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Clustering and Generalized ANOVA for

Symbolic Data Constructed

from Open Data

10.1. Introduction

Official statistics are very important sources of open data where National

Statistical Offices play a vital role. More and more societies favor the idea of freely

available data and, therefore, many governmental institutions have also established

open data websites. At the international level, such sources of open data are, for

example, the United Nations open data website [UN 17], The World Bank Open Data

[WB 17], and The European Union Open Data Portal [EUR 17]. A commonly used

technique to present their data in a transparent and compact way is aggregation. There

are several important properties and advantages of data aggregation:

– it is usually the first step to make a large amount of data manageable;

– it extracts (first) information from big data;

– it protects the privacy of individuals (persons, companies etc.);

– it produces second-level units of data.

Aggregated data present original individual units at a higher level, which enables

a different view of the data. Symbolic Data Analysis (SDA) provides tools for the

analysis of such higher second-level units. Second-level units in SDA are called

concepts or classes (Diday, inspired by Aristotle’s collection of works on logic

The Organon [ARI] in which he distinguishes between first-level objects called
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individuals and second-level objects). They represent a natural extension of

aggregated descriptions of individuals.

SDA is an extension of the standard data analysis. Following the SDA approach,

the aggregation process returns second-level units, symbolic objects (SOs), in which

more information is usually preserved (e.g., a frequency distribution of individual

values instead of just a mode). In order to find the answers to theoretical hypotheses,

symbolic data tables with complex/structured data as table entries are the input to

the SDA methods (several practical examples can be found in the SDA literature, for

example, in [BIL 06], [NOI 11], [BRI 14] or [DID 16]).

In this chapter, we present a review of our contributions in one of such SDA topics,

namely, clustering, adapted for symbolic data representions based on distributions of

values. The adaptation of the classical methods was directly motivated by analyses

of open data sets. It can be used with several dissimilarites [BAT 15a]. The usage is

illustrated with applications on two different open data sets:

– TIMSS (Trends in International Mathematics and Science Study) by combining

teachers’ and students’ data sets [KOR 11]; and

– countries’ data descriptions based on their age–sex population distributions

[KOR 15].

Furthermore, we present some basic ideas on how to generalize the well-known

analysis of variance (ANOVA) for cases where no assumptions from classical

ANOVA hold [BAT 15b]. The generalized method can be used on the described

second-level units that we demonstrate on the example of population pyramids and

HDI index.

10.2. Data description based on discrete (membership) distributions

With aggregation, a large set of (primary) units is partitioned into mutually disjoint

sets/groups P = {Pj}. The representation of the group Pj is a second-level unit

Xj . In this chapter, we discuss the case when an aggregated unit is represented by a

distribution of values (with frequencies, relative frequencies or subtotals). We call this

distribution a discrete (membership) distribution. Its categories are discrete values of

primary units that have been aggregated.

More formally, to obtain such a representation, the domain of each variable Vi(i =
1, · · · ,m) is partitioned into ki subsets {Vij , j = 1, . . . ki}. The set of (second-level)

units U consists of symbolic objects. An SO X is described with a list of descriptions

of variables Vi, i = 1, . . . ,m:

X = [x1,x2, . . . ,xm], [10.1]
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where m denotes the number of variables, and xi is a list of numerical values (usually,

frequencies or subtotals over the corresponding groups)

xi = [xi1, xi2, . . . , xiki
].

The same description (with the list of values for each symbolic variable) is used

for a description of a cluster of symbolic objects C.

Such a representation of SO is based on weighted modal (or histogram, if Vij , i =
1, . . .m, j = 1, . . . , ki, are intervals) type of symbolic variables. Let the sum of values

of a variable Vi be denoted with nxi

nxi =

ki
∑

j=1

xij .

Then, the corresponding empirical probability distribution is

pxi =
1

nxi

xi = [pxi1, pxi2, . . . , pxiki
].

