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Clustering

� basic notions: cluster, clustering, feasible clustering,criterion function,

dissimilarities, clustering as an optimization problem

� different (nonstandard) problems: assignment of studentsto classes,

regionalization; general criterion function; multicriteria problems.

� complexity results about the clustering problem – NP-hardness theorems
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Basic notions
Let us start with the formal setting of the clustering problem. We shall use the

following notation:

X – unit

X – descriptionof unitX

U – spaceof units

U – finiteset of units,U � U

C – cluster, ; � C � U

C – clustering,C = fC

i

g

� – set offeasible clusterings

P – criterion function,

P : �! IR+
0
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Clustering problem
With these notions we can express theclustering problem(�; P ) as follows:

Determine the clusteringC?

2 � for which

P (C

?

) = min

C2�

P (C)

Since the set of unitsU is finite, the set of feasible clusterings is also finite. Therefore

the setMin(�; P ) of all solutions of the problem (optimal clusterings) is notempty.

(In theory) the setMin(�; P ) can be determined by the complete search.

We shall denote the value of criterion function for an optimal clustering bymin(�; P ).
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Units
real or imaginary objects of analysis

WORLD UNITS DESCRIPTIONS
fXg  ! X  ! [X℄

formalization operationalization

f produced cars Tg car T [ seats=4, max-speed= . . .℄

Usually an unitX is represented by a vector/descriptionX � [X℄ = [x

1

; x

2

; :::; x

m

℄

from the set[U ℄ of all possible descriptions.x
i

= V

i

(X) is the value of thei-th of

selected properties orvariablesonX. Variables can be measured in differentscales:

nominal, ordinal, interval, rational, absolute (Roberts,1976).

There exist other kinds of descriptions of units: symbolic object (Bock, Diday, 2000),

list of keywords from a text, chemical formula, vertex in a given graph, digital picture,

. . .
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Clusterings
Generally the clusters of clusteringC = fC

1

; C

2

; : : : ; C

k

g need not to be pairwise

disjoint; yet, the clustering theory and practice mainly deal with clusterings which are

thepartitions ofU

k

[

i=1

C

i

= U

i 6= j ) C

i

\ C

j

= ;

Each partition determines an equivalence relation inU, and vice versa.

We shall denote the set of all partitions ofU into k classes (clusters) byP
k

(U).
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Simple criterion functions
Joining the individual units into a clusterC we make a certain ”error”, we create

certain ”tension” among them – we denote this quantity byp(C). The criterion

functionP (C) combines these ”partial/local errors” into a ”global error”.

Usually it takes the form:

S. P (C) =

X

C2C

p(C)

or

M. P (C) = max

C2C

p(C)

which can be unified and generalized in the following way:

Let (IR;�; e;�) be an ordered abelian monoid then:

�. P (C) =

M

C2C

p(C)

For simple criterion functions usuallymin(P
k+1

U); P ) � min(P

k

(U); P ) — we fix

the value ofk and set� � P

k

(U).
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Cluster-error function / dissimilarities
Thecluster-errorp(C) has usually the properties:

p(C) � 0 and 8X 2 U : p(fXg) = 0

In the continuation we shall assume that these properties ofp(C) hold.

To express the cluster-errorp(C) we define on the space of units adissimilarity

d : U � U ! IR+
0

for which we require D1 and D2:

D1. 8X 2 U : d(X;X) = 0

D2. symmetric: 8X;Y 2 U : d(X;Y) = d(Y;X)

Usually the dissimilarityd is defined using another dissimilarityÆ : [U ℄� [U ℄! IR+
0

as

d(X;Y) = Æ([X℄; [Y℄)
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Properties of dissimilarities
The dissimilarityd is:

D3. even: 8X;Y 2 U : (d(X;Y) = 0) 8Z 2 U : d(X;Z) = d(Y;Z))

D4. definite: 8X;Y 2 U : (d(X;Y) = 0) X = Y)

D5. metric: 8X;Y;Z 2 U : d(X;Y) � d(X;Z) + d(Z;Y) – triangle

D6. ultrametric: 8X;Y;Z 2 U : d(X;Y) � max(d(X;Z); d(Z;Y))

D7. additive, iff the Buneman’s or four-point condition holds8X;Y;U;V 2 U :

d(X;Y) + d(U;V) � max(d(X;U) + d(Y;V); d(X;V) + d(Y;U))

The dissimilarityd is adistanceiff D4, D5 hold.

