Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

Introduction to Network Analysis using Pajek Description of networks

Vladimir Batagelj

IMFM Ljubljana, IAM UP Koper and University of Ljubljana

7th Internatonal Summer School THEORY AND METHODS OF NETWORK ANALYSIS HSE, Moscow, Russia, 19-23 June, 2017

Outline

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

1 Networks

- 2 Descriptions of networks
- 3 Properties
- 4 Types of networks
- 5 Temporal networks
- 6 Multi-relational networks
- 7 Two-mode networks

イロト イポト イヨト イヨト

ク < (~ 2 / 30

e-mail: vladimir.batagelj@fmf.uni-lj.si
slides: 7ISS-nets.pdf
version: June 20, 2017

Networks

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

Alexandra Schuler/ Marion Laging-Glaser: Analyse von Snoopy Comics A network is based on two sets – set of nodes (vertices), that represent the selected units, and set of links (lines), that represent ties between units. They determine a graph. A link can be directed – an arc, or undirected – an edge.

Additional data about nodes or links can be known – their properties (attributes). For example: name/label, type, value, ...

Network = **Graph** + **Data**

The data can be measured or computed.

Networks / Formally

Description

V. Batagelj

Networks

- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks

A network $\mathcal{N} = (\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W})$ consists of:

• a graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$, where \mathcal{V} is the set of nodes, \mathcal{A} is the set of arcs, \mathcal{E} is the set of edges, and $\mathcal{L} = \mathcal{E} \cup \mathcal{A}$ is the set of links.

$$n = |\mathcal{V}|, \ m = |\mathcal{L}|$$

- \mathcal{P} node value functions / properties: $p: \mathcal{V} \rightarrow A$
- \mathcal{W} link value functions / weights: $w: \mathcal{L} \rightarrow B$

Graph

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

unit, actor – node, vertex tie, line – link, edge, arc arc = directed link, (a, d)*a* is the initial node, *d* is the terminal node.

 $\begin{array}{l} \mbox{edge} &= \mbox{undirected} & \mbox{link,} \\ (c: d) \\ c \mbox{ and } d \mbox{ are end nodes.} \end{array}$

Graph / Sets - NET

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

$$\mathcal{V} = \{a, b, c, d, e, f, g, h, i, j, k, l\}$$

$$\mathcal{A} = \{(a, b), (a, d), (a, f), (b, a), (b, f), (c, b), (c, c), (c, g)_1, (c, g)_2, (e, c), (e, f), (e, h), (f, k), (h, d), (h, l), (j, h), (l, e), (l, g), (l, h)\}$$

$$\mathcal{E} = \{(b: e), (c: d), (e: g), (f: h)\}$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{A}, \mathcal{E})$$

$$\mathcal{L} = \mathcal{A} \cup \mathcal{E}$$

 $\mathcal{A} = \emptyset$ - undirected graph; $\mathcal{E} = \emptyset$ - directed graph. Pajek: local: GraphSet; TinaSet; WWW: GraphSet / net; TinaSet / net, picture picture.

Graph / Sets - NET

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

*Vertices	12	
1 "a"	0.1020	0.3226
2 "b"	0.2860	0.0876
3 "c"	0.5322	0.2304
4 "d"	0.3259	0.3917
5 "e"	0.5543	0.4770
6 "f"	0.1552	0.6406
7 "g"	0.8293	0.3249
8 "h"	0.4479	0.6866
9 "i"	0.8204	0.8203
10 "j"	0.4789	0.9055
11 "k"	0.1175	0.9032
12 "1"	0.7095	0.6475
*Arcs		
1 2		
2 1		
1 4		
1 6		
2 6		
3 2		
3 3		
3 7		
3 7		
5 3		
5 6		
5 8		
6 11		
8 4		
10 8		
12 5		
12 7		
8 12		
12 8		
*Edges		
2 5		
3 4		
~ 7		

5 7 6 8

Graph / Neighbors - NET

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

Pajek: local: GraphList; TinaList; WWW: GraphList / net; TinaList / net.

$$N(v) = N_A(v) \cup N_E(v),$$
 also $N_{out}(v), N_{in}(v)$

Star in v, S(v) is the set of all links with v as their initial node.

