
Chapter 5

Clustering Approaches

Regardless of whether ‘old’ methods are used or ‘new’ methods are created, all
efforts to blockmodel social networks involve clustering.It is useful, then, to
consider some the many tools andideasthat have been created by cluster analysts.
We describe the essential ideas and discuss a variety of methods that have value for
clustering social networks. With regard to conventional blockmodeling concerns,
the materials in Sections 5.1 through 5.4 are essential. Readers can move directly
to Chapter 6 from the end of Section 5.4. In Section 5.5 a non-standard approach
of clustering attribute and relational (network) data simultaniously is discussed.

5.1 An Introduction to Cluster Analytic Ideas

Grouping units into clusters so that those within a cluster are as similar to each
other as possible, while units in different clusters as dissimilar as possible, is a
very old problem. Many different (partial) solutions have been proposed. Al-
though the clustering problem is intuitively simple and understandable, providing
general solution(s) is difficult and remains a very current activity. New data sets
and new problems provide the impetus for finding more solutions. The increasing
number of recent papers on this topic, in both theoretical and applied statistical
journals, is notable.1

There are two main reasons for this lively interest and the creation of many
new procedures in this area:

• Prior to 1960, clustering problems were solved separately in different sci-
entific fields with little concern for integrating on across specific solutions
– a characteristic of the early stages in the development of any discipline.

1Further, theJournal of Classification, was established in 1984 and theInternational Federation
of Classification Societieswas formed in 1985.
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Attempts to unify different problems and solutions first appeared in the six-
ties with Sokal and Sneath (1963) providing the first extensive statement.
With this as a point of departure, cluster analysis developed as a specific
data analytic field.

• The development of cluster analysis was influenced greatly by develop-
ments in computing technology. That allowed the application of more de-
manding computational procedures and the processing of large data sets.
Theoretical results in computer science were important also, especially the
theoretical work on computational complexity. The result that most of the
clustering problems are NP-hard was proven early by Brucker(1978). NP-
hard means, in this case, that it is believed that there are noefficient exact
algorithms for solving most of the clustering problems. Therefore, it is not
surprising that many problems were, and still are, being solved with heuris-
tic approaches, more or less adapted to the specifics of particular problems.

Of course, these reasons interact with each other. Developments in computing
technology and the creation of new theoretical results are applied in different sci-
entific fields. These applications have features specific to the different fields with
the risk that clustering procedures will proliferate with much redundancy across
fields of application. In turn, this motivates further unifying work to integrate
many clustering developments. Such cycles of activity produce great benefits for
both the fields of application and cluster analysis. We believe that the topics we
consider under ‘blockmodeling’ also have this feature.By using known cluster-
ing procedures, network partitioning will benefit while the use of criterion
functions based on network concepts of equivalence may prove useful for
cluster analysis.

5.2 Usual Clustering Problems

Cluster analysis (known also as classification and taxonomy) deals mainly with
the following general problem: given a set of units,U , determine subsets, called
clusters,C, which are homogeneous and/or well separated according to the mea-
sured variables. The set of clusters forms a clustering. This problem can be
formulated as an optimization problem:

Determine the clusteringC∗ for which

P (C∗) = min
C∈Φ

P (C)

whereC is a clustering of a givenset of units or actors, U , Φ is the
set of all feasible clusterings andP : Φ → IR acriterion function.
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As the set of feasible clusterings is finite, a solution of theclustering problem
always exists. However, since this set is usually very largeit is not easy to find an
optimal solution.

There are several types of clusterings, e.g., partition, hierarchy, pyramid,
fuzzy clustering, clustering with overlaping clusters. The most frequently used
clusterings are partition and hierarchy - a feature shared by this book. A cluster-
ing C = {C1, C2, ...Ck} is a partition of the set of unitsU if

⋃

i

Ci = U

i 6= j ⇒ Ci ∩ Cj = ∅

A clusteringH = {C1, C2, ...Ck} is a hierarchy if for each pair of clustersCi and
Cj from H

Ci ∩ Cj ∈ {Ci, Cj , ∅}

and it is a complete hierarchy if for each unitx {x} ∈ H, andU ∈ H (see also
Section 3.1).

Clustering criterion functions can be constructedindirectly as a function of a
suitable (dis)similarity measure between pairs of units (e.g., Euclidean distance)
or directly (see below). In most cases, the criterion function is definedindirectly.
For partitions intok clusters, the Ward criterion function

P (C) =
∑

C∈C

∑

x∈C

d(x, tC)

usually is used, wheretC is the center of the clusterC and is defined as

tC = (u1C , u2C , ..., umC)

whereuiC is the average of the variableUi, i = 1, ...m, for the units from the
clusterC andd is the squared Euclidean distance.

5.2.1 An Example

Consider the set of five unitsU = {a, b, c, d, e} for which there are measurements
in terms of two variables (U andV ):

a b c d e

U 1 2 3 5 5
V 1 3 2 3 5
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Figure 5.1: Graphical Presentation of Five Units and the Optimal Clustering into
Two Clusters

The units are presented graphically in Figure 5.1.
We group the units into two clusters (a partition) using the following criterion

function:
P (C) =

∑

C∈C

∑

x∈C

d(x, tC)

where tC = (uC , vC) is the center of the clusterC and the dissimilarityd is
Euclidean distance.

All possible partitions into two clusters, together with the calculated values of
the criterion function, are shown in Table 5.1. The lowest value of the criterion
function is (for the last partition):

P (C15) = 5.41

The best clustering (partition) for this criterion function is therefore

C
∗ = {{a, b, c}, {d, e}}

From the graphical display, this is the obvious solution. For this simple example
we can search the set of all 15 possible clusterings. In general, however, if there
aren units there are

2n−1 − 1
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Table 5.1: All Partitions and Values of the Criterion Function

C C1 C2 t1 t2 P (C)

1 a bcde (1.0, 1.0) (3.75, 3.25) 6.65
2 b acde (2.0, 3.0) (3.50, 2.75) 8.18
3 c abde (3.0, 2.0) (3.25, 3.00) 8.67
4 d abce (5.0, 3.0) (2.75, 2.75) 7.24
5 e abcd (5.0, 5.0) (2.75, 2.25) 5.94
6 ab cde (1.5, 2.0) (4.33, 3.33) 6.66
7 ac bde (2.0, 1.5) (4.00, 3.67) 7.21
8 ad bce (3.0, 2.0) (3.33, 3.33) 9.58
9 ae bcd (3.0, 3.0) (3.33, 2.67) 9.48

10 bc ade (2.5, 2.5) (3.67, 3.00) 8.48
11 bd ace (3.5, 3.0) (3.00, 2.67) 9.34
12 be acd (3.5, 4.0) (3.00, 2.00) 8.08
13 cd abe (4.0, 2.5) (2.67, 3.00) 8.58
14 ce abd (4.0, 3.5) (2.67, 2.33) 9.11
15 de abc (5.0, 4.0) (2.00, 2.00) 5.41

different partitions with 2 clusters. The number of partitions exponentially in-
creases with the number of units. In the case of clusteringn units intok clusters
the number of all possible partitions is equal to the second order Stirling number

S(n, k) =
1

k!

k
∑

i=0

(−1)k−i

(

k

i

)

in

If we wanted to cluster the above 5 units into 3 clusters we could search for the
best clustering over the set of 25 partitions. In contrast, the number of all possible
partitions of 30 units into 10 clusters is

S(30, 10) = 173, 373, 343, 599, 189, 364, 594, 756

This large number is daunting because a set of size 30 is quitesmall. Often, clus-
tering involves several hundreds or thousands of units! Clearly, searching across
all partitions to locate those partitions with the smallestvalue of a criterion func-
tion is impractical. This is the case for many of the social networks we consider
in this book.
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5.2.2 The Usual Steps of Solving Clustering Problems

We list the usual steps of solving a clustering problem (Hansen, Jaumard, and
Sanlaville, 1993) and use the following sections to describe them. The steps are:

1. Select the set of unitsU ;

2. Measure the appropriate variables for the given problem.Variables can be
measured using different scale types. If numerical variables with different
scales are used, in most cases they should be standardized;

3. Choose an appropriate dissimilarity between units,d, for the given problem
and the types of variables used;

4. Choose an appropriate type of clusterings;

5. Select or create an appropriate criterion function to evaluate the selected
type of clusterings;

6. Choose or devise an algorithm for the given clustering problem;

7. Determine the clustering(s) which optimize(s) the chosen criterion function
with the selected algorithm. An approximate solution may benecessary if
there is no exact algorithm or if an excessive amount of computing time is
needed to obtain an exact solution, and

8. Assess the obtained solutions to see if they have some underlying structure.
Descriptive statistics can be used to summarize the characteristics of each
cluster.