Since the description[ ℄ : U! [U℄ need not to be injective,d can be indefinite.
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Dissimilarities on IRm / examples 1

n measure definition range note

1 Euclidean

v
u
u
t

m

X

i=1

(x

i

� y

i

)

2

[0;1) M(2)

2 Sq. Euclidean

m

X

i=1

(x

i

� y

i

)

2

[0;1) M(2)

2

3 Manhattan
m

X

i=1

jx

i

� y

i

j [0;1) M(1)

4 rook

m

max

i=1

jx

i

� y

i

j [0;1) M(1)

5 Minkowski p

v
u
u
t

m

X

i=1

(x

i

� y

i

)

p

[0;1) M(p)
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Dissimilarities on IRm / examples 2

n measure definition range note

6 Canberra

m

X

i=1

jx

i

� y

i

j

jx

i

+ y

i

j

[0;1)

7 Heincke

v
u
u
t

m

X

i=1

(

jx

i

� y

i

j

jx

i

+ y

i

j

)

2

[0;1)

8 Self-balanced
m

X

i=1

jx

i

� y

i

j

max(x

i

; y

i

)

[0;1)

9 Lance-Williams

P

m
i=1

jx

i

� y

i

j

P

m
i=1

x

i

+ y

i

[0;1)

10 Correlation c.

ov(X;Y )

p

var(X)var(Y )

[1;�1℄
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(Dis)similarities on IBm / examples

Let IB = f0; 1g. ForX;Y 2 IBm we definea = XY , b = XY ,  = XY , d = XY .

It holds a + b +  + d = m. The countersa; b; ; d are used to define several

(dis)similarity measures on binary vectors.

In some cases the definition can yield an indefinite expression 0
0

. In such cases we

can restrict the use of the measure, or define the values also for indefinite cases. For

example, we extend the values of Jaccard coefficient such that s
4

(X;X) = 1. And for

Kulczynski coefficient, we preserve the relationT =

1

s

4

� 1 by

s

4

=

8
<

:

1 d = m

a

a+b+

otherwise
s

�1

3

= T =

8
>
>
<

>
>
:

0 a = 0; d = m

1 a = 0; d < m

b+

a

otherwise

We transform a similaritys from [1; 0℄ into dissimilarityd on [0; 1℄ by d = 1� s.

For details see Batagelj, Bren (1995).
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(Dis)similarities on IBm / examples 1

n measure definition range

1 Russel and Rao (1940) a

m

[1; 0℄

2 Kendall, Sokal-Michener (1958) a+d

m

[1; 0℄

3 Kulczynski (1927),T�1 a

b+

[1; 0℄

4 Jaccard (1908) a

a+b+

[1; 0℄

5 Kulczynski 1
2

(

a

a+b

+

a

a+

) [1; 0℄

6 Sokal & Sneath (1963),un
4

1
4

(

a

a+b

+

a

a+

+

d

d+b

+

d

d+

) [1; 0℄

7 Driver & Kroeber (1932) a

p

(a+b)(a+)

[1; 0℄

8 Sokal & Sneath (1963),un
5

ad

p

(a+b)(a+)(d+b)(d+)

[1; 0℄
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(Dis)similarities on IBm / examples 2

n measure definition range

9 Q

0

b

ad

[0;1℄

10 Yule (1927),Q ad�b

ad+b

[1;�1℄

11 Pearson,� ad�b

p

(a+b)(a+)(d+b)(d+)

[1;�1℄

12 – bc – 4b

m

2

[0; 1℄

13 Baroni-Urbani, Buser (1976),S�� a+

p

ad

a+b++

p

ad

[1; 0℄

14 Braun-Blanquet (1932) a

max(a+b;a+)

[1; 0℄

15 Simpson (1943) a

min(a+b;a+)

[1; 0℄

16 Michael (1920) 4(ad�b)

(a+d)

2

+(b+)

2

[1;�1℄
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Dissimilarities between sets

Let F be a finite family of subsets of the finite setU ; A;B 2 F and letA � B =

(A nB) [ (B nA) denotes the symmetric difference betweenA andB.