りくで 8/30

Graph / Neighbors - NET

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

*Vei	rtices	12		
1	"a"	0.1	020	0.3226
2	"b"	0.2	860	0.0876
3	"c"	0.5	322	0.2304
4	"d"	0.3	259	0.3917
5	"e"	0.5	543	0.4770
6	"f"	0.1	552	0.6406
7	"a"	0.8	293	0.3249
8	"ñ"	0.4	479	0.6866
9	"i"	0.8	204	0.8203
10	" - "	0.4	789	0.9055
11	"k"	0.1	175	0.9032
12	"]"	0.7	0.95	0.6475
*Arc	slist			
1	2 4	6		
2	1 6	-		
3	2 3	7	7	
5	3 6	8	,	
6	11	0		
ĕ	4 12			
10	9 12			
10	5 7	0		
1Z *Ed.	vooligt	- 0		
Ead	Jesitsi	-		
2	2			
2	4			
5	/			
6	8			

Graph / Matrix – MAT

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

	а	Ь	с	d	е	f	g	h	i	j	k	Ι
а	0	1	0	1	0	1	0	0	0	0	0	0
b	1	0	0	0	1	1	0	0	0	0	0	0
с	0	1	1	1	0	0	2	0	0	0	0	0
d	0	0	1	0	0	0	0	0	0	0	0	0
е	0	1	1	0	0	1	1	1	0	0	0	0
f	0	0	0	0	0	0	0	1	0	0	1	0
g	0	0	0	0	1	0	0	0	0	0	0	0
h	0	0	0	1	0	1	0	0	0	0	0	1
i	0	0	0	0	0	0	0	0	0	0	0	0
j	0	0	0	0	0	0	0	1	0	0	0	0
k	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0	0	0	0

Pajek: local: GraphMat; TinaMat, picture picture; WWW: GraphMat / net; TinaMat / net, paj. Graph G is simple if in the corresponding matrix all entries are 0 or 1.

Graph / Matrix – MAT

Node Properties / CLU, VEC, PER

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks All three types of files have the same structure:

*vertices n n is the number of nodes v_1 node 1 has value v_1 ... v_n

CLUstering – partition of nodes – nominal or ordinal data about nodes $v_i \in \mathbb{N}$: node *i* belongs to the cluster/group v_i ; VECtor – numeric data about nodes $v_i \in \mathbb{R}$: the property has value v_i on node *i*; PERmutation – ordering of nodes $v_i \in \mathbb{N}$: node *i* is at the v_i -th position.

When collecting the network data consider to provide as much properties as possible.

Example: Wolfe Monkey Data

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

inter.net	inter.net	sex.clu	age.vec	rank.per
*Vertices 20 1 *m01* 2 *m02* 3 *m03* 4 *m04* 5 *m05* 6 *f06* 7 *f07* 8 *f08* 9 *f09* 10 *f10* 11 *f11* 12 *f12* 13 *f13* 14 *f14* 14 *f14* 15 *f15* 16 *f16* 17 *f17* 18 *f18* 19 *f19* 20 *f20* *Edges 1 2 2 1 3 10 1 4 4 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*vertices 20 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	*vertices 20 15 10 10 8 7 15 5 11 8 9 16 10 14 5 7 11 14 5 15 4	*vertices 20 1 2 3 4 5 10 11 6 12 9 7 8 18 19 20 13 14 15 16 17

Important note: 0 is not allowed as node number.

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の へ () 13/30

Pajek's Project File / PAJ

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks All types of data can be combined into a single file – Pajek's project file *file*.paj.

The easiest way to do this is:

- read all data files in Pajek,
- compute some additional data,
- delete (dispose) some data,
- save all as a project file with File/Pajek Project File/Save.

Next time you can restore everything with a single File/Pajek Project File/Read.

Wolfe network as a Pajek's project file (PDF/paj).