Prior to an analysis, both the units and the appropriate variables will have been
selected by the analyst. For our purposes, the first two stepsdo not require further
discussion.

5.3 (Dis)similarities

For solving a clustering problem, the choice of an appropriate (dis)similarity mea-
sure between two units is crucial. The issues to consider when selecting a (dis)-
similarity measure include its mathematical properties, its behavior when con-
fronted with data, the nature of the data and the use made of the (dis)similarity
matrix. Several authors (e.g., Gower and Legendre, 1986) discuss the properties
of dissimilarities and ways the information concerning them guide the choice of a
dissimilarity in applications.
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A dissimilarity can be described by a mapping,a measure of dissimilarity,
where a real number is assigned to each pair of units(x, y)

d : (x, y) 7→ R

We usually assume the following conditions hold:

1. d(x, y) ≥ 0 nonnegativity
2. d(x, x) = 0
3. d(x, y) = d(y, x) symmetry

If, for a dissimilarity measure, the following two conditions also hold,

4. d(x, y) = 0 =⇒ x = y

5. ∀z : d(x, y) ≤ d(x, z) + d(z, y) triangle inequality

the dissimilarity is calleddistance.
There is a large literature dealing with a wide range of (dis)similarities. Some

elaborated overviews of these measures can be found in, e.g., Sokal and Sneath
(1963), Clifford and Stephenson (1975:49-82), Everitt (1974:49-59), Gordon
(1981:13-32), Lorr (1983:22-44) or Hubálek (1982).

Most often, the dissimilarity is based on the descriptions of units by selected
variables. In the case when units have more complicated structures (e.g., net-
works), some invariants (e.g., triadic counts in a network)are used as variables
(See Section 5.3.1.). The other possibility is to define a dissimilarity of structures
in a direct way (e.g., the smallest number of steps to transform one structure to
the other).

In most cases, the types of variables describing the units limit the choice of
an appropriate (dis)similarity measure. We discuss brieflytwo of the most used
types of measures: measures for numerical data and measuresfor binary data.

5.3.1 (Dis)similarity Measures for Numerical Data

When the clustered units are described with numerical variables, Euclidean dis-
tance is used frequently. For the unitsx andy decribed bym numerical variables

x = (x1, x2, ..., xm)

y = (y1, y2, ..., ym)

the Euclidean distance is defined in the following way:

d(x, y) =

√

√

√

√

m
∑

i=1

(xi − yi)2



170 Clustering Approaches

Ac

Al

Bi

CaGu

La

Me

Pe

Pu

Ri
Sa

St

100.000

50

0

Figure 5.2: Florentine Families According to Wealth and Number of Council
Seats

The Manhattan distance is used often:

d(x, y) =
m
∑

i=1

|xi − yi|

Both distances are special cases of the Minkowsky distance

d(x, y) = (
m
∑

i=1

|xi − yi|
r)

1

r , r > 0

If r = 1 we have the Manhattan distance and forr = 2 we have Euclidean
distance. When deciding on the most appropriate distance measure for solving
a given clustering problem, it is useful to consider the following property of the
Minkowsky distance: the larger the valuer, the stronger the influence of larger
differences|xi − yi| on the distance between units. In the limite case (r = ∞) the
Minkowsky distance becomes:

d(x, y) = max
i

|xi − yi|

It is also calledČebišev distance.
The attribute data in Table 5.2 present the Florentine families (see also Section

1.1.1) and two variables: family wealth (measured in the year 1427) and number
of council seats held by family members in the years 1282-1344.
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Table 5.2: Attribute Data for Florentine Families

family council
wealth seats

Acciaiuoli 1 10.448 53
Albizzi 2 35.730 65
Barbadori 3 55.351 N/A
Bischeri 4 44.378 12
Castellani 5 19.691 22
Ginori 6 32.013 N/A
Guadagni 7 8.127 21
Lamberteschi 8 41.727 0
Medici 9 103.140 53
Pazzi 10 48.233 a
Peruzzi 11 49.313 42
Pucci 12 2.970 0
Ridolfi 13 26.806 38
Salviati 14 9.899 35
Strozzi 15 145.896 74
Tornabuoni 16 48.258 N/A

N/A indicates ”not available data”
a indicates a special case of Pazzi family

The place of the families are graphicaly presented in two-dimensional space
where the dimensions are family wealth and the number of council seats of fam-
ilies (see Figure 5.2). Two clusters of similar families areseen nicely from this
figure: the Strozzi and Medici families with very high valueson both variables
and all others with much lower values. The second cluster canbe divided in two
subclusters: a group of families with low values in both variables and a group with
low values on wealth but higher values on the number of council seats.

As the variables are measured on different scales, we standardize both vari-
ables before calculating the distances between families (see step 2 in Section
5.2.2). The most usual standardization is

zij =
xij − µj

σj

wherexij is the value of the variableXj for the unit i,µj is the arithmetic mean
andσj is the standard deviation of the variableXj. The standardized data for
wealth and number of council seats of the 12 Florentine families are given in Ta-
ble 5.3. We consider only the 12 families with all available data. The Euclidean
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Table 5.3: Standardized Data on Wealth and Number of CouncilSeats

family council
wealth seats

Acciaiuoli 1 -0.76 0.79
Albizzi 2 -0.14 1.31
Bischeri 3 0.07 -0.97
Castellani 4 -0.53 -0.54
Guadagni 5 -0.82 -0.59
Lamberteschi 6 0.01 -1.49
Medici 7 1.51 0.79
Peruzzi 8 0.19 0.32
Pucci 9 -0.94 -1.49
Ridolfi 10 -0.36 0.15
Salviati 11 -0.77 0.02
Strozzi 12 2.55 1.70

Table 5.4: Euclidean Distances among Florentine Families

1 2 3 4 5 6 7 8 9 10 11 12
Acciaiuoli 1 0.0
Albizzi 2 0.6 0.0
Bischeri 3 3.8 5.3 0.0
Castellani 4 1.8 3.6 0.6 0.0
Guadagni 5 1.9 4.0 0.9 0.1 0.0
Lamberteschi 6 5.8 7.9 0.3 1.2 1.5 0.0
Medici 7 5.1 3.0 5.2 5.9 7.3 7.5 0.0
Peruzzi 8 1.1 1.1 1.7 1.3 1.8 3.3 2.0 0.0
Pucci 9 5.2 8.5 1.3 1.1 0.8 0.9 11.2 4.6 0.0
Ridolfi 10 0.6 1.4 1.4 0.5 0.7 2.8 3.9 0.3 3.0 0.0
Salviati 11 0.6 2.1 1.7 0.4 0.4 2.8 5.8 1.0 2.3 0.2 0.0
Strozzi 12 11.8 7.4 13.3 14.5 16.6 16.7 1.9 7.5 22.4 10.9 13.9 0.0

distances between the families are given in Table 5.4. We will return to this ex-
ample in Section 5.4.1.