The ’standard’ dissimilarity between sets is theHamming distance:

d

H

(A;B) := ard(A�B)

Usually we normalize itd
h

(A;B) =

1

M

ard(A � B). One normalization is

M = ard(U); the otherM = m

1

+ m

2

, wherem
1

andm
2

are the first and the

second largest value infard(X) : X 2 Fg.

Other dissimilarities

d

s

(A;B) =

ard(A�B)

ard(A) + ard(B)

d

u

(A;B) =

ard(A�B)

ard(A [B)

d

m

(A;B) =

max(ard(A nB); ard(B nA))

max(ard(A); ard(B))

For all these dissimilaritiesd(A;B) = 0 if A = B = ;.
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Problems with dissimilarities

What to do in the case ofmixed units(with variables measured in different types of

scales)?

� conversion to a common scale

� compute the dissimilarities on homogeneous parts and combine them (Gower’s

dissimilarity)

Fairnessof dissimilarity – all variables contribute equally. Approaches: use of

normalized variables, analysis of dependencies among variables.
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Cluster-error function / examples
Now we can define several cluster-error functions:

S. p(C) =

X

X;Y2C;X<Y

w(X) � w(Y) � d(X;Y)

S: p(C) =

1

w(C)

X

X;Y2C;X<Y

w(X) � w(Y) � d(X;Y)

wherew : U ! IR+ is aweightof units, which is extended to clusters by:
w(fXg) = w(X); X 2 U

w(C

1

[ C

2

) = w(C

1

) + w(C

2

); C

1

\ C

2

= ;

Oftenw(X) = 1 holds for eachX 2 U . Thenw(C) = ard(C).

M. p(C) = max

X;Y2C

d(X;Y) = diam(C) – diameter

T. p(C) = min

T is a spanning tree over C

X

(X:Y)2T

d(X;Y)
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We shall use the labels in front of the forms of (partial) criterion functions to denote

typesof criterion functions. For example:

SM. P (C) =

X

C2C

max

X;Y2C

d(X;Y)

It is easy to prove:

Proposition 1.1 LetP 2 fSS; SS; SM;MS;MS;MMg then there exists an

�

P
k

(U) > 0 such that for eachC 2 P
k

(U) :

P (C) � �

P
k

(U) �max

C2C

max

X;Y2C

d(X;Y)

holds.

Note that this inequality can be writen also asP (C) � �

P
k

(U) �MM(C).

University of Konstanz June 2002
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Sensitive criterion functions
The criterion functionP (C), based on the dissimilarityd, is sensitiveiff for each

feasible clusteringC it holds
P (C) = 0() 8C 2 C 8X;Y 2 C : d(X;Y) = 0

and is�-sensitiveiff there exists an�P
k

(U) > 0 such that for eachC 2 P
k

(U) :
P (C) � �

P
k

(U) �MM(C)

Proposition 1.2 Every�-sensitive criterion function is also sensitive.

The proposition 1.1 can be reexpressed as:

Proposition 1.3 The criterion functionsSS; SS; SM;MS;MS;MM are�-sensitive.
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Representatives
Another form of cluster-error function, which is frequently used in practice, is based

on the notion of leader or representative of the cluster:

R. p(C) = min

L2F

X

X2C

w(X) � d(X;L)

whereF � F is the set ofrepresentatives. The elementC 2 F, which minimizes

the right side expression, is called therepresentativeof clusterC. It is not always

uniquely determined.

Example 1 The representation space need not be the same as the description space.

