Derived networks
V. Batagelj

Linked networks

Multiplication
Co-authorship networks

Fractional
approach
Other derived networks

Derived networks and multi-mode network analysis

Vladimir Batagelj
IMFM Ljubljana and IAM UP Koper
ARS'17 International Workshop
Challenges in Social network research
Naples, 16-17. May 2017

ifffi Outline

Derived networks
V. Batagelj

Linked
networks
Multiplication
Co-authorship networks

Fractional
approach
Other derived networks

Conclusions
References

1 Linked networks
2 Multiplication
3 Co-authorship networks
4 Fractional approach
5 Other derived networks
6 Conclusions
7 References

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si
Version (May 17, 2017, 10 : 00): ARS2017vb.pdf

$i 4 f i$
 Linked / multi-mode networks

Derived networks
V. Batagelj

Linked or multi-mode networks are collections of networks over at least two sets of nodes (modes) and consist of some one-mode networks and some two-mode networks linking different modes.

For example: modes are Persons and Organizations. Two one-mode networks describe collaboration among Persons and among Organizations. The linking two-mode network describes membership of Persons to different Organizations.

Linked networks were introduced as a Meta-Matrix approach by Krackhardt and Carley in 1998 [5, 3].

MetaMatrix

Carley and Diesner

Derived
networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship
networks
Fractional
approach
Other derived
networks

Meta-Matrix Entities	Agent	Knowledge	Resources	Tasks Event	Organizations	Location
Agent	Social network	Knowledge network	Capabilites network	Assignment network	Membership network	Agent location network
Knowledge		Information network	Training network	Knowledge requirement network	Organizational knowledge network	Knowledge location network
Resources			Resource network	Resource requirement Network	Organizational Capability network	Resource location network
Tasks/ Events				Precedence network	Organizational assignment network	Task/Event location network
Organizations				Inter- organizational network	Organizatio nal location network	
Location					Proximity network	

MetaMatrix
 CASOS data sets

Derived networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship networks

Fractional approach

Other derived networks

Conclusions
References

$$
\leftarrow \rightarrow \text { C (i) www.casos.cs.cmu.edu/computational_tools/datasets/sets/embassy/ }
$$

embassy - dataset

These data concern the tanzania embassy bombing

itff Analysis of linked networks

Derived networks
V. Batagelj

We can analyze each network separately using available methods for analysis of one-mode and two-mode networks.

For analysis of linked networks we can also use the constrained blockmodeling approach (Žiberna [10]).

In this presentation we will discuss some issues related to the use of derived networks obtained by network multiplication.

$34 i$
 Multiplication of networks

Derived networks
V. Batagelj networks

Given a pair of compatible networks $\mathcal{N}_{A}=\left((\mathcal{I}, \mathcal{K}), \mathcal{A}_{A}, w_{A}\right)$ and $\mathcal{N}_{B}=\left((\mathcal{K}, \mathcal{J}), \mathcal{A}_{B}, w_{B}\right)$ with corresponding matrices $\mathbf{A}_{\mathcal{I} \times \mathcal{K}}$ and $\mathbf{B}_{\mathcal{K} \times \mathcal{J}}$ we call a product of networks \mathcal{N}_{A} and \mathcal{N}_{B} a network $\mathcal{N}_{C}=\left((\mathcal{I}, \mathcal{J}), \mathcal{A}_{C}, w_{C}\right)$, where $\mathcal{A}_{C}=\left\{(i, j): i \in \mathcal{I}, j \in \mathcal{J}, c_{i, j} \neq 0\right\}$ and $w_{C}(i, j)=c_{i, j}$ for $(i, j) \in \mathcal{A}_{C}$. The product matrix $\mathbf{C}=\left[c_{i, j}\right]_{\mathcal{I} \times \mathcal{J}}=\mathbf{A} * \mathbf{B}$ is defined in the standard way

$$
c_{i, j}=\sum_{k \in \mathcal{K}} a_{i, k} \cdot b_{k, j}
$$

In the case when $\mathcal{I}=\mathcal{K}=\mathcal{J}$ we are dealing with ordinary one-mode networks (with square matrices).