It is also possible to use the Pearsonian (1926) correlationcoefficient2 as a

2We note that this correlation coefficient is not affected by linear transformations of either vari-
able.
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similarity measure:

r(x, y) =

∑m
i=1(xi − µx)(yi − µy)

√

∑m
i=1(xi − µx)2

∑m
i=1(yi − µy)2

where

µx =
1

m

m
∑

i=1

xi

and

µy =
1

m

m
∑

i=1

yi

There are many other distance measures onIRm. For example, the Maha-
lanobis generalized distance (1936) is defined as: Mahalanobis

d(x, y) = (x − y)′Σ−1(x − y)

whereΣ is a variance-covariance matrix of variables within clusters. This mea-
sure considers (which most of other measures do not) the relationship between
variables. If the Pearsonian correlation between variables is 0 and the variables
standardized, then the Mahalanobis distance is the square of the Euclidean dis-
tance.

There are two interesting dissimilarity measures defined for units having only
positive values of the variables. One is the Lance-Williams(1966) dissimilarity
measure:

d(x, y) =

∑m
i=1 |xi − yi|

∑m
i=1(xi + yi)

with Canberra distance the other (Lance in Williams, 1967):

d(x, y) =
m
∑

i=1

|xi − yi|

|xi + yi|

They are both very sensitive for very small values (around 0).

5.3.2 (Dis)similarity Measures for Binary Data

Many similarity measures have been defined for units described by binary vari-
ables. They are determined mostly by the frequences of the contingency table for
a pair of units for which the similarity is measured. The contingency table for the
unitsx andy where the values of allm variables are+ and− is:
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Unit y

+ −

Unit x

+ a b

− c d

The sum of all four frequences is equal to the number of variables (a+b+c+
d = m). The frequencya counts for how many variables the unitsx andy both
have a positive response andd counts the joint occurance of negative responses.
The frequencesb andc count the number of variables for which the units have
different responses.

Many matching similarity measures are known in the literature (e.g., Hubálek,
1982; Batagelj and Bren, 1995) and include:

1. Sokal-Michener similarity (1958)

a + d

a + b + c + d

2. First Sokal-Sneath similarity (1963)

2(a + d)

2(a + d) + b + c

3. Rogers-Tanimoto similarity (1960)

a + d

a + d + 2(b + c)

4. Russell-Rao similarity (1940)

a

a + b + c + d

5. Jaccard similarity (1908)

a

a + b + c

6. Czekanowski similarity (1913)

2a

2a + b + c
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7. Second Sokal-Sneath similarity (1963)

a

a + 2(b + c)

8. Kulczynski similarity (1927)

a

b + c

All of these similarity measures, except the last, are defined in the interval
from 0 to 1. The first three measures would give us the same order of pairs of
units. We say that these measures are order equivalent (Batagelj and Bren, 1995).
Also the fifth, the sixth and the seventh similarity measuresare order equivalent.
The notion of equivalency of similarity measures is an important one in cluster
analysis. Some of the clustering methods give exactly the same solutions when
using different but equivalent similarity measures between units (e.g., the mini-
mum and maximum hierarchical methods described in Section 5.4.1).

It is possible to measure the dissimilarities between relations. In Section 3.2.2.
four such dissimilarities were defined:dH (Hamming distance),dh (normalized
Hamming distance),du, anddm.

5.4 Clustering Algorithms

In general, most of the clustering problems are NP-hard. Forthis reason, different
efficientheuristicalgorithms for producing ‘good’ clustering solutions havebeen
created (see step 7 in Section 5.2.2). Most of the statistical systems such as SAS
and SPSS have implemented the hierarchical and leader algorithms discussed be-
low. We note that there are many other algorithms and approaches. Of these, the
relocation algorithm described in Section 5.4.3 is particularly useful.

5.4.1 The Hierarchical Approach

Agglomerative hierarchical clustering algorithms usually assume that all relevant
information on the relationships between then units from the setU is summa-
rized by a symmetric pairwise dissimilarity matrixD = [dij ]. The scheme of the
agglomerative hierarchical algorithm is:

Each unit is a cluster:Ci = {xi} , xi ∈ U , i = 1, 2, . . . , n;
repeat while there exist at least two clusters:

determine the nearest pair of clustersCp andCq:
d(Cp, Cq) = minu,v d(Cu, Cv) ;
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Figure 5.3: Three Clusters

fuse the clustersCp andCq to form a new cluster
Cr = Cp ∪ Cq;

replaceCp andCq by the clusterCr;
determine the dissimilarities between the clusterCr

and other clusters.

According to the last step of this algorithm, we have to determine the dissimi-
larity d between the newly formed clusterCr and all other, previously established,
clusters. This can be done in many different ways, each of which determines a dif-
ferent hierarchical clustering method. Suppose that we have three clustersCi, Cj

andCk in a certain iteration of the hierarchical procedure with the dissimilarities
between them as shown in Figure 5.3.

Suppose further, that the clustersCi andCj are the closest. They are fused to
form a new clusterCi ∪ Cj. The methods of creating the dissimilarity between
the new cluster and an extant clusterCk include the following:

• The Minimum method , or single linkage, (Florek et al., 1951; Sneath,
1957):

d(Ci ∪ Cj , Ck) = min(d(Ci, Ck), d(Cj , Ck))

• TheMaximum method, or complete linkage, (McQuitty, 1960):

d(Ci ∪ Cj , Ck) = max(d(Ci, Ck), d(Cj , Ck))
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• TheMcQuitty method (McQuitty, 1966; 1967):

d(Ci ∪ Cj, Ck) =
d(Ci, Ck) + d(Cj , Ck)

2

The dissimilarities between the new cluster and the other clusters can be de-
termined according to the structure of each cluster. Three ways of obtaining these
dissimilarities are:

• TheAverage method(Sokal and Michener, 1958):

d(Ci ∪ Cj , Ck) =
1

(ni + nj)nk

∑

u∈Ci∪Cj

∑

v∈Ck

d(u, v)

whereni denotes the number of units in the clusterCi.

• TheGower method(Gower, 1967):

d(Ci ∪ Cj , Ck) = d2(tij , tk)

wheretij denotes the centroid of the fused clusterCi ∪Cj andtk the center
of the clusterCk.

• TheWard method (Ward, 1963):

d(Ci ∪ Cj , Ck) =
(ni + nj)nk

(ni + nj + nk)
d2(tij , tk)

The resulting clustering (hierarchy) can be represented graphically by means
of the clustering tree (dendrogram).

In cases with well separated clusters, all hierarchical methods give the same
solution.

Clustering of Florentine Families

At this point, we return to the Florentine families. The dendrograms based on
the dissimilarities between the Florentine families presented in Table 5.4 were
obtained by using the minimum, maximum and Ward methods respectively and
are presented in Figure 5.4. All three hierarchical methodsgave the same two
clusters solution: the Strozzi and Medici families in one cluster and all others in
the second, consistent with the graphical representation of the families in two-
dimensional space in Figure 5.2. The dendrograms differ in detail but the three
clusters solution is:
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Table 5.5: Dissimilarity Matricesdh, du anddm of Five BWR Relations

dh help games positive negative conflict
help 0.00000 0.22449 0.16327 0.30612 0.22449
games 0.00000 0.17347 0.37755 0.27551
positive 0.00000 0.32653 0.24490
negative 0.00000 0.30612
conflict 0.00000

du help games positive negative conflict
help 0.00000 0.70968 0.78049 0.98361 0.83019
games 0.00000 0.58621 0.88095 0.72973
positive 0.00000 1.00000 0.85714
negative 0.00000 0.88235
conflict 0.00000

dm help games positive negative conflict
help 0.00000 0.67857 0.65385 0.97368 0.76316
games 0.00000 0.57143 0.82143 0.64286
positive 0.00000 1.00000 0.78947
negative 0.00000 0.78947
conflict 0.00000

C1 = { Bischeri, Castellani, Guadagni, Lamberteschi, Pucci}
C2 = { Acciaiuoli, Albizzi, Peruzzi, Ridolfi, Salviati}
C3 = { Medici, Strozzi}

and is the same for the maximum and Ward methods. However, it is not obtained
when using the minimum method. The second cluster from the two-clusters solu-
tion does not consist of two well separated subclusters (seeFigure 5.2). In such
cases, different methods can provide different clusteringsolutions.