Representations of properties

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks Properties of nodes \mathcal{P} and links \mathcal{W} can be measured in different scales: numerical, ordinal and nominal. They can be input as data or computed from the network.

In Pajek numerical properties of nodes are represented by vectors, nominal properties by partitions or as labels of nodes. Numerical property can be displayed as size (width and height) of node (figure), as its coordinate; and a nominal property as color or shape of the figure, or as a node's label (content, size and color).

We can assign in Pajek numerical values to links. They can be displayed as value, thickness or grey level. Nominal vales can be assigned as label, color or line pattern (see Pajek manual, section **4.3**).

Some related operations

V. Batagelj

Properties

Two-mode

Operations/Network+Vector/Transform/Put Coordi Network/Create Vector/Get Coordinate

- [Draw] Layout/Energy/Kamada-Kawai/Free
- [Draw] Export/2D/EPS-PS

Display of properties – school (Moody)

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

Types of networks

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks Besides ordinary (directed, undirected, mixed) networks some extended types of networks are also used:

- 2-mode networks, bipartite (valued) graphs networks between two disjoint sets of nodes.
- multi-relational networks.
- temporal networks, dynamic graphs networks changing over time.
- specialized networks: representation of genealogies as *p-graphs*; Petri's nets, ...

The network (input) file formats should provide means to express all these types of networks. All interesting data should be recorded (respecting privacy).

Temporal networks

Description

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks

Temporal networks

- Multirelational networks
- Two-mode networks

In a temporal network the presence/activity of node/link can change through time. Pajek supports two types of descriptions of temporal networks based on presence and on events.

Temporal network

Temporal network

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

is obtained if the time T is attached to an ordinary network. T is a set of time points $t \in T$.

 $\mathcal{N}_{\mathcal{T}} = (\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W}, \mathcal{T})$

In temporal network nodes $v \in \mathcal{V}$ and links $l \in \mathcal{L}$ are not necessarily present or active in all time points. If a link l(u, v) is active in time point t then also its endnodes u and v should be active in time t.

We will denote the network consisting of links and nodes active in time $t \in T$ by $\mathcal{N}(t)$ and call it a time slice in time point t. To get time slices in Pajek use

Network/Temporal Network/Generate in time

Temporal networks - presence

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

Time.net.

Node *a* is present in time points 5, 6, 7, 8, 9, 10 and 12, 13, 14.

Edge (1:3) is present in time points 6, 7, 8.

* means 'infinity'.

A link is present, if both its endnodes are present.

Temporal networks – events

Description

	E .		*Events
V. Batagelj	Event	Explanation	TT 1
	11 t	time point t starts	
	TE +	end events - following events happen when	AV 2 "b"
Maturalia	15.0	time point t is finished	TE 3
INELWORKS	AVvns	add vertex v with label n and properties s	uv o
	HVV	hide node v	nv Z
Descriptions	SV v	show node v	TI 4
of networks	DV v	delete node v	AV 3 "e"
or networks	AA u v s	add arc (u, v) with properties s	TT E
	HAUV	hide arc (u, v)	11 5
Properties	SA u v	show arc (u, v)	AV 1 "a"
	DAuv	delete arc (u, v)	TT 6
Types of	AEuvs	add edge (u : v) with properties s	
- J	HE U V	hide edge (u : v)	ALISI
networks	SE U V	show edge (u : v)	TI 7
	DEUV	delete edge (U : V)	SV 2
Temporal	CVVS	change property of node V to s	
networks	CEUVS	change property of adda (u, u) to s	
networks	CEUVS	change (un)directedness of link (u, v)	TE 7
N.4. 1.2	CD U V	change direction of arc (u, v)	DE 1 2
IVIulti-	PEUVS	replace pair of arcs (u, v) and (v, u) by single edge $(u : v)$	
relational		with properties s	DV Z
networks	AP u v s	add pair of arcs (u, v) and (v, u)	TE 8
neeworks		with properties s	DE 1 3
	DP u v	delete pair of arcs (u, v) and (v, u)	TE 10
I wo-mode	EP u v s	replace edge (u : v) by pair of arcs (u, v) and (v, u)	
networks		with properties s	_ HV 1
	s can be empt	y.	TI 12
	In case of par	allel links : k denotes the k-th link – HE:3 14 37 hides	SV 1
			DV 1

the third edge linking nodes 14 and 37.