24ff Multiplication of networks

Derived networks
V. Batagelj

Linked

networks

Multiplication
Co-authorship

networks

Fractional
approach
Other derived networks

$$
c_{i, j}=\sum_{k \in N_{A}(i) \cap N_{B}^{-}(j)} a_{i, k} \cdot b_{k, j}
$$

If all weights in networks \mathcal{N}_{A} and \mathcal{N}_{B} are equal to 1 the value of $c_{i, j}$ counts the number of ways we can go from $i \in \mathcal{I}$ to $j \in \mathcal{J}$ passing through $\mathcal{K}: c_{i, j}=\left|N_{A}(i) \cap N_{B}^{-}(j)\right|$.

$2 \pi i f$
 Multiplication of networks

Derived networks
V. Batagelj

The standard matrix multiplication is too slow to be used for large networks. For sparse large networks we can multiply much faster considering only nonzero elements. In general the multiplication of large sparse networks is a 'dangerous' operation since the result can 'explode' - it is not sparse.

If for the sparse networks \mathcal{N}_{A} and \mathcal{N}_{B} there are in \mathcal{K} only few nodes with large degree and no one among them with large degree in both networks then also the resulting product network \mathcal{N}_{C} is sparse.

The multiplication transforms two linked networks on sets $\mathcal{I} \times \mathcal{K}$ and $\mathcal{K} \times \mathcal{J}$ into a network on the sets $\mathcal{I} \times \mathcal{J}$. Such networks are called derived networks. They are usually weighted.

Two-mode network analysis

by conversion to one-mode network - projections

Derived networks
V. Batagelj

Often we transform a two-mode network $\mathcal{N}=((\mathcal{U}, \mathcal{V}), \mathcal{L}, w)$ into an ordinary (one-mode) network $\mathcal{N}_{r}=\left(\mathcal{U}, \mathcal{A}_{r}, w_{r}\right)$ or/and $\mathcal{N}_{c}=\left(\mathcal{V}, \mathcal{A}_{c}, w_{c}\right)$, where \mathcal{A}_{r} and w_{r} are determined by the matrix $\mathbf{W}_{r}=\mathbf{W} \mathbf{W}^{T}$.

The network \mathcal{N}_{c} is determined in a similar way by the matrix $\mathbf{W}_{c}=\mathbf{W}^{\top} \mathbf{W}$.

The networks \mathcal{N}_{r} and \mathcal{N}_{c} are analyzed using standard methods.

ifffi Bibliographic networks

Derived networks
V. Batagelj

From a bibliography on selected topic we can construct some two-mode networks:
works \times authors (WA),
works \times keywords (WK);
works \times journals/publishers (WJ);
works \times classification (WC)
authors \times institutions (AI);
institutions \times countries (states) (IS);
and sometimes also the one-mode citation network
works \times works $(\mathbf{C i})$;
where works include papers, reports, books, patents etc.
Besides this we get also at least the partition of works by the publication year, and the vector of number of pages.

$34 i$
 First co-authorship network

Derived networks

Let WA be the works \times authors two-mode authorship network; $w a_{p i}=1$ is describing the authorship of author i of work p.

$$
\forall p \in W: \sum_{i \in A} w a_{p i}=\operatorname{outdeg}_{W A}(p)=\# \text { authors of work } p
$$

Transposition \mathcal{N}^{T} or $t(\mathcal{N})$ is a network obtained from \mathcal{N} in which the node sets are interchanged and to all arcs their direction is reversed. $\mathbf{A W}=\mathbf{W A}^{T}, \mathbf{K W}=\mathbf{W K}^{T}, \ldots$
The first co-authorship network is defined as $\mathbf{C o}=\mathbf{A W} * \mathbf{W A}$

$$
c o_{i j}=\sum_{p \in W} w a_{p i} w a_{p j}=\sum_{p \in N^{-}(i) \cap N^{-}(j)} 1
$$

$c o_{i j}=$ the number of works that authors i and j wrote together $c o_{i i}=$ the total number of works that author i wrote
It holds: $c o_{i j}=c o_{j i}$.