A symbolic object X is in this way described with a list of couples

X = [(nx1,px1), (nx2,px2), . . . , (nxm,pxm)]. [10.2]

The advantages of such a data description are:

– the description of each group has a fixed size;

– we can deal with variables that are based on a different number of original

(individual) units;

– it preserves more information about the original first-level (primary) units and

about groups than the usual one-value of an appropriate statistic – e.g., a mean value

used in the classical approach;

– it produces uniform descriptions for all measurement types of variables;

– it is also compatible with the merging of disjoint clusters, i.e., knowing the

descriptions of clusters C1 and C2, C1∩C2 = ∅, we can easily calculate the empirical

probability distribution of their union as a weighted sum.

The second property is very useful when a data set is a combination of more than one

initial data set, e.g., in the application on TIMSS data [KOR 11], or when we study

demographic structures, e.g., age–sex structures [KOR 15] or causes of deaths by age

and gender.
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10.3. Clustering

Cluster analysis or clustering is the task of assigning a set of objects into groups

called clusters so that the objects in the same cluster are more similar to each other

than to those in other clusters. When we want to use clustering for solving the

concrete research problem, the choice of a dissimilarity measure significantly affects

the clustering result. It is, therefore, of crucial importance (1) how we choose a proper

dissimilarity to reveal the structure that we are looking for, and (2) how we select

a proper method to obtain optimal cluster representatives (that answers the initial

research questions). We mainly focus on the latter issue in our adaptation of the

clustering methods. We describe the issue of dissimilarity selection only in relation to

the adaptation of methods (but for more, see [KEJ 11]).

We define a clustering problem as an optimization problem to find a partition C∗

in a set of feasible partitions Φ for which

P (C∗) = min
C∈Φ

P (C),

where P (C) is a criterion function. P (C) is based on the dissimilarities between units

and/or cluster representatives.

For solving the clustering problem for SOs described with discrete distributions,

we adapted the following classical clustering methods:

– the leaders method (a generalization of the k-means method [AND 73],

[HAR 75] and dynamic clouds [DID 79]);

– the agglomerative hierarchical clustering method (for example, Ward’s

hierarchical clustering method [WAR 63]).

Besides a separate usage of each of them, one can combine both methods if they are

based on the same criterion function (namely, use the same dissimilarity measure).The

leaders method can be used with large data sets; however, the number of clusters

has to be prespecified. An application of the compatible (based on the same criterion

function) hierarchical method on the sample can be helpful to determine the number of

expected clusters. A compatible hierarchical clustering method can also be used after

the leaders method on its resulting clustering to uncover the structure of clustering and

the number of clusters.

There are two basic choices in the leaders method:

– how we select a representation of units, clusters, and cluster representatives;

– which dissimilarity measures we use between units, clusters, and unit and

cluster representative.

The main aim of our adapted methods is to obtain optimal clusters’ representatives

that resolve the following issues:
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– To consider demographic structure as SO: the optimal cluster representative

should be meaningful (interpretable), namely, it should represent the demographic

structure of the population of all units from the cluster. This was the motivation for

the inclusion of weights into the representation of SOs and into the clustering criterion

function.

– Patents’ citation data set: the error measure/dissimilarity should consider all

component values of a variable equally (for example, squared Euclidean distance

favors the largest component value). This was the motivation for proposing alternative

dissimilarities.

Our approach is based on the additive model. The criterion function P (C) is the

sum of all cluster errors. The error of a cluster p(C) is the sum of dissimilarities of its

units from the cluster’s optimal representative – leader TC .

P (C) =
∑

C∈C

p(C) where p(C) =
∑

X∈C

d(X,TC).

The set of feasible partitions Φ is a set of partitions into k clusters of a finite set

of units U. We assume that a leader has the same structure of description as SOs

(see [10.1]), i.e., it is represented with nonnegative vectors ti of the size ki for each

variable Vi – its representation space is T = (R+
0 )

k1 × (R+
0 )

k2 × · · · × (R+
0 )

km .