[U℄ � IR2 and[F℄ = f(a; b; ) : ax+ by = ; a

2

+ b

2

= 1g. 2

Example 2 In the case[U℄ � IRm

; [F℄ = IRm , d(X;L) = d

2
2

(X;L) =

P

m
i=1

(x

i

� l

i

)

2 there exists a uniquely determined representative –center of gravity

C =

1

ard(C)

P

X2C

X . In this case the criterion functionSR is calledWard’s

criterion function(Ward, 1963). 2
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The generalized Ward’s criterion function

To obtain thegeneralized Ward’s clustering problemwe, relying on the equality

p(C) =

X

X2C

d

2
2

(X;C) =

1

2 ard(C)

X

X;Y 2C

d

2
2

(X;Y )

replace the expression forp(C) with

p(C) =

1

2w(C)

X

X;Y 2C

w(X) � w(Y ) � d(X;Y ) = S(C)

Note thatd can be any dissimilarity onU .

From the definition we can easily derive the following equality: If C
u

\ C

v

= ; then

w(C

u

[C

v

)�p(C

u

[C

v

) = w(C

u

)�p(C

u

)+w(C

v

)�p(C

v

)+

X

X2C

u

;Y 2C

v

w(X)�w(Y )�d(X;Y )

In Batagelj (1988) it is also shown how to replaceC by a generalized, possibly
imaginary (with descriptions not neccessary in the same setasU), central element in
the way to preserve the properties characteristic for Ward’s clustering problem.
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Representatives cluster error

Proposition 1.4 Letp(C) be of typeR then

a) p(C) + w(X) � d(X; C [X) � p(C [X); X =2 C

b) p(C nX) + w(X) � d(X; C) � p(C); X 2 C

Proof: The definition ofC can be equivalently expressed in the form:

8L 2 F : p(C) =

X

Y2C

w(Y) � d(Y; C) �

X

Y2C

w(Y) � d(Y;L)

Therefore in case a):

p(C) =

X

Y2C

w(Y) � d(Y; C) �

X

Y2C

w(Y) � d(Y; C [X) =

=

X

Y2C[X

w(Y) � d(Y; C [ X) � w(X) � d(X; C [X) =

= p(C [X)� w(X) � d(X; C [X)

In the similar way we can prove also inequality b). 2
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Other criterion functions
Several other types of criterion functions were proposed inthe literature. A very

important class among them are the ”statistical” criterion functions based on the as-

sumption that the units are sampled from a mixture of multivariate normal distributions

(Marriott, 1982) .

General criterion function

Not all clustering problems can be expressed by a simple criterion function. In some

applications ageneralcriterion function of the form

P (C) =

M

(C

1

;C

2

)2C�C

q(C

1

; C

2

); q(C

1

; C

2

) � 0

is needed. We shall use it in blockmodeling.

Multicriteria clustering

In some problems several criterion functions can be defined(�; P

1

; P

2

; : : : ; P

s

).

See Ferligoj, Batagelj (1994).
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Example: problem of partitioning of a generation of pupils into a
given number of classes

so that the classes will consist of (almost) the same number of pupils and that they

will have a structure as similar as possible. An appropriatecriterion function is
P (C) = max

fC

1

;C

2

g2C�C

ard(C

1

)�ard(C

2

)

min

f:C

1

!C

2

f is surjective

max

X2C

1

d(X; f(X))

whered(X;Y) is a measure of dissimilarity between pupilsX andY.
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Example: Regionalization

The motivation comes fromregionalizationproblem: partition given set of territorial

units intok connected subgroups of similar units – regions.

Suppose that besides the descriptions of units[U℄ they are related also by a binary

relationR � U�U.

In such a case we have an additional requirement –relational constrainton clusterings

to be feasible. The set of feasible clusterings can be definedas:

�(R) = fC 2 P (U) : each clusterC 2 C is a subgraph(C;R \ C � C) in the

graph(U; R) with the required type of connectednessg

If R is nonsymmetric we can define different types of sets of feasible clusterings for

the same relation (Ferligoj and Batagelj, 1983).
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Complexity of the clustering problem
Because the set of feasible clusterings� is finite the clustering problem(�; P ) can be

solved by the brute force approach inspecting all feasible clusterings. Unfortunately,

the number of feasible clusterings grows very quickly withn. For example

ard(P

k

) = S(n; k) =

1

k!

k�1

X

i=0

(�1)

i

�

k

i

�

(k � i)

n

; 0 < k � n

whereS(n; k) is a Stirling number of the second kind. And to get an impression:

S(20; 8) = 15170932662679

S(30; 11) = 215047101560666876619690

S(n; 2) = 2

n�1

� 1

For this reason the brute force algorithm is only of theoretical interest.

