 and s2 are compatible

0 otherwise:

	

Let S1 and S2 be finite sets of walks; then

w S1 [ S2ð Þ � w S1 \ S2ð Þ ¼ w S1ð Þ � w S2ð Þ:

In the special case whenS1\ S2=∅, it holds
w( S1 [ S2 ) = w(S1 ) � w(S2 ). Also the
concatenation of walks can be generalized to sets
of walks:

S1∘S2

¼ s1∘s2 : s1 �S1, s2 �S2, s1 and s2 are compatiblef g:

It also holds S○∅ = ∅○S = ∅.
We denote by:

• Sk
uv the set of all walks of length k from node

u to node v

• S kð Þ
uv the set of all walks of length at most k from

node u to node v
• S�

uv the set of all walks from node u to node v

• Suv the set of all nontrivial walks from node
u to node v

• Euv the set of all simple walks (paths) from
node u to node v

The following relations hold among these sets:

Sk
uv � S kð Þ

uv � S�
uv

k 6¼ l , Sk
uv \ Sl

uv ¼ ∅

S kð Þ
uv ¼ [k

i¼0
Si

uv, S�
uv ¼ [1

k¼0
Sk

uv

k � n� 1 : Euv � S kð Þ
uv

w S kð Þ
uv

� �
¼

Xk
i¼0

w Si
uv

� �
:

A set of walksS is uniquely factorizable to sets
of walks S1 and S2 if S = S1 ○ S2, and for all

walks s1,s01 �S1, s2,s02 �S2,s1 6¼ s01,s2 6¼ s02, it
holds s1∘s2 6¼ s01∘s

0
2.

For example, for s, 0 < s < k, a nonempty set
Sk

uv is uniquely factorizable to sets S
s
u • and S

k�s
• v ,

where Ss
u • ¼ [t�VSs

ut, etc.

Theorem 1 Let the finite set S be uniquely
factorizable to S1 and S2 or a semiring is
idempotent. Then it holds

w S1∘S2ð Þ ¼ w S1ð Þ � w S2ð Þ:

The k-th power Wk of a square matrix W over
 is unique because of associativity.

Theorem 2 The entry wk
uv of k-th power Wk of a

value matrixW is equal to the value of all walks of
length k from node u to node v:

w Sk
uv

� � ¼ Wk u, v½ 
 ¼ wk
uv:

Therefore if a network N is acyclic, then it
holds for a value matrix W:

∃k0 : 8k > k0 : Wk ¼ 0,

where k0 is the length of the longest walk in the
network.

If W is the network adjacency matrix over the
combinatorial semiring, the entry wk

uv counts the
number of different walks of length k from u to v.

Let us denote

W kð Þ ¼ �k
i¼0

Wi:

In an idempotent semiring, it holds
W(k) = (1 � W)k.

Theorem 3

w Sk
uv

� � ¼ W kð Þ u, v½ 
 ¼ w kð Þ
uv :

For the combinatorial semiring and the net-

work adjacency matrix W, the entry w kð Þ
uv counts
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the number of different walks of length at most
k from u to v.

The matrix semiring over a complete semiring
is also complete and therefore closed for W� ¼
�1

k¼0W
k.

Theorem 4 For a value matrix W over a com-
plete semiring with closure W� and strict closure

W hold:

w S�
uv

� � ¼ W� u, v½ 
 ¼ w�
uv and

w Suv

� � ¼ W u, v½ 
 ¼ wuv:

For the reachability semiring and the network
adjacency matrixW, the matrixW is its transitive
closure.

For the shortest paths semiring and the network
value matrix W, the entry w�

uv is the value of the
shortest path from u to v.

The paper (Quirin et al. 2008) could be essen-
tially reduced to the observation that the structure

ℝ
þ
0 ;min; r ;1;0

� �
is a (Pathfinder) complete

semiring.
Let ,� ,� , 0, 1ð Þ be an absorptive semiring

and s be a nonsimple walk from a set S�
uv .

Therefore at least one node vj appears more than
once in s. The part of a walk between its first and
last appearance is a closed walk C (see Fig. 3).
The whole walk can be written as s= P○ C○ Q
where P is the initial segment of s from u to the
first appearance of vj, and Q is the terminal seg-
ment of s from the last appearance of vj to v. Note
that P○ Q is also a walk. The value of both walks
together is w({P ○ Q, P ○ C ○ Q}) = w(P ○ Q).
We see that the walks that are not paths do not
contribute to the value of walks. Therefore
w S�

uv

� � ¼ w E�
uv

� �
. This equality holds also for

S�
uv ¼ ∅.
Since the node set V is finite, also the set Euv

is finite which allows us to compute the value w
S�

uv

� �
.WealreadyknowthatW�=W(k)= (l�W)k

for k large enough.
To compute the closure matrix W� of a given

matrix over a complete semiring ,� ,� , 0, 1ð Þ,
we can use the Fletcher’s algorithm (Fletcher
1980):

C0 ¼ W

for k ¼ 1, . . . , n do

for i ¼ 1, . . . , n do

for j ¼ 1, . . . , n do

ck i, j½ 
 ¼ ck�1 i, j½ 
 � ck�1 i, k½ 
�
ck�1 k, k½ 
ð Þ� � ck�1 k, j½ 


ck k, k½ 
 ¼ 1� ck k, k½ 

W� ¼ Cn

If we delete the statement ck[k, k]= 1� ck[k, k],
we obtain the algorithm for computing the strict
closure W. If the addition � is idempotent, we can
compute the closure matrix in place – we omit the
subscripts in matrices Ck.

The Fletcher’s algorithm is a generalization of
a sequence of algorithms (Kleene, Warshall,
Floyd, Roy) for computing closures on specific
semirings.

Multiplication of Matrix and Vector

Let ei be a unit vector of length n – the only
nonzero element is at the i-th position and it is
equal to 1. It is essentially a 1 	 n matrix. The
product of a unit vector and a value matrix of a
network can be used to calculate the values of
walks from a node i to all the other nodes.

Let us denote qT1 ¼ eTi �W . The values of
elements of the vector q1 are equal to the values
of walks of the length 1 from a node i to all other
nodes: q1 j½ 
 ¼ w S1

ij

� �
. We can calculate

P
V1

VnC

Q
Vj

Semirings and Matrix Analysis of Networks,
Fig. 3 Example of a walk that is not a path
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iteratively the values of all walks of the length s,
s = 2, 3,. . .,k that start in the node

i: qTs ¼ qTs�1 �W

or qTs ¼ eTi �Ws and qs j½ 
 ¼ w Ss
ij

� �
:

Similarly we get

q kð ÞT ¼ eTi �W kð Þ, q kð Þ j½ 
 ¼ w S
kð Þ
ij

� �

and q�
T ¼ eTi �W�, q� j½ 
 ¼ w S�ij

� �
:

This can be generalized as follows. Let I � V
and e I is the characteristic vector of the set I � it
has value 1 for elements of I and is 0 elsewhere.
Then, for example, for qTk ¼ eTI �Wk , it holds

qk j½ 
 ¼ w [i� I Sk
ij

� �
.

Future Directions

New network analysis problems are emerging all
the time. For some of them a semiring-based
approach can prove to be useful. Recently we
proposed a longitudinal approach to analysis of
temporal networks based on semirings of tempo-
ral quantities (Batagelj and Praprotnik 2016).

Cross-References

▶Eigenvalues, Singular Value Decomposition
▶ Iterative Methods for Eigenvalues/
Eigenvectors

▶Markov Chain Monte Carlo Model
▶Matrix Algebra, Basics of
▶ Spectral Analysis
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