For a given representative T ∈ T and a cluster C, we define the cluster error with

respect to T :

p(C, T ) =
∑

X∈C

d(X,T ),

where d is the selected dissimilarity measure. The best representative – leader TC – is

then the one that minimizes the sum of errors within the cluster

TC = argmin
T

p(C, T ).

Then, we define

p(C) = p(C, TC) = min
T

∑

X∈C

d(X,T ).

A dissimilarity measure between SOs and T is defined as a weighted average

(convex combination)

d(X,T ) =

m
∑

i=1

αidi(xi, ti), αi ≥ 0,

m
∑

i=1

αi = 1,

where αi are weights for variables. They allow specifying the importance of the

variables by the user. If not determined otherwise, they are all set to αi =
1

m
.
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For each variable, we set

di(xi, ti) =

ki
∑

j=1

wxijδ(pxij , tij), wxij ≥ 0,

where wxij are weights for each variable’s component and δ is a basic dissimilarity.

The adapted clustering methods are implemented in the R package clamix

[BAT 19] that supports the clustering of (very) large data sets of mixed (measured in

different scales) units. Basic dissimilarities δ included in the R package clamix can

be found by Batagelj et al. [BAT 15a]. For example, the selection of δ = (px − t)2

represents an extension of the squared Euclidean distance on SOs described with

discrete distributions. Five other proposed basic dissimilarities for δ represent relative

error measures proposed by Kejžar et al. [KEJ 11], extended on SOs.

New leader TC of the cluster C is determined with

TC = argmin
T

∑

X∈C

d(X,T ) = argmin
T

∑

X∈C

m
∑

i=1

αidi(X,T ) =

= argmin
T

∑

i

αi

∑

X∈C

di(xi, ti) =
[

argmin
ti

∑

X∈C

di(xi, ti)
]m

i=1
,

where ti = [ti1, . . . , tiki
]. The solution ti of the obtained optimization problem

depends on the nature of the selected basic dissimilarity δ.

To make the adapted leaders method and the adapted agglomerative hierarchical

clustering method compatible, the dissimilarity D(Cu, Cv) in the agglomerative

hierarchical clustering is determined by the following formula

D(Cu, Cv) = p(Cu ∪ Cv)− p(Cu)− p(Cv).

The dissimilarity between the two clusters is the same as the cluster error of the

merged cluster diminished by both the cluster errors.

For the dissimilarity δ = (px − t)2, we get the generalization of the Ward

hierarchical method

D(Cu, Cv) =

m
∑

i=1

αi

ki
∑

j=1

wuij · wvij

wuij + wvij

(uij − vij)
2,
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where uij and vij are the leader’s components of the clusters Cu and Cv ,

respectively, i.e.,

uij =
1

wuij

∑

X∈Cu

wxij · pxij , wuij =
∑

X∈Cu

wxij , and

vij =
1

wvij

∑

X∈Cv

wxij · pxij , wvij =
∑

X∈Cv

wxij .

A detailed definition of the methods’ compatibility and the derivations for

the leaders and for the dissimilarities D(Cu, Cv) can be found by Batagelj et al.

[BAT 15a].

10.3.1. TIMSS – study of teaching approaches

For studying teaching approaches, we used the TIMSS – Trends in International

Mathematics and Science Study open data set [IEA 04], [TIM 04] for the years

1999 and 2003 (joint work with Barbara Japelj Pavešić, National Coordinator of

the International Research of Trends in Knowledge of Mathematics and Science for

Slovenia, The Educational Research Institute, Slovenia). The aim of the study was

to find groups of teachers with similar teaching approaches where we combined

the data set of teachers’ answers with the data set of students’ answers. The data

set for the year 2003 includes a sample consisting of 6,552 teachers and 131,000

students, representing more than 10 million students of the 8th grade in 30 countries.