Clustering Relations

In Section 3.2.2. four dissimilarity measures between relations are defined. We
computed three of them (dh, du, anddm) for five of the BWR relations described
in details in Section 2.1.2: playing games, positive affect, negative affect, helping,
and conflict over windows. These are shown in Table 5.5. Note that only upper
triangle is shown as these measures are symmetric – the distance ofR from S is
the same as the distance ofS from R.
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Ridolfi 10
Salviati 11
Peruzzi 8
Castellani 4
Guadagni 5
Bischeri 3
Lamberteschi 6
Acciaiuoli 1
Albizzi 2
Pucci 9
Medici 7
Strozzi 12

Ridolfi 10
Salviati 11
Acciaiuoli 1
Albizzi 2
Peruzzi 8
Castellani 4
Guadagni 5
Pucci 9
Bischeri 3
Lamberteschi 6
Medici 7
Strozzi 12

Castellani 4
Guadagni 5
Pucci 9
Bischeri 3
Lamberteschi 6
Ridolfi 10
Salviati 11
Peruzzi 8
Acciaiuoli 1
Albizzi 2
Medici 7
Strozzi 12

Figure 5.4: Minimum, Maximum, and Ward Clusterings of Florentine Families
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Figure 5.5: Dendrograms of Five BWR Relations for Three Dissimilarity Mea-
sures

The five relations were clustered for each of the dissimilarity measures using
the Ward hierarchical method. The resulting clusterings (hierarchies) are rep-
resented graphically by dendrograms in Figure 5.5. The range of values of the
dissimilarity measures are given with the dendrograms.

Clearly, the partitions differ showing that both the measures and the relations
differ. Usingdh, the helping and positive ties are the least dissimilar, yetfor du

anddm, the game playing and positive ties are the least dissimilar. This implies
that, on the technical side, we need to select dissimilaritymeasures with care,
and on the substantive side, we can explore the nature of the relations among the
relations.
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Some Properties of Hierarchical Procedures

Agglomerative hierarchical procedures are very popular asthey are very simple
and their solutions can be presented nicely by dendrograms.In general, they are
very quick also for some hundreds of units and users do not need to have an
explicit idea about the number of clusters hidden within thedata. The most fre-
quently used methods are the minimum, maximum and Ward methods. But here
also, the user can have difficulties in choosing the right method. The minimum
method is very effective for finding long, non-elliptic, clusters (with a ‘sausage’
shape). If there are overlapping clusters, the effect of using the minimum method
is chaining, where, in each iteration, only one unit is addedto a cluster. For ex-
ample, there is some chaining effect in the hierarchical clustering of Florentine
families obtained by the minimum method. From Figure 5.4 it can be seen that
the larger cluster consists of two overlapping clusters. The maximum method
searches for very cohesive clusters. The minimum and maximum methods are in-
variant under all transformations of the (dis)similarity measure that do not change
the ordering of pairs of units.

The agglomerative clustering procedures can be connected with the optimiza-
tional clustering approach by means of a (clustering) criterion function. Using
this, the ‘greediness’ of the agglomerative algorithm can be seen. The early fu-
sion of clusters can preclude the later formation of more optimal clusters: Clus-
ters fused early cannot be separated later even if the early fusion is incorrect. The
negative effects of greediness are usually noticed at the higher levels of agglom-
eration (with smaller numbers of clusters). This also meansthat the clusterings
into lower numbers of clusters are less reliable. This suggests that some other
clustering algorithm (e.g., local optimization procedures such as the leader – see
Section 5.4.2 – or relocation algorithms – see Section 5.4.3) should be used also
to check solutions from the agglomorative procedures.

Several authors (e.g., Everitt, 1974; Mojena, 1977) have studied, compar-
atively, the performance of agglomerative methods using artificially generated
data. These studies show that the Ward method is the most suitable for finding
ellipsoidal clusters, that the minimum method is preferable for longer chaining
clusters and the maximum method is best for spherical clusters.

5.4.2 The Leader Algorithm

Among thenonhierarchical procedures, the most popular is the leader algorithm
(Hartigan, 1975), or K-MEANS (e.g., MacQueen, 1967) or the dynamic clusters
algorithm (Diday, 1974). It assumes that users can determine the number of clus-
ters of the partition they want to obtain.

The basic scheme of the leader algorithm is:
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Determine the initial set of leadersL = {li};
repeat

determine the clusteringC in a way that classifies
each unit with the nearest leader;

for each clusterCi ∈ C compute its centroidCi.
The centroidCi determines the new leaderli
of the clusterCi;

until the leaders do not change.

Very large sets of units can be efficiently clustered using the leader algorithm,
while the standard agglomerative hierarchical procedureshave some limits on the
number of units. The leader algorithm is alocal optimization procedure. Different
initial sets of leaders can provide different local optima and corresponding parti-
tions. Consequently, several initial sets of leaders should be used to assess the set
of obtained solutions3 to the clustering problem.

Clustering of Florentine Families

For example, the problem of clustering of Florentine families into three clusters
based on the standardized data (see Table 5.3) was analyzed also by using the
leader algorithm. The obtained clusters are exactly the same as the ones obtained
by maximum or Ward hierarchical methods:

C1 = { Bischeri, Castellani, Guadagni, Lamberteschi, Pucci}
C2 = { Acciaiuoli, Albizzi, Peruzzi, Ridolfi, Salviati}
C3 = { Medici, Strozzi}

The leaders (also centroids) of each cluster are shown in thefollowing table:

l1 l2 l3
wealth -0.44 -0.37 2.03
priors -1.02 0.52 1.25
ni 5 5 2
dmax 0.69 0.82 0.69

whereni denotes the number of units in the clusterCi anddmax the maximal
distance between the leader,li, and the units in the clusterCi. The latter measures
the homogeneity of the cluster. The results show that the first cluster consists of
families with the lowest economic and political power. The second cluster is low
on wealth and high on number of council seats, and the third with very high values
on both variables.

3Users usually forget that the leader algorithm is a local optimization procedure and are satisfied
with the solutions obtained from only one set of inital leaders.
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5.4.3 The Relocation Algorithms

These algorithms assume that the user can specify the numberof clusters of the
partition.

The scheme of the relocation algorithm is:

Determine the initial clusteringC;
while

there existC andC
′

such thatP (C′) ≤ P (C), whereC′ is obtained
by moving a unitxi from clusterCp

to clusterCq in the clusteringC or by interchanging
unitsxi andxj between two clusters;

repeat:
substituteC′ for C .

While different criterion functions can be used in this approach, the Ward criterion
function is used most often.

The relocation algorithm is very efficient in solving specific clustering prob-
lems. As it is local optimization procedure different initial clusterings must be
used. We discuss this method in the following sections anduse it extensively in
Chapters 6 through 11.