Time.tim. Friends.tim.

File/Network/Read Time Events

*Vertices 3

TE 14 DV 1

Temporal networks / September 11

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

Steve Corman with collaborators from Arizona State University transformed, using his Centering Resonance Analysis (**CRA**), daily Reuters news (66 days) about September 11th into a temporal network of words coappearance.

Multi-relational networks

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

A multi-relational network is denoted by

$$\mathcal{N} = (\mathcal{V}, (\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_k), \mathcal{P}, \mathcal{W})$$

and contains different relations \mathcal{L}_i (sets of links) over the same set of nodes. Also the weights from \mathcal{W} are defined on different relations or their union.

Examples of such networks are: Transportation system in a city (stations, lines); WordNet (words, semantic relations: synonymy, antonymy, hyponymy, meronymy,...), KEDS networks (states, relations between states: Visit, Ask information, Warn, Expel person, ...), ...

... Multi-relational networks

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks The relation can be assigned to a link as follows:

 add to a keyword for description of links (*arcs, *edges, *arcslist, *edgeslist, *matrix) the number of relation followed by its name:

*arcslist :3 "sent a letter to"

All links controlled by this keyword belong to the specified relation. (Sampson, SampsonL)

• Any link controlled by *arcs or *edges can be assigned to selected relation by starting its description by the number of this relation.

3: 47 14 5

Link with endnodes 47 and 14 and weight 5 belongs to relation 3.

Computer-assisted text analysis

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks An often used way to obtain networks is the computer-assisted text analysis (CaTA).

Terms considered in TA are collected in a dictionary (it can be fixed in advance, or built dynamically). The main two problems with terms are equivalence (different words representing the same term) and ambiguity (same word representing different terms). Because of these the coding – transformation of raw text data into formal description – is done often manually or semiautomaticly. As units of TA we usually consider clauses, statements, paragraphs, news, messages, ... Till now the thematic and semantic TA mainly used statistical methods for analysis of the coded data.

In thematic TA the units are coded as rectangular matrix *Text units* \times *Concepts* which can be considered as a two-mode network.

Examples: M.M. Miller: VBPro, H. Klein: Text Analysis/ TextQuest.

... approaches to CaTA

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks In semantic TA the units (often clauses) are encoded according to the S-V-O (*Subject-Verb-Object*) model or its improvements.

Examples: Roberto Franzosi; *KEDS*, *Tabari*, KEDS / Gulf. This coding can be directly considered as network with *Subjects* \cup *Objects* as nodes and links (arcs) labeled with *Verbs*.

See also RDF triples in semantic web, SPARQL.