All answers in the questionnaire were categorized (including age).

The data description used can be explained in a more general framework, i.e., as

the so-called ego-centered or personal networks (see the basic scheme in Figure 10.1),

that are rather common in social sciences. The ego-centered network consists of two

related data sets: egos and alters. Each unit in the first data set, i.e., ego, can be related

with different units from the second data set, i.e., alters.

Figure 10.1. Ego-centered network
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In our study, units of analysis were teachers, described by their variables: gender,

age, education, their work in classes, pedagogical approaches used in the class,

opinions about mathematics, classroom activities, the use of IT, and the issues on

homework.

For each teacher, there was also a description for distributions of students’

answers, describing students’ attitudes toward mathematics, such as valuing math,

enjoying learning, and self-confidence in mathematics, and activities in class such as

students’ use of IT, their participation in learning mathematics, and their strengths in

mathematics. These values were collected with separate questionnaires for students.

Figure 10.2. Teacher–students ego-centered network (Source: [KOR 11])

We combined both data descriptions into one

SO(X) = [X,A(X)],

where the units were described with ego X and alters variables A(X) as a symbolic

object.

For example, the SO description of the teacher with id 4567 is

SO4567 =
[(

1,[0,0,0,1]
)
,
(
1,[0,0,0,0,1,0]

)
, ...

(
100, [ 0.47, 0.16, 0.37, 0,0]

)
,
(
100,[0,0,1,0]

)
, ...

]

↑ ↑ ↑ ↑

T1 T2 ... S1 S2

where teacher variables (T1, T2, . . . ) have only a singular value, but the alters

(students’) variables S1, S2, . . . contain distributions of students’ answers. Most of

them are distributed over the following four subsets: 1 = strongly agree, 2 = agree,

3 = disagree and 4 = strongly disagree, which express how much they agree/disagree

with the statement that is considered as a student variable.
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One hundred and one variables were included in the clustering process: 77 from

teachers and 24 from the students’ questionnaire. The adapted hierarchical method

with squared Euclidean distance was used (without weights). We identified five main

clusters. One of them contains units with mostly missing values. Teachers in other

clusters differ in the usage of computers and calculators in their lectures, in assigning

and monitoring homework and testing the knowledge of their students. We further

observed also if there are links between the obtained clusters and other variables

that were not included in the clustering process, like students’ achievements and the

teacher’s country of origin. For example, in the TIMSS study, students are assigned to

different benchmark levels of mathematical knowledge. The distribution of students

reaching benchmarks for four clusters (cluster 2 with missing answers was omitted) is

presented in Figure 10.3.

Figure 10.3. Benchmark levels of mathematics achievement reached

by students (source: [KOR 11])

Additional details on the obtained results can be found in [KOR 11].

10.3.2. Clustering countries based on age–sex distributions of their

populations

On the web, the data on age–sex distributions (population pyramids) for the

countries and for many countries also for their administrative units are openly

available. Although the population pyramid is simple and easy to understand, it well
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reflects characteristics of the observed time and region. It is mostly influenced by

population processes (fertility, mortality and migration), and policies (social and

political) can also have a strong influence on its shape, e.g., birth control in China,

wars, and lifestyle. Because of this, population pyramids are often connected with the

developing stage of the represented regions. The base for the graphical representation

with the population pyramid is age–sex distribution of the population of the particular

region in the particular time. We considered age–sex distribution as SO in the

following way: each age–sex distribution (population pyramid) is described with

two vectors of frequencies (one for each gender), representing the distributions of

men/women by age.

A region X (world country, US county, municipality, and sub-national area)

represented with population pyramids (age–sex distributions of the population) and

cluster of regions Cu is described with two symbolic variables:

X = [(nxM ,pxM ); (nxF ,pxF )], Cu = [(nuM ,puM ); (nuF ,puF )]

where nM is the number of men, pM is the vector of relative frequencies of men over

age groups, nF is the number of women (female), and pF is the vector of relative

frequencies of women over age groups.