Clustering of Florentine Families

For example, the clustering of Florentine families into three clusters according to
their wealth and the number of council seats can be obtained also by a relocation
method. The obtained clustering (based on Euclidean distances and Ward crite-
rion function) is exactly the same as the one obtained by the maximum or Ward
hierarchical approaches and the leader algorithm.4

5.5 Constrained Clustering

For constrained clustering, grouping similar units into clusters has to satisfy some
additional conditions. This class of problems is relatively old also. One of the
most frequently treated problem in this field is regionalization: clusters of similar
geographical regions have to be found, according to some chosen characteristics,
where the regions included in a cluster also have to be geographically connected.
A number of analytical approaches to this problem have been taken. The majority

4The value of the Ward criterion function for the best obtained clustering into three clusters is
the same as that one obtained by the leader algorithm (P (C) = 4.49).
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of authors (e.g., Lebart, 1978; Lefkovitch, 1980; Ferligojand Batagelj, 1982;
Perruchet, 1983; Gordon, 1973, 1980, 1987; Legendre, 1987)solve this problem
by adapting standard clustering procedures, especially agglomerative hierarchical
algorithms and local optimization clustering procedures.While determining the
clusters, they use a test to ensure that the units placed in the same clusters also
satisfy the additional condition of, for example, geographical contiguity. The
geographic contiguity can be presented by the following relation:

xi R xj ≡ the unit xi is geographically contiguous with the unit xj

and such a constraint is generally called arelational constraint. Ferligoj and
Batagelj (1982, 1983) first treated this clustering problemfor general symmet-
ric relations and then for non-symmetric relations.5 Murtagh (1985) provides a
review of clustering with symmetric relational constraints. It is possible to work
also with other non-relational conditions, as discussed inthe next section. A more
recent survey of constrained clustering was given by Gordon(1996) and a dis-
cussion of some constrained clustering problems by Batagelj and Ferligoj (1998,
2000).

5.5.1 The Constrained Clustering Problem

The constrained clustering problem can be expressed as follows:

Determine the clusteringC∗ for which the criterion functionP has
the minimal value among all clusterings from the set of feasible (per-
missible) clusteringsC ∈ Φ, whereΦ is determined by the con-
straints. In short, we seekC∗ such that:

P (C∗) = min
C∈Φ

P (C)

Various types of the constraints are discussed below.

Relational Constraints

Generally, the set of feasible clusterings for this type of constraint can be defined
as:

Φ(R) = {C : C is a partition ofU and
each clusterC ∈ C is a subgraph(C , R ∩ C × C) in the
graph(U , R) with the required type of connectedness}

5Friendship among human actors, as a social network, provides an example of this.
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We can define different types of sets of feasible clusteringsfor the same rela-
tion R (Ferligoj and Batagelj, 1983). Some examples of clusterings with relational
constraintΦi(R) are6

type of clusterings type of connectedness
Φ1(R) weakly connected units
Φ2(R) weakly connected units that contain

at most one center
Φ3(R) strongly connected units
Φ4(R) clique
Φ5(R) the existence of a trail containing

all the units of the cluster

In the clustering typeΦ2(R) a center of a clusterC is the set of unitsL ⊆ C

iff the subgraph induced byL is strongly connected and

R(L) ∩ (C − L) = 0

whereR(L) = {y : ∃x ∈ L : xRy}.
The first four types of connectedness are presented in Figure5.6.
WhenR is symmetricΦ1(R) = Φ3(R).
The set of feasible clusteringsΦi(R) are linked in terms of the nature of the

relations specified in the constraints. For example:

• Φ4(R) ⊆ Φ3(R) ⊆ Φ2(R) ⊆ Φ1(R) ;

• Φ4(R) ⊆ Φ5(R) ⊆ Φ2(R);

• If the relationR is symmetric, then

Φ3(R) = Φ1(R);

• If the relationR is an equivalence relation, then

Φ4(R) = Φ1(R).

6For the definitions of types of connectedness see Section 4.1.2.
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Figure 5.6: Types of Connectedness

From the relationR, we can determine also, for each clustering type,Φi(R), the
minimum number of clusters in the clusterings belonging toΦi(R)

ωi(R) = min
C∈Φi(R)

card(C)

For some clustering types the minimum number of clusters is:

ω1(R) = the number of weakly connected components;
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ω2(R) = the number of strongly connected subsets in the setU ;
ω3(R) = the number of strongly connected components;
ω4(R) = the cardinality of a minimal cover of the graph(U , R) with cliques.

Constraining Variables

The set of feasible clusterings for this partiticular type of constraint is defined as
follows (Ferligoj, 1986):

Φ[a, b] = {C : C is a partition ofU and
for each clusterC ∈ C holds:vC ∈ [a, b]}

wherevC is a value determined by values of the constraining variable, V , for the
units in the clusterC.

Consider a geographical region where areas have to be clustered. Areas in a
specific cluster must be geographical neighbors (satisfying a relational constraint)
and be as similar as possible with regard to some characteristics (consistent with
the usual clustering problem). Additionally, there is a constraining variableV that
must be considered. As an example, the number of inhabitants, V , in the region
(clusterC) has to be greater than a given valuea:

vC =
∑

x∈C

vx > a.

The following property always holds:

[a, b] ⊆ [c, d] ⇒ Φk[a, b] ⊆ Φk[c, d]

Before solving a constrained clustering problem, it is necessary to analyze the
constraints. In doing so, the following questions should beconsidered:

• Is the constraining interval[a, b] selected in accordance withvU and the
number of clustersk?

• Do the constraints assure a non-empty set of feasible clusteringsΦk[a, b]?

Of course, this kind of analysis depends on the type of the function vC that is
chosen.

An Optimizational Constraint

The set of feasible clusterings for an optimizational constraint is defined as:

Φ(F ) = {C : C is a partition ofU and for a second
criterionF the conditionF (C) < f has to be satisfied}
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The valuef of the second criterion is a threshold value which determines the
number of clusterings in the set of feasible clusterings. Acctually, this is a two
criteria clustering problem: the first criterion is the clustering criterionP and the
second the constrained criterionF . This type of clustering problems is treated in
Section 5.6.

We note that a combination of the mentioned three types of constraints (re-
lational, constraining variable and optimizational) can be considered simultane-
ously.

5.5.2 Solving Constrained Clustering Problems

Standard clustering algorithms can be adapted for solving constrained clustering
problems. We consider the agglomerative hierarchical and the relocation type of
algorithms.

A Modified Hierarchical Algorithm

One straightforward modification of a standard agglomerative hierarchical algo-
rithm is described by this scheme:

Each unit is a cluster:Ci = {xi} , xi ∈ U , i = 1, 2, ..., n;
repeat while there exist at least two clusters, which
by fusion, give a feasible clustering:

determine the nearest pair of clustersCp andCq:
d(Cp, Cq) = min{d(Cu, Cv) : Cu andCv, u 6= v, and

fuse to form a feasible clustering};
fuse clustersCp andCq into a new clusterCr = Cp ∪ Cq;

replace the clustersCp andCq by the clusterCr;
determine the dissimilaritiesd between the clusterCr

and other clusters.

Ferligoj and Batagelj (1983) have shown that it is possible to apply such a modi-
fied agglomerative algorithm only for cases where the constraint has a divisibility
property. The constraintT (C) is divisible if, for each cluster consisting at least of
two units, the following holds:

∃C1, C2 6= ∅ :

( C1 ∪ C2 = C ∧ C1 ∩ C2 = ∅ ∧ T (C1) ∧ T (C2) )

Unfortunately, the constraint on a variable is usually not divisible.
For relational constraints, it is also necessary to determine the relation be-

tween the newly formed clusterCr = Cp ∪ Cq and other clusters in a way that
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the feasibility of the clusterings is preserved in each stepof the clustering proce-
dure. Ferligoj and Batagelj (1983) found strategies of adjusting relations for the
following clustering types from Section 5.5.1:Φ1(R) (a tolerant strategy),Φ2(R)
(a leader strategy), andΦ5(R) (a strict strategy).

A Modified Relocation Algorithm

The main idea of a scheme for an adapted relocation algorithmcan be presented
as:

Determine the initial feasible clusteringC;
while

there existC andC
′

such thatP (C′) ≤ P (C), whereC′ is obtained by
moving of a unitxi from clusterCp to clusterCq

in the clusteringC or by interchanging unitsxi andxj

between two clusters, and the units in each new cluster
satisfy the constraints;

repeat
substituteC′ for C .

The following two features must be part of any algorithm of this type:

• an efficient testing procedure to assess whether each cluster obtained by
transitions, or by interchanges, does satisfy the constraints and

• a method for generating initial clusterings that are feasible.