Problem - papers with many co-authors

Cores of orders 20-47 in Co(SN5)

Derived networks
V. Batagelj

Linked
networks
Multiplication
Co-authorship networks

Fractional approach

Other derived networks

Conclusions
References

Network SN5 (2008): for "social network*" + most frequent references + around 100 social networkers; $|W|=193376,|C|=7950,|A|=75930,|J|=14651,|K|=29267$

iffif Outer product decomposition

Derived networks
V. Batagelj

Linked networks

Multiplication
Co-authorship networks

Fractional approach

Other derived networks

Let $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $y=\left[y_{1}, y_{2}, \ldots, y_{m}\right]$ be vectors. Their outer product $x \circ y$ is an $n \times m$ matrix defined as

$$
x \circ y=\left[x_{i} \cdot y_{j}\right]_{n \times m}
$$

Denoting $S_{x}=\sum_{i} x_{i}$ and $S_{y}=\sum_{j} y_{j}$ we get

$$
S=\sum_{i, j}(x \circ y)_{i j}=\sum_{i} \sum_{j} x_{i} \cdot y_{j}=\sum_{i} x_{i} \cdot \sum_{j} y_{j}=S_{x} \cdot S_{y}
$$

Therefore: $\quad S_{x}=S_{y}=1 \quad \Rightarrow \quad S=1$.
It is easy to veryfy that the outer product decomposition holds

$$
\mathbf{A K}=\mathbf{A W} * \mathbf{W K}=\sum_{w} \mathbf{W} \mathbf{A}[w, \cdot] \circ \mathbf{W K}[w, \cdot], \quad \mathbf{A W}=\mathbf{W A}^{T}
$$

Note that for networks with all weights equal to 1 we have

$$
\begin{aligned}
& \mathbf{W A}[w, \cdot] \circ \mathbf{W K}[w, \cdot]=K_{N_{W A}(w), N_{w K}(w)} \\
x^{\prime}=x / S_{x} \quad \Rightarrow \quad & S_{x^{\prime}}=1
\end{aligned}
$$

Example

outer product decomposition

Derived
networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship networks

Fractional approach

Other derived networks

T																
W	a1	a2		a4		WK	k1	k2	k3	k4		AK	k1	k2	k3	k4
W	1	0	1	0		w1	1	1	0	0		a1	2	3	2	2
W2	1	1	0	0		w2	1	0	1	0		a2	1	0	2	0
w	1	0	1	1	*	w3	0	1	1	1	=	a3	1	3	1	2
W	0	1	0	1		w4	0	0	1	0		a4	0	2	2	2
w5	1	0	1	1		w5	0	1	0	1						

H3	k1	k2	k	4		H4	k1	2	3	k		H5	k1	k2	k3	k4
a1	0	1	1	1		a1	0	0	0	0		a1	0	1	0	1
a2	0	0	0	0	$+$	a2	0	0	1	0	+	a2	0	0	0	0
a3	0	1	1	1		a3	0	0	0	0		a3	0	1	0	1
a4	0	1	1	1		a4	0	0	1	0		a4	0	1	0	1

$2 \pi f$
 Fractional approach

Derived networks
V. Batagelj
(Out) normalization $n(\mathcal{N})$ is a network obtained from \mathcal{N} in which the weight of each arc a is divided by the sum of weights of all arcs having the same initial node as the arc a. For binary networks

$$
n(\mathbf{A})=\operatorname{diag}\left(\frac{1}{\max (1, \operatorname{outdeg}(i))}\right)_{i \in \mathcal{I}} * \mathbf{A}
$$

To get an equal contribution $S=1$ of each work to the co-autorship network we have to use normalized vectors in the outer product decomposition. This is equivalent to define a normalized autorship network $\mathbf{N}=n(\mathbf{W A})$ - fractional approach $[2,4,8,6,9]$.

Third co-authorship network

Derived networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship networks

Then the third co-authorship network is

$$
\mathbf{C t}=\mathbf{N}^{T} * \mathbf{N}
$$

$c t_{i j}=$ the total contribution of 'collaboration' of author i with author j to works.

It holds $\quad c t_{i j}=c t_{j i}$.
We usually transform the network $\mathbf{C t}$ into the corresponding undirected network with doubled weights.