For example, the population of Ljubljana on July 1, 2011 was split into three

economic age groups 0–19, 20–64 and 65+, where nLjM = 134,410 men and

nLjF = 145,488 women, and the corresponding frequency distributions over the

economic age groups are [25,396, 90,466, 18,548] for men and [24,204, 91,899,
29,385] for women.

The description of the corresponding SO (see expression [10.2]) is

XLj =
[(
134 410, [0.189, 0.673, 0.138]

)
;
(
145 488, [0.166, 0.632, 0.202]

)]

↑ ↑ ↑ ↑

nLjM pLjM
︸ ︷︷ ︸

nLjF pLjF
︸ ︷︷ ︸

men women

For the cluster Cu, it holds

nui =
∑

X∈Cu

nxi and pui =
1

nui

∑

X∈Cu

nxi · pxi, i = M,F.

The dissimilarity between clusters Cu and Cv is in this case rewritten as

D(Cu, Cv) =
1

2

( nuM · nvM

nuM + nvM

||puM−pvM ||2+
nuF · nvF

nuF + nvF

||puF−pvF ||
2
)

.
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We used the adapted hierarchical clustering method with weighted squared

Euclidean distance as dissimilarity for the applications on several open data sets:

– Slovenian municipalities on July 1, 2011, where data were obtained from the

National Statistical Office of the Republic of Slovenia. Analyses were made with

the original data with 21 five-year groups (0–4 years, 5–9 years, 10–14 years, . . . ,

95–99 years, 100+) and also with data aggregated into three economic age groups

(0–14 years, 15–64 years, and 65+ years) (joint work with Jože Sambt, University of

Ljubljana, Faculty of Economics [KOR 12]);

– population pyramids of the world countries obtained from the International Data

Base (IDB) [US 08]. The data are divided into 17 five-year groups (0–4 years, 5–9

years, 10–14 years, . . . , 75–79 years, 80+), where we also observed time changes

with the 5-year time-lag (for years 1996, 2001 and 2006);

– US counties from US Census 2000 Summary File 1, prepared by U.S. Census

Bureau [US 11]. Data for the year 2000 include 3, 219 US counties. The data for the

year 2010 include 3, 221 US counties with the additional variable ethnicity that was

included in our analysis;

– Brazilian municipalities with IBGE – Brazilian Institute of Geography and

Statistics data [BRA 14], where we analyzed 5, 570 municipalities for 2010. We used

data descriptions based on the age–sex structures and also on age–area (urban/rural)

structures;

– sub-national areas in Latin America and the Caribbean with IPUMS dataset of

census microdata from 1960 to 2011 (joint work with Ludi Simpson, University of

Manchester, UK).

The main characteristic of the adapted clustering method based on squared

Euclidean distance is that with the inclusion of sizes as weights for each variable

(the number of men/women) into the clustering process, the obtained optimal

cluster representative is again age–sex distribution of the region determined by the

corresponding cluster (thus, we get meaningful cluster representative). Note, however,

that age groups are considered as categories (not intervals and without ordering).

The main aim of the analysis of the countries based on their age–sex distributions,

obtained with the adapted clustering methods, was to identify groups of countries

with similar age–sex structures and to identify groups of countries with similar

structural changes over time [KOR 15]. In order to achieve a relevant comparison,

215 of the countries for which data were available at all three time points (1996, 2001,

and 2006) were included in the analysis. With the symbolic data descriptions

of the population age–sex distributions, we save complete information about

distributions, and with the inclusion of the sizes as weights into the clustering

process, we obtained meaningful optimal cluster representatives, i.e., age–sex

distributions of the population included in the countries inside the clusters.

We identified four main clusters for each of the observed years. Their shapes rather
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well reflect basic demographical developing stages. Clusters are studied in detail also

for partitions at lower levels.