We shall assume that the reader is familiar with the basic notions of the theory of

complexity of algorithms (Garey and Johnson, 1979) .
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Complexity results
Although there are some polynomial types of clustering problems, for example

(P

2

;MM) and(P
k

; ST), it seems that they are mainly NP-hard.

Brücker (1978) showed that (/ denotes the polynomial reducibility of problems) :

Theorem 1.5 Let the criterion function
P (C) =

M

C2C

p(C)

be�-sensitive, then for each problem(P
k

(U); P ) there exists a problem(P
k+1

(U

0

); P ),

such that(P
k

(U); P ) / (P

k+1

(U

0

); P ).
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Proof: Select a valueP � such thatP �

> max

C2P

k

(U)

P (C), extend,U0

= U [ fX

�

g, the

set of units with a new unitX�, and define the dissimilarities between it and the ’old’ units such

thatd(X;X�

) > P

�

=�

0, for X 2 U and�0 = �

P
k+1

(U

0

). We get a new clustering problem

(P

k+1

(U

0

); P ).

Consider a clusteringC0

2 P

k+1

(U

0

). There are two possibilities:

a. X� forms its own clusterC0

= C [ ffX

�

gg,C 2 P

k

(U). Then

P (C

0

) = P (C)� p(fX

�

g) = P (C) � max

C2P

k

(U)

P (C) < P

�

b. X� belongs to a clusterC� with ard(C�

) � 2. Then

P (C

0

) � �

0

� max

C2C

0

max

X;Y2C

d(X;Y) � �

0

� max

X;Y2C

�

d(X;Y) =

= �

0

� max

X2C

�

nfX

�

g

d(X;X

�

) > P

�

We see that all optimal solutions of the problem(P
k+1

(U

0

); P ) have the forma. Since in this

caseP (C0

) = P (C)

C

0

2 Min(P

k+1

(U

0

); P ), C 2 Min(P

k

(U); P )

2
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Complexity results 1

Theorem 1.6 Let the criterion functionP be sensitive then

3� COLOR / (P

3

; P )

Proof: Let G = (V;E) be a simple undirected graph. We assign to it a clustering
problem(P

3

(V ); P ) as follows. We define a dissimilarityd (on whichP is based) by

d(u; v) =

8
<

:

1 (u : v) 2 E

0 (u : v) =2 E

SinceP is sensitive it holds: the graphG
is 3-colorableiff min(P

3

(V ); P ) = 0.

LetC = fC

1

; C

2

; C

3

g thenP (C) = 0 iff

 : V ! f1; 2; 3g : ((v) = i , v 2 C

i

)

is a vertex coloring.

2
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Complexity results 2

Polynomial NP-hard note

(P

2

;MM) (P

3

;MM) Theorem 1.6

(P

3

; SM) Theorem 1.6

(P

2

; SS) MAX-CUT / (P

2

; SS)

(P

2

; SS) (P

2

; SS) / (P

2

; SS)

(P

2

;MS) PARTITION/ (P

2

;MS)

(IRm
2

; SS)

(IR1
k

; SS)

(IR1
k

; SM)

(IR1
k

;MM)

Note that, by the Theorem 1.5,(P
k

;MM), k > 3 are also NP-hard . . .
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Consequences

From these results it follows (it is believed) that no efficient (polynomial) exact

algorithm exists for solving the clustering problem.

Therefore the procedures should be used which give ”good” results, but not necessarily

the best, in a reasonable time.

The most important types of these procedures are:

� local optimization

� hierarchical (agglomerative, divisive and adding)

� leaders and the dynamic clusters method

� graph theory methods
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