However, for some constraints, the second problem may be NP-hard. Also,
the first feature can lead to very complicated graph theoretical problems. For
these reasons, clustering problems with relational constraints may be better solved
by adapting agglomerative algorithms or by appropriately constructed new algo-
rithms. A modified relocation algorithm can be used for solving clustering prob-
lems with optimizational constraints. These problems can also be solved effi-
ciently by multicriteria clustering algorithms where the first criterion is the clus-
tering criterion and the second is the constraint criterion(see Section 5.6).

5.5.3 The Structure Enforcement Coefficient

To study the influence of constraints on the clustering solutions the structure en-
forcement coefficient can be used (Ferligoj, 1986) ifP (C ≥ 0:

K =
P (C∗

c) − P (C∗)

P (C∗
c)
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whereC
∗ is the best obtained clustering without constraints andC

∗
c the best ob-

tained clustering with constraints(P (C∗
c) ≥ P (C∗)). The coefficientK is not

defined ifP (C∗
c) = 0. In this case letK = 0. The coefficientK is defined for

the interval[0, 1] and measures the relative growth of the criterion function due to
the influence of constraints imposed on the clustering.

5.5.4 An Empirical Example

This example is drawn from a study of the educational career plans for all Slovene
students who made the transition to high school in 1981 (Ferligoj and Lapajne,
1986). Each student has a set of preferences as to which high school they want
to attend. As it is not possible to honor all of these preferences, some students
then have to choose another school. It is assumed that there is some structure to
these preferences: if students cannot go to their most prefered school, they choose
another school that is close to their first choice.

For a particular cohort, data were collected at three time points:

1. a time prior to actually making their choices (using a questionnaire con-
cerning their preferences on vocational choices);

2. at the time of when students made their applications, and

3. at the time of enrollment in the first class of the high school (which may or
may not be their preferred choice).

For this example, we consider the ‘movements’ between the first time point
preference (vocational choice) and the third time point (actual enrollment).

The data come from the follow-up study of the first generationof grade eight
(age 15-16) students who enrolled in the first class of the reformed career-oriented
educational programs in Slovenia in 1981/82. The whole generation was followed
(about 28,500 students) on the basis of data collected by an employment service
(Lapajne, 1984). From this study, we selected the 17 programs of secondary
career-oriented education with the greatest number of students – about 19,000
students remained in the database. The programs consideredare7:

7The program on Administration means simple clerical secretarial work (lowest level white
collar).
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AG Agriculture FT Food Technology
CH Chemistry BU Business
MT Metallurgy AD Administration
EE Electrical Energy CS Computer Science
EL Electronics PE Pedagogical
CN Civil Engineering MD Medical
CA Carpentry NS Natural Sciences and Mathematics
TE Textiles SS Social Sciences and Linguistics
CM Commercial

The movements between these programs can be represented by avalued net-
work (U , R,w). The setU are units (in our case programs) and the elements of
the setR are arcs (movements between programs). The valuew on an individual
arc is the percentage of students which have moved from one program to another.

There are data available on the students that came from the employment ser-
vice. We focus on the following variables that were aggregated over the 17 se-
lected programs:

• the average school grades over the four last years of primaryschool and the
first year of high school (8 variables),

• the average of the Slovene version of the General Aptitude Tests Battery
(GATB), taken in the seventh class of the primary school (7 variables),

• socio-demographic variables (including % of girls, % of different type of
the father’s education), (5 variables).

We focus on these characteristics of students in career-oriented educational
programs and the movements between the desired vocational choices and actual
enrolments. We use clustering tools to examine the extent towhich the move-
ments are due to the similarity of the programs (which is defined by the student
preference structures over them).

To study this problem empirically, we used simultaneously methods for an-
alyzing characteristics of the students (in programs) and the network movement
of students between programs. We used the clustering with relational constraints
approach as follows. The clustering criterion function wasconstructed in terms of
the program similarities according to the characteristicsof the students in them.
The movements between the programs were treated as constraints. In general, the
clustering with constraints problem, stated in this way, isa two criteria optimiza-
tion problem. One is the optimization according to the student characteristics (the
clusters consist of the most similar programs) and other is the optimization over
the valued network (the clusters consist of programs with the highest movements
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between them). A two criteria optimization problem can be reduced to a single
optimization problem in at least two ways (see the next section on multicriteria
clustering):

• combine both criteria into a single criterion function, and

• have one criterion determine the criterion function with the other setting the
feasible (permissible) clusterings: clusterings are feasible if the value of the
second criterion function is smaller or greater (dependingon the nature of
the criterion function) than a specified threshold.

We used the second approach where a threshold,p, was used to reduce the
valued movement matrix to a binary relationR in the following way:

x R y ≡ if the movement, w, from the programx

to the programy is greater thanp

For each threshold value ofp we obtained a binary relation and the clustering
problem was solved by using algorithms that implement clustering by relational
constraints.

To determine an appropriate threshold we analyzed the network of movements
first. By decreasing the threshold level, the constraining relation is enriched (by
having more arcs).8 It seems that important changes in solutions appear when
there is a change in the connectivity structure of the constraining relation, i.e.,
when two components are joined by an arc that is newly createdwith a change in
the threshold.

Before clustering, all variables were standardized. The dissimilarity between
programs was measured by using Euclidean distance. We then used the maxi-
mum agglomerative clustering method. Figure 5.7 presents the three cluster so-
lution where the thick lines represent symmetric ties (i.e.flows in both direc-
tions). The cluster at the bottom of the figure consists of programs of computer
science (CS), natural sciences and mathematics (NS), social sciences and linguis-
tics (SS) and civil engineering (CN). The students in these programs have the
best school grades, the best GATB results and, mostly, have fathers with at least
a high school education. The programs in the cluster at the top of Figure 5.7
comprises metalurgy (MT), carpentry (CA), electrical energy (EE), commercial
(CM), administration (AD), textiles (TE), food technology(FT), and agriculture
(AG). Compared to the first group, this group is at the opposite extreme on the
set of student attributes. The third group consisting of electronics (EL), chemistry

8It is possible to solve the problem sequentially for all possible distinct relations. This would be
extraordinarily time consuming and unnecessary.



5.5 Constrained Clustering 193

Figure 5.7: Clusteringwithout Constraints into Three Clusters

Figure 5.8: Clusteringwith Constraint into Four Clusters

(CH), medical (MD), business (BU), and pedagogical programs (PE), is located
between the other two groups in Figure 5.7.

We considered three threshold levels forp, each defining a set of elements
to be taken from the relational matrix: those with at least 1%of the volume of
movements, those having at least 3% and those with at least of5% of movements.
In the case ofp = 1%, the relation is so rich that it does not constrain, in any way,
the clustering solution. Whenp = 3% is used, the differences between obtained
clustering without constraints and with relational constraints are also minimal. In
the case ofp = 5%, there are fewer represented movements between programs
(see Figure 5.7). In clustering with this relational constraint we considered both
the tolerant and the leader strategies. Although the considered relation (p = 5%)



194 Clustering Approaches

has fewer arcs, the same clustering (into four clusters9) is found using both strate-
gies. Comparing the clustering without constraints with constrained clustering we
can see some differences. In the constrained clustering, textiles becomes a single-
ton in a cluster and the electronics program moves from the middle cluster to the
bottom cluster of the diagram (see Figure 5.8). This suggests that the vocational
movements are strongly (but not completely) related to the student characteristics
of the programs. This is true if we considered a very stringent relational constraint
(p = 5%). Forp less than5% this is even more true. Forp greater than5% there
would be very few moves between programs and the analysis would be irrelevant.