Figure 10.4. Four main clusters obtained from 215 of the countries for the years

1996, 2001 and 2006 with their population pyramids, number of countries in each

cluster, and overall population (source: [KOR 15])

Observation over time showed that the shapes of the sex–age structures of the

countries mostly changed from the more expansive shape (with a large number

of people in young ages and fast decline for older people) to stationary or even

constrictive shape that usually express a more developed stage (with lower fertility

and mortality rate and longer life expectancy). Further observation of the time changes

revealed five main clusters of similar time changes of population age–sex distributions

over the observed time. More details about the results can be found in [KOR 15].

The application to sub-national age–sex distributions from Latin America and

the Caribbean [KOR 17] was a part of a wider project compared to sub-national

demographic development in Latin America and the Caribbean [SIM 16]. The main

focus of the study was to examine sub-national time series of age–sex structures for

many countries in Latin America and the Caribbean, to summarize the diversity and

the socio-demographic associates of changing age–sex structures, and to identify and

characterize the development of those age–sex structures over time, useful to the

practice of demographic projections. As a clustering result, we identified four main

shapes for the population pyramids that are strongly related to the additional socio-

demographic indicators for clusters’ descriptions. Most of the time movements of the

observed regions were from clusters with indicators expressing less developed stages
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to more developed ones. Observation of population pyramids over time revealed that

the shape of the age–sex structure of some of the areas significantly changed over

the observed time period from 1960 to 2010 [e.g., Federal District (Brazil)]. The

changes can be explained with the additional knowledge of special circumstances in

this area. The clustering method also revealed some areas with rather unusual shapes

that require a more detailed study of the data and of social and political situations

in the observed area and time. Dissimilarities among structures in different decades

indicate that age–sex structures of the observed areas become more similar over time.

10.4. Generalized ANOVA

ANalysis Of VAriance (ANOVA) is one of the most common statistical approaches

for detecting “differences” among groups/clusters. It is based on

– squared Euclidean distance;

– sum-of-squares decomposition equality: SST = SSB+SSW where SST stands

for total sum of squares (deviations of the values around the total mean), SSB for

between-group sum of squares (deviations of group means around total mean), and

SSW for within-group sum of squares (sum of the deviations of values around group

mean - sum of the group errors);

– assumptions about distributions — normal distributions with equal variances.

We are interested in an extension/adaptation of the ANOVA method with a general

measure of spread. We present here our basic ideas about a possible generalization of

the standard approach that enables a more general usage. We propose to combine some

available theoretical results for each of the following three main steps: 1) selection of

an appropriate measure of spread; 2) construction of a test statistic for non-parametric

multivariate analysis; and 3) calculation of a P -value.

The sum of squares of the group can also be viewed as the error of the group,

denoted by p(C) (see the previous section), or the inertia, sometimes denoted by

I(C). From mechanics, we know the Huygens theorem

IT = IB + IW ,

where IT stands for total inertia, IB for between-group inertia, and IW for within-

group inertia.

For the basic dissimilarity δ = (px − t)2, the total inertia is

IT =
∑

X∈U

d(X,TU ), where

d(X,TU ) =
∑

i αi di(xi, tUi) =
∑

i αi wxi||pxi − tUi||
2, and

tUi =
1

∑

X∈U
wxi

∑

X∈U

wxi · pxi, where U denotes the whole set of units.
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The between inertia is

IB =
∑

C∈C

d(TC , TU ),

with d(TC , TU ) =
∑

i αi wCi||tCi − tUi||
2.

And the within inertia is

IW = P (C) =
∑

C∈C

p(C) =
∑

C∈C

∑

X∈C

d(X,TC),

where d(X,TC) =
∑

i αi di(xi, tCi) =
∑

i αi wxi||pxi − tCi||
2, and the

representative of variable i: tCi =
1

wCi

∑

X∈C wxi · pxi, where wCi =
∑

X∈C wxi.