Multi-relational temporal network - KEDS/WEIS

Description	% Recoded by WEISmonths, Sun Nov % from http://www.ku.edu/~keds/da	28 21:57 ta.dir/b	:00 2004 alk.html				
V. Batagelj	*vertices 325 1 "AFG" [1-*] 2 "AFR" [1-*] 3 "ALB" [1-*] 4 "ALBMED" [1-+]						
Vetworks	5 "ALG" [1-*]						
Descriptions of networks	318 "YUGGOV" [1-*] 319 "YUGMAC" [1-*] 320 "YUGMED" [1-*]						
Properties	321 "YUGMTN" [1-*] 322 "YUGSER" [1-*] 323 "ZAI" [1-*]						
Types of	324 "ZAM" [1-*] 325 "ZIM" [1-*]						
networks	*arcs :0 "*** ABANDONED" *arcs :10 "YIELD"						
Temporal networks	*arcs :11 "SURRENDER" *arcs :12 "RETREAT"						
	<pre>*arcs :223 "MIL ENGAGEMENT" *arcs :224 "RIOT"</pre>						
Viulti- relational	*arcs :225 "ASSASSINATE TORTURE"						
networks	224: 314 153 1 [4] 212: 314 83 1 [4] 224: 3 83 1 [4]	890402 890404 890407	YUG YUG ALB	KSV ETHALB ETHALB	224 212 224	(RIOT) RIOT-TO (ARREST PERSON) (RIOT) RIOTS	RN ALB ETHNIC JAILEI
Two-mode	123: 83 153 1 [4]	890408	ETHALB	KSV	123	(INVESTIGATE)	PROBING
networks	42: 105 63 1 [175] 212: 295 35 1 [175] 43: 306 87 1 [175]	030731 030731 030731	GER UNWCT VAT	CYP BOSSER FUB	042 212 043	(ENDORSE) (ARREST PERSON) (BALLY) BALLIED	GAVE SUPPORT SENTENCED TO PRIS
	13: 295 35 1 [175] 121: 295 22 1 [175] 122: 246 295 1 [175] 121: 35 295 1 [175]	030731 030731 030731 030731	UNWCT UNWCT SER BOSSER	BOSSER BAL UNWCT UNWCT	013 121 122 121	(RETRACT) (CRITICIZE) (DENIGRATE) (CRITICIZE)	CLEARED CHARGES TESTIFIED ACCUSED

Kansas Event Data System KEDS

28 / 30

Two-mode networks

Description

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

In a two-mode network $\mathcal{N} = ((\mathcal{U}, \mathcal{V}), \mathcal{L}, \mathcal{P}, \mathcal{W})$ the set of nodes consists of two disjoint sets of nodes \mathcal{U} and \mathcal{V} , and all the links from \mathcal{L} have one endnode in \mathcal{U} and the other in \mathcal{V} . Often also a weight $w : \mathcal{L} \to \mathbb{R} \in \mathcal{W}$ is given; if not, we assume w(u, v) = 1 for all $(u, v) \in \mathcal{L}$.

A two-mode network can also be described by a rectangular matrix $\mathbf{A} = [a_{uv}]_{\mathcal{U} \times \mathcal{V}}$.

 $a_{uv} = egin{cases} w_{uv} & (u,v) \in \mathcal{L} \ 0 & ext{otherwise} \end{cases}$

Examples: (persons, societies, years of membership), (buyers/consumers, goods, quantity), (parlamentarians, problems, positive vote), (persons, journals, reading). A two-mode network is announced by *vertices $n n_{\mathcal{U}}$. Authors and works.

Deep South

Description

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks

Classical example of two-mode network are the Southern women (Davis 1941).

イロト イポト イヨト イヨト

Davis.paj. Freeman's overview.

		CODE NUMBERS AND DAXES OF SOCIAL EVENTS REPORTED IN Old City Heroid													
NAMES OF PARTICIPARTS OF GROUP I	(1) 6/20	3%	(3) 4/12	(4) 9/26	(5) 2/25	(6) 5/19	3/15	(8) 9/16	(9) 4/8	(10) 6/10	塭	(12)	(13) 11/21	(14) 8/3	
1. Mrs. Evelyn Jefferson. 2. Miss Laura Mandeville	××	××	××	×	××	××		××	×						
3. Miss Theresa Anderson 4. Miss Brenda Rogers 5. Miss Charlotte McDowd	×		×××	××	××	×	××	×							
6. Miss Frances Anderson. 7. Miss Eleanor Nye			×		×	×	×	XX							
Miss Pearl Oglethorpe Miss Ruth DeSand Miss Verne Sanderson					×	×	××	×××	×××			 ×			
11. Miss Myra Liddell 12. Miss Katherine Rogers 13. Miss Schuis Awardale								XXX	××	××		XXX	×	×	
14. Mrs. Nora Fayette. 15. Mrs. Heleu Lloyd.						×	××	×	Ŷ	××	××	xx	Ŷ.	×.	
 Mrs. Dorothy Murchison. Mrs. Olivia Carleton. Mrs. Flora Price. 								×	×××		××				