5.6 Multicriteria Clustering

Some clustering problems cannot be solved appropriately with classical clustering
algorithms if they require optimization over more than one criterion. We discussed
an example of two criteria optimization problem in Section 5.5.1. There, it was
treated as a clustering with optimizational constraint problem. In general, solu-
tions optimal for the distinct criteria will differ from each other. This creates the
problem of trying to find the ‘best’ solution so as to satisfy as many of the criteria
as possible. In this context, it is useful to define the set ofPareto efficientclus-
terings: a clustering is Pareto efficient if it cannot be improved on any criterion
without sacrificing on some other criterion.

A multicriteria clustering problem can be approached in different ways:

• by reducing it to a clustering problem with a single criterion, one that is
obtained as a combination of the given criteria;

• by using consensus clustering techniques (e.g., Day, 1986)applied to clus-
terings obtained by single criterion clustering algorithms for each criterion;

• by using constrained clustering algorithms where a selected criterion is con-
sidered as the clustering criterion and all others determine the constraints
(see Section 5.5) or

• by the use of (or the creation of) direct algorithms. Hanani (1979) proposed
an algorithm based on the dynamic clusters algorithm (see Section 5.4.2).
Ferligoj and Batagelj (1992) proposed modified relocation algorithms and
modified agglomerative hierarchical algorithms.

9Note that the network data are not used to obtain the clustering shown in Figure 5.7.
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5.6.1 A Multicriteria Clustering Problem

In amulticriteria clustering problem(Φ, P1, P2, . . . , Pk) we have several criterion
functionsPt, t = 1, . . . , k over the same set of feasible clusteringsΦ, and our aim
is to determine the clusteringC ∈ Φ in such a way that

Pt(C) → min, t = 1, . . . , k.

In the ideal case, we are searching for the dominant set of clusterings. The solution
C0 is thedominantsolution if for each solutionC ∈ Φ and for each criterionPt,
it holds that

Pt(C0) ≤ Pt(C), t = 1, . . . , k.

Usually the set of dominant solutions is empty. Therefore, the problem arises of
finding a solution to the problem that is as good as is possibleaccording to each
of the given criteria. Formally, thePareto-efficientsolution is defined as follows:

ForC1,C2 ∈ Φ , solutionC1 dominatessolutionC2 if and only if

Pt(C1) ≤ Pt(C2), t = 1, . . . , k,

and for at least onei ∈ 1..k the strict inequalityPi(C1) < Pi(C2) holds. We
denote the dominance relation by≺. ≺ is a strict partial order. The set of Pareto-
efficient solutions,Π, is the set of minimal elements for the dominance relation:

Π = {C ∈ Φ : ¬∃C′ ∈ Φ : C′ ≺ C}

In other words, the solutionC∗ ∈ Φ is Pareto-efficientif there exists no other
solutionC ∈ Φ such that

Pt(C) ≤ Pt(C
∗), t = 1, . . . , k,

with strict inequality for at least one criterion. APareto-clusteringis a Pareto-
efficient solution of the multicriteria clustering problem.

Since the optimal clusterings for each criterion are Pareto-efficient solutions
the setΠ is not empty. If the set of dominant solutions is not empty then it is equal
to the set of Pareto-efficient solutions.

5.6.2 Solving Discrete Multicriteria Optimization
Problems

Multicriteria clustering problems are approached here as amulticriteria optimiza-
tion problem, one which has been treated by several authors (e.g., MacCrimon,
1973; Zeleny, 1974; Podinovskij and Nogin, 1982; Homenjuk,1983; Chankong
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and Haimes, 1983). In the clustering case, we are dealing with discrete multicri-
teria optimization (the set of feasible solutions is finite), which means that many
very useful theorems in the field of multicriteria optimization do not hold, espe-
cially those which require convexity (Ferligoj and Batagelj, 1992).

It was proven that if, for each of the given criteria, there isa unique solution,
then the minimal number of Pareto-efficient solutions to thegiven multicriteria
optimization problem equals the number of different minimal solutions of the sin-
gle criterion problems (Ferligoj and Batagelj, 1992).

Although several strategies haven been proposed for solving multicriteria op-
timization problems explicitly (e.g., Chankong and Haimes, 1983), the most com-
mon is the conversion of the multicriteria optimization problem to a single crite-
rion problem.

5.6.3 Direct Multicriteria Clustering Algorithms

The multicriteria clustering problem can be approached efficiently by using direct
algorithms. Here, two types of direct algorithms are discussed: a version of the
relocation algorithm, and the modified agglomerative (hierarchical) algorithms.

A Modified Relocation Algorithm

The idea of themodified relocationalgorithm for solving the multicriteria clus-
tering problem follows from the definition of a Pareto-efficient clustering. The
scheme of the algorithm is:

Determine the initial clusteringC;
while

in the neighborhood of the current clusteringC

there exists a clusteringC′ which dominates the clusteringC
repeat move to clusteringC′ .

In a relocation algorithm, theneighborhoodof a given clustering is usually
defined bymovinga unit from one cluster to another cluster or byinterchanging
two units from different clusters. This neighborhood structure does not always
lead to a Pareto-efficient solution. The richer the neighborhood clustering struc-
ture, and the simpler the structure of the data, the larger the probability that the
procedure attains Pareto-efficient clustering. As the solutions obtained by the pro-
posed procedure cannot be improved by local transformations we shall call them
local Pareto clusterings.

The basic procedure should be repeatedmany times (at least hundreds of
times) and the obtained solutions should be reviewed. An efficient review of the
obtained solutions can be systematically done with the following metaprocedure:
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Determine the optimal clusterings according to each criterion
functionPt, t = 1, . . . , k, and put them into the set of local
Pareto clusterings,Π;
repeat

determine with the basic procedure the current
local Pareto clusteringC ;
if there does not exist a clusteringCp ∈ Π : Cp ≺ C

then includeC in the set of local Pareto clusterings:
Π := Π ∪ {C}

and exclude from the setΠ clusterings dominated byC:
Π := Π \ {C′ ∈ Π : C ≺ C

′}.

With this metaprocedure, the clusterings obtained throughthe modified re-
location algorithm are put in the criterion space inside theregion initially deter-
mined by optimal clusterings according to each single criterion (see Figure 5.10
in the following example). At the same time it is tested to seeif it (the currently-
obtained clustering) should be included in the set of local Pareto clusterings,Π.
With the inclusions and exclusions of clusterings through the iterations, the setΠ
approaches the true set of Pareto clusterings.

An Agglomerative Hierarchical Approach

Agglomerative hierarchical clustering algorithms usually assume that all relevant
information on the relationships between then units from the setU is summarized
by a symmetric pairwise dissimilarity matrixD = [dij ]. In the case of multicrite-
ria clustering we assume we havek dissimilarity matricesDt, t = 1, . . . , k, each
summarizing all relevant information obtained, for example, in thek different sit-
uations. The problem is to find the best hierarchical solution which satisfies as
much as is possible allk dissimilarity matrices.

One approach to solving the multicriteria clustering problem combines the
given dissimilarity matrices (at each step) into a composedmatrix. The modified
agglomerative hierarchical algorithm is:

Each unit is a cluster:Ci = {xi} , xi ∈ U , i = 1, 2, . . . , n;
repeat while there exist at least two clusters:

construct matrixD = f(Dt; t = 1, . . . , k);
find in D the nearest pair of clustersCp andCq:

d(Cp, Cq) = minu,v d(Cu, Cv) ;
fuse clustersCp andCq into a new clusterCr = Cp ∪ Cq;
replace the clustersCp andCq by the clusterCr;
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for each dissimilarity matrixDt, t = 1, . . . , k:
determine the dissimilaritiesdt between the clusterCr

and other clusters.