With a general dissimilarity, using the ideas from [BAT 88]:

1. Define the cluster error p(C)

p(C) =
1

2 · w(C)

∑

X∈C

∑

Y ∈C

w(X) · w(Y ) · d(X,Y )

which is a generalization of the classical formula for the squared Euclidean distance

p(C) =
1

2 · nC

∑

X∈C

∑

Y ∈C

||X − Y ||2.

2. Introduce a generalized (possible imaginary) center C̃ of a cluster C defined

with the extension of a dissimilarity to units and cluster centers

d(Y, C̃) = d(C̃, Y ) =
1

w(C)

(

∑

X∈C

w(X) · d(X,Y )− p(C)

)

,

where Y is a unit or a cluster center. Definition of the generalized center is based on

the classical formula for the center C̄ = argminY
∑

X∈C ||X−Y ||2 with the squared

Euclidean distance and equality

||Y − C̄||2 =
1

nC

∑

X∈C

(

||X − Y ||2 − ||X − C̄||2
)

.

3. The generalized Huygens theorem holds:

IT = IB + IW ,
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where

IT = p(U) =
1

2 · w(U)

∑

X,Y ∈U

w(X) · w(Y ) · d(X,Y ),

IW =
∑

C∈C

p(C),

IB =
∑

C∈C

w(C) · d(C̃, Ũ) = IT − IW .

The problem might occur since the extended “dissimilarity” between (imaginary)

center and each unit d(Y, C̃) is not necessary nonnegative for every dissimilarity.

In [BAT 88], it is shown that the triangle inequality is a sufficient condition for the

extended dissimilarity d(Y, C̃) to be nonnegative. Therefore, in the next step, we show

how it is possible to produce a dissimilarity from a general one that can be used in the

generalized ANOVA process.

In [JOL 86], for general dissimilarity measure d, there exists a unique nonnegative

real number p, called metric index, such that dα is a metric1 for all α ≤ p, and dα is

not a metric for all α > p. If a dissimilarity d is not a metric, it can be transformed

into it using the power transformation. Therefore, we can first find metric index p of

arbitrarily chosen dissimilarity d and in the generalized Huygens theorem

– use d if p ≥ 1;

– otherwise (if p < 1) use dp.

The test statistic for the generalized ANOVA that we used is in line with the

approach of Anderson and McArdle [AND 01], [MCA 01], which was applied to

ecology data, and the approach of Studer et al. [STU 11], applied to the life trajectory

analysis. The construction of their test statistic is based on the ratio of sums of squares

as in the classical ANOVA.

F =
IB/(m− 1)

IW /(n−m)
,

where m is the number of clusters and n is the number of units. The sums of

squares are substituted by the generalized inertias IB and IW , respectively. Since

the distribution of F is in the case of different dissimilarities not necessarily the

F -distribution, P -values are calculated by a nonparametric (permutation) method.

1 Dissimilarity d is metric if besides non-negativity, identity and symmetry, also triangle

inequality holds, i.e., for each triple of units X,Y and Z, it holds d(X,Z) ≤ d(X,Y ) +
d(Y, Z).
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McArdle and Anderson [MCR 01] showed that their method can be used with an

arbitrary semimetric measure. Here, we add that the method can be used with a

general dissimilarity measure as long as the dissimilarity between (imaginary) center

C̃ and each unit is nonnegative. The nonnegativity can be achieved by the application

of the metric index on the dissimilarity matrix just before using the nonparametric

method.

The computations for the generalized ANOVA from dissimilarity measures

were made by using the procedure dissassoc from the R package TraMineR by

Studer et al. [STU 11]. It computes and tests the rate of discrepancy (defined from a

dissimilarity matrix) explained by categorical variable(s).