Components in $\mathbf{C t}$ (SN5) cut at level 0.5

Derived networks
V. Batagelj

Linked
networks
Multiplication
Co-authorship networks

Fractional approach

Other derived networks

Conclusions
References

Network SN5 (2008): for "social network*" + most frequent references + around 100 social networkers;
$|W|=193376,|C|=7950,|A|=75930,|J|=14651,|K|=29267$

$i \pi f f$
 Newman's co-authorship network

Derived networks
V. Batagelj

In 2001 Newman [7] proposed another fractional approach to defining a co-authorship network considered as a proxy for collaboration network. It is based on slightly different normalization

$$
n^{\prime}(\mathbf{A})=\operatorname{diag}\left(\frac{1}{\max (1, \operatorname{outdeg}(i)-1)}\right)_{i \in \mathcal{I}} * \mathbf{A}
$$

The fourth or Newman's co-authorship network is defined as

$$
\mathbf{C t}^{\prime}=\mathbf{N}^{T} * \mathbf{N}^{\prime}, \text { where } \mathbf{N}^{\prime}=n^{\prime}(\mathbf{W A})
$$

$c t_{i j}^{\prime}=$ the total contribution of 'strict collaboration' of authors i and j to works.
The final result is returned as an undirected simple network without loops and with weights

$$
c t_{i j}^{\prime}=\sum_{p} \frac{2 \cdot w a_{p i} \cdot w a_{p j}}{\max \left(1, \text { outdeg }_{W A}(p)\right) \cdot \max \left(1, \text { outdeg }_{W A}(p)-1\right)}
$$

iffif Authors' citations network

Derived
networks
V. Batagelj

Linked

networks

Multiplication
Co-authorship networks

Fractional approach

Other derived networks

$\mathbf{C a}=\mathbf{A W} * \mathbf{C i} * \mathbf{W A}$ is a network of citations between authors. The weight $w(i, j)$ counts the number of times a work authored by i is citing a work authored by j.

Islands in SN5 authors citation network

Derived networks
V. Batagelj

Linked
networks
Multiplication
Co-authorship networks

Fractional approach

Other derived networks

Conclusions
References

Network SN5 (2008): for "social network*" + most frequent references + around 100 social networkers; $|W|=193376,|C|=7950,|A|=75930,|J|=14651,|K|=29267$

ifffi Bibliographic Coupling

Derived networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship networks

Fractional approach

Other derived networks

In WoS2Pajek the citation relation means $p \mathbf{C i} q \equiv$ work p cites work q.

Therefore the bibliographic coupling (Kessler, 1963) network biCo can be determined as

$$
\mathbf{b i C o}=\mathbf{C i} * \mathbf{C i}^{T}
$$

bico $_{p q}=\#$ of works cited by both works p and $q=|\mathbf{C i}(p) \cap \mathbf{C i}(q)|$.
Bibliographic coupling weights are symmetric: bico $_{p q}=$ bico $_{q p}$:

$$
\mathbf{b i C o}^{T}=\left(\mathbf{C i} * \mathbf{C i}^{T}\right)^{T}=\mathbf{C i} * \mathbf{C i}^{T}=\mathbf{b i C o}
$$

Bibliographic Coupling

fractional approach

Derived networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship networks

Fractional approach

Other derived networks

Again we have problems with works with many citations, especially with review papers. To neutralize their impact we can introduce normalized measures. Let's first look at

$$
\mathbf{b i C}=n(\mathbf{C i}) * \mathbf{C i}^{T}
$$

where $n(\mathbf{C i})=\mathbf{D} * \mathbf{C i}$ and $\mathbf{D}=\operatorname{diag}\left(\frac{1}{\max (1, \text { outdeg }(p))}\right) . \mathbf{D}^{T}=\mathbf{D}$.

$$
\begin{gathered}
\mathbf{b i C}=(\mathbf{D} * \mathbf{C i}) * \mathbf{C i}^{T}=\mathbf{D} * \mathbf{b i C o} \\
\mathbf{b i C}^{T}=(\mathbf{D} * \mathbf{b i C o})^{T}=\mathbf{b i C o}{ }^{T} * \mathbf{D}^{T}=\mathbf{b i C o} * \mathbf{D}
\end{gathered}
$$

For $\mathbf{C i}(p) \neq \emptyset$ and $\mathbf{C i}(q) \neq \emptyset$ it holds (proportions)

$$
\mathbf{b i C}_{p q}=\frac{|\mathbf{C i}(p) \cap \mathbf{C i}(q)|}{|\mathbf{C i}(p)|} \quad \text { and } \quad \mathbf{b i C}_{q p}=\frac{|\mathbf{C i}(p) \cap \mathbf{C i}(q)|}{|\mathbf{C i}(q)|}=\mathbf{b i C}_{p q}^{T}
$$

and $\mathbf{b i C}_{p q} \in[0,1]$.