The derived matrixD = [dij ] can, for example, be defined as follows:

dij = max(dt
ij ; t = 1, . . . , k)

dij = min(dt
ij ; t = 1, . . . , k)

dij =
k
∑

t=1

αtd
t
ij ,

k
∑

t=1

αt = 1

Following this approach, one of severaldecision rules(see below e.g., pessimistic,
optimistic, Hurwicz, Laplace) for making decisions under uncertainty (Chankong
and Haimes, 1983; French, 1986) can be used at the composition and selection
step of the procedure. Then the scheme of the modified agglomerative algorithm
is:

Each unit is a cluster:Ci = {xi} , xi ∈ U , i = 1, 2, . . . , n;
normalize each dissimilarity matrixDt, t = 1, . . . , k;
repeat while there exist at least two clusters:

determine the nearest pair of clustersCp andCq, dpq = d(Cp, Cq)
according to a given decision rule;

fuse clustersCp andCq into a new clusterCr = Cp ∪ Cq;
replace the clustersCp andCq by the clusterCr;
for each dissimilarity matrixDt, t = 1, . . . , k:

determine the dissimilaritiesdt between the clusterCr

and the other clusters.

The normalization step is not always necessary, especiallywhen dissimilari-
ties are obtained using the same variables and the same dissimilarity measure on
different occasions.

In the pair selection step of the algorithm, the decision rules can have different
forms (Batagelj and Ferligoj, 1990):

• Wald’s (pessimistic) rule:

dpq = min
i,j

max
t

dt
ij
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• The optimistic rule:
dpq = min

i,j
min

t
dt

ij

• Hurwicz’s rule, with a pessimism indexα, 0 ≤ α ≤ 1 :

dpq = min
i,j

(α max
t

dt
ij + (1 − α)min

t
dt

ij)

• Laplace’s principle of insufficient reason:

dpq =
1

k
min
i,j

k
∑

t=1

dt
ij

The obtained hierarchical solution can be represented graphically by the den-
drogram whose levels are the dissimilaritiesd(Cp, Cq) from the selection step.

Another approach is to perform the selection step by searching for the Pareto
nearest pair of clusters: The pair of clusters(Ci, Cj) is Pareto nearestif there
exists no other pair of clusters(Cp, Cq) such that

dt
pq ≤ dt

ij t = 1, . . . , k

and for at least one dissimilarity matrix strict inequalityholds.
In this case, at each selection step there can exist more thanone Pareto nearest

pair of clusters. This means that the proposed procedure gives several (Pareto)
hierarchical solutions. If a smaller set of solutions is desired, additional decision
rules have to be built into the procedure. If, at each selection step, the pair of
clusters which has minimal value according to a particular criterion is chosen, the
obtained hierarchical solution is the same as the hierarchical clustering obtained
according to the dissimilarity matrix on which this criterion is based. One possible
decision rule is: at each step, select that pair of clusters (from the set of Pareto
nearest pairs of clusters) for which the sum or product of allvalues of criterion
functions is minimal.10 As there is no single fusion level at each step there is no
simple graphical presentation of a solution by a dendrogram.

5.6.4 An Example

To illustrate the proposed algorithms for multicriteria clustering we need raw data
(or similarity matrices) obtained under different conditions or in different ways.
Our simple example has 6 units:

U = {x1, x2, x3, x4, x5, x6}

10In the case of a multiplicative rule, the normalization of the dissimilarity matrices is not neces-
sary.
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Table 5.6: Six Units at Two Time Points and Their Squared Euclidean Distances

units Y 1
1 Y 1

2 Y 2
1 Y 2

2

1 0 0 1 0
2 1 1 2 1
3 0 2 0 3
4 3 1 3 0
5 4 2 4 3
6 3 3 2 4

1 2 3 4 5 6

1 0 2 4 10 20 18
2 2 0 2 4 10 8
3 10 8 0 10 16 10
4 4 2 18 0 2 4
5 18 8 16 10 0 2
6 17 9 5 17 5 0

Y 1
1

Y 1
2

•
1

• 2

• 3

• 4

• 5

• 6

Y 2
1

Y 2
2

•
1

• 2

• 3

•
4

• 5

• 6

Figure 5.9: Six Units in Two-dimensional Space for Both TimePoints

Two variables (Y1 andY2) are measured for these units at two time points. The
data are given on the left side of Table 5.6 and displayed in two-dimensional space
(Figure 5.9).

The squared Euclidean distance matrices for both time points are presented on
the right side of Table 5.6 (The distances for the first time point are in the upper
triangle while the lower triangle has the distances for the second time point).

All feasible clusterings into two clusters with the corresponding value of the
Ward criterion function at each time point are listed in Table 5.7. From this table,
it is clear that the best clustering for the first time point is

C7 = {{x1, x2, x3}, {x4, x5, x6}}

with P1(C7) = 5.33. For the second time point, the best solution is

C11 = {{x1, x2, x4}, {x3, x5, x6}}
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Table 5.7: The Set of All Feasible Clusterings into Two Clusters

C P1(C) P2(C)

1 {12345}{6} 16.00 19.20
2 {12346}{5} 14.40 18.40
3 {1234}{56} 9.00 13.50
4 {12356}{4} 18.40 19.60
5 {1235}{46} 15.50 24.00
6 {1236}{45} 12.00 17.75
7 {123}{456} 5.33 17.33
8 {12456}{3} 16.00 18.40
9 {1245}{36} 17.00 13.50

10 {1246}{35} 19.50 20.75
11 {124}{356} 14.67 11.33
12 {1256}{34} 20.00 23.75
13 {125}{346} 18.67 22.67
14 {126}{345} 18.67 24.00
15 {12}{3456} 12.00 18.75

16 {13456}{2} 19.20 24.00
17 {1345}{26} 19.50 23.50
18 {1346}{25} 19.00 21.75
19 {134}{256} 14.67 18.00
20 {1356}{24} 19.50 18.75
21 {135}{246} 18.67 24.00
22 {136}{245} 16.00 17.33
23 {13}{2456} 9.50 17.75
24 {1456}{23} 15.00 21.75
25 {145}{236} 17.33 18.00
26 {146}{235} 20.00 23.33
27 {14}{2356} 17.00 14.75
28 {156}{234} 18.67 22.67
29 {15}{2346} 19.50 23.75
30 {16}{2345} 20.00 24.00
31 {1}{23456} 13.60 19.60

with P2(C11) = 11.33. Because these two solutions are not identical, a dominant
solution does not exist.

Feasible clusterings can be graphically presented in two-dimensional criterion
space(P1, P2) as is shown in Figure 5.10. Three Pareto clusterings can be seen in
this figure:C3, C7 andC11. Thus, in the Pareto set, we have both of the optimal
solutions, each according to a single criterion, and a new clustering,C3

C3 = {{x1, x2, x3, x4}, {x5, x6}}

We now consider the clusterings obtained by the last variantof the modified
agglomerative hierarchical algorithm, where in each iteration of the algorithm, the
Pareto nearest pair of clusters is obtained. The maximum method was used. We
obtained three hierarchical solutions:

(((x1, x2), x3), (x4, (x5, x6)))

((((x1, x2), x4), x3), (x5, x6))

(((x1, x2), x4), (x3, (x5, x6)))

Although we used a different criterion function, the three hierarchical solu-
tions obtained give the same three Pareto results into two clusters as were obtained
by complete search.
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Figure 5.10: All Feasible Clusterings Presented in Two-dimensional Criterion
Space(P1, P2)

5.7 Transition to Blockmodeling

Clearly, there are many ways in which clustering problems can be solved. There is
a large number of (dis)similarity measures and many clustering procedures. This
variety gives us some pause for thought: we need to be clear about the cluster-
ing methods used, or adapted, for partitioning social networks. The methods we
propose in Chapter 6 all use criterion functions that are constructed explicitely in
terms of network equivalence ideas. They can be constructedindirectly via ap-
propriately defined (dis)similarity measures (compatiblewith considered equiva-
lence), or by using network data directly. Hence the use of the terms ‘indirect’
and ‘direct’. In the direct approach we use primarily the relocation algorithm
described in Section 5.4.3.

The clustering with relational constraint approach gives atool to analyze the
mixed data: attribute and relational (network) data. The multicriteria clustering
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approach can be used for the analysis of multiple networks.