To demonstrate the proposed approach, we performed these steps on the data of

the countries described with the age–sex structures of their population for the year

2005. The data were obtained from the International Data Base (IDB) for the year

2005 [US 08]. Populations are divided into 17 five-year groups (0–4 years, 5–9 years,

10–14 years, ..., 75–79 years, 80+) for each gender. Unit representation is based

on the same symbolic data analysis approach as in the application of population

pyramids: data representation with two vectors, i.e., distributions of men/women over

age-groups.

Groups were determined by the Human Development Index (HDI) found in The

United Nations Development Program (UNDP) [UN 15b], which was developed by

Pakistani economist Mahbub ul Haq to emphasize the importance of people, not

only economy, for human development. It is a summary measure of the average

achievement in key dimensions of human development: a long and healthy life,

indicated by life expectancy at birth, being knowledgeable, considering mean years

of schooling and expected years of schooling, and having a decent standard of living,

where measurement is based on GNI (Gross National Income) per capita.

We calculated the dissimilarity between countries X and Y with the formula

d(X,Y ) =
1

2

( nxM · nyM

nxM + nyM

||pxM − pyM ||2 +
nxF · nyF

nxF + nyF

||pxF − pyF ||
2
)

.

Since we used squared Euclidean distance, the extended dissimilarity d(U, C̃) is

nonnegative and we would not need to calculate the metric index. We do this here

for demonstration purposes. The metric index for the obtained dissimilarity matrix is

p = 0.06438. We used in the process dp instead of d.

The HDI is used to rank countries by human development in the annual Human

Development Reports prepared and published by The United Nations Development

Program (UNDP). Data for the year 2005 from Table 2: Human Development
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Index trends, 1980–2013, include 173 world’s countries [UN 15a]. Three classes for

the year 2005 (The Human Development Report 2007/2008) were determined as:

– high (HDI 0.800 or more);

– medium (HDI from 0.500 to 0.799);

– low (HDI below 0.500).

The results of the generalized ANOVA for 173 countries for the year 2005, based

on dp and three HDI classes (obtained with the usage of the clamix program for

the calculation of the dissimilarity between countries and using TraMineRs procedure

dissassoc to compute inertias and F -value), are

IT = 155.05, IW = 144.48, IB = IT − IW = 10.57

F =
IB/(m− 1)

IW /(n−m)
=

10.57/(3− 1)

144.48/(173− 3)
= 6.22

The results obtained show a larger discrepancy between groups than within them

(P -value = 0.0002, P -value used with or without the metric index for the world

country examples is the same). This indicates that there are noticeable differences

between groups of countries determined with their HDI index according to the age–

sex structure of the population.

10.5. Conclusion

Open data are very often available in aggregated form and can be considered

as so-called second-level units. To preserve internal variation of the original

(primary) units, these second-level units need to be represented with a more complex

representation of aggregated values than the usual single mean value. SOs provide

such a description, and SDA methods can be used to analyze them. The institutions

that offer open data are, therefore, invited to produce/release the aggregated data in

the form of SOs.

In this chapter, we presented adapted clustering methods for second-level units that

were motivated by analysis of some open data sets. The main aim of the presented

methods is to produce meaningful (informative) optimal cluster representatives.

In order to obtain the desired properties of optimal cluster representatives, we

have proposed some alternative dissimilarity measures between second-level units

represented with empirical discrete (membership) distributions and the inclusion of

weights. We demonstrated their usage with applications on TIMSS open data base

and demographic age–sex structures on different sets of teritorial units.

In order to study differences among pre-specified groups of units, we presented an

approach to generalize ANOVA with the following two main advantages: (1) it can
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be used with any dissimilarity measure and (2) it is nonparametric – it has no a priori

assumptions about variable distributions.

NOTE.– This work was partially supported by the Slovenian Research Agency,

Programmes P1-0294 and P3-0154 and by Russian Academic Excellence

Project ‘5-100’.
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[JOL 86] JOLY S., LE CALVÉ G., “Etude des puissances d’une distance”, Statistique

et Analyse de Données, pp. 30–50, North-Holland, Amsterdam, 1986.
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