Bibliographic Coupling

fractional approach

Derived networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship networks

Fractional approach

Other derived networks

Using biC we can construct different normalized measures such as

$$
\mathbf{b i C o g}_{p q}=\sqrt{\mathbf{b i} \mathbf{C}_{p q} \cdot \mathbf{b i C} \mathbf{C}_{q p}}=\frac{|\mathbf{C i}(p) \cap \mathbf{C i}(q)|}{\sqrt{|\mathbf{C i}(p)| \cdot|\mathbf{C i}(q)|}} \quad \begin{gathered}
\text { Geometric mean } \\
\text { Salton cosinus }
\end{gathered}
$$

$\mathbf{b i C o j}{ }_{p q}=\left(\mathbf{b i C} \mathbf{C}_{p q}^{-1}+\mathbf{b i} \mathbf{C}_{q p}^{-1}-1\right)^{-1}=\frac{|\mathbf{C i}(p) \cap \mathbf{C i}(q)|}{|\mathbf{C i}(p) \cup \mathbf{C i}(q)|} \quad$ Jaccard index
Both measures are symmetric.

Bibliographic Coupling

Jaccard islands [15, 75]

Derived networks
V. Batagelj

Linked

networks
Multiplication
Co-authorship networks

Fractional approach

Other derived networks

Conclusions
References

Network BMc (2016): for "block model*" or "network cluster*" ...;
$|W|=5695,|A|=13376,|J|=1756,|K|=10269$

Derived networks

Bibliographic Coupling
 Jaccard island 4 (74)

Derived networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship networks

Fractional

approach

Other derived networks

Conclusions

$i m f$

Bibliographic Coupling
 Jaccard islands 12 (23), 11 (22), 1 (18)

Derived networks
V. Batagelj

Linked

 networksMultiplication
Co-authorship networks

Fractional

approach

Other derived networks

Conclusions References

- Network multiplication enables us to link by derived networks some directly unlinked modes in a multimode network.
- The analysis of the obtained networks can be based on their weights using cuts, (generalized) cores, islands, etc.
- It is important to understand the meaning of the weights. Weights appropriate for our research question can be often obtained by an appropriate normalization.

References I

Derived networks

Batagelj, V., Doreian, P., Ferligoj, A., Kejžar, N. (2014). Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution. Wiley Series in Computational and Quantitative Social Science. Wiley.

- Batagelj, V, Cerinšek, M (2013): On bibliographic networks. Scientometrics 96(3), 845-864. paper

Carley, K.M. (2003). Dynamic Network Analysis. in the Summary of the NRC workshop on Social Network Modeling and Analysis, Breiger, R. and Carley, K.M. (Eds.), National Research Council. preprint
(i-i Cerinšek, M., Batagelj, V. (2015): Network analysis of Zentralblatt MATH data. Scientometrics, 102(1), 977-1001. paper Organization. In Proceedings of the 1998 International Symposium on Command and Control Research and Technology Evidence Based Research: 113-119, Vienna, VA. MetaMatrix, paper

References II

Derived networks
V. Batagelj

Leydesdorff, L. and Park, H.W. (2017). Full and Fractional Counting in Bibliometric Networks. Journal of Informetrics 11(1), 117-120. arXiv, paper

Newman, M.E.J. (2001). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality Physical Review E, 64, 016132.

Perianes-Rodriguez, A., Waltman, L., Van Eck, N.J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178-1195. paper

Prathap, G. and Mukherjee, S. (2016). A conservation rule for constructing bibliometric network matrices. arXiv

Z Žiberna, A. (2016). Blockmodeling linked networks. Abstracts for International Conference Applied Statistics, Ribno, Slovenia, p. 45.

