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Clustering

e basic notions: cluster, clustering, feasible clusterangerion function,
dissimilarities, clustering as an optimization problem

¢ different (nonstandard) problems: assignment of studentisses,
regionalization; general criterion function; multicrig problems.

e complexity results about the clustering problem — NP-hasgrtheorems
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Basic notions
Let us start with the formal setting of the clustering probleWe shall use the
following notation:
'Xl
@
X —unit N | C -:.'
X —descriptionof unit X I e
U —spaceof units
U —finiteset of unitsU C U
C —cluster cCCU o
C —clustering C = {C;}
® - set offeasible clusterings ¢
P —criterion function
P:d R} ¢ s

~
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Clustering problem

With these notions we can express tiestering problen{®, P) as follows:

Determine the clusterin@* € ® for which

P(CY) = énélg P(C)

Since the set of unit¥ is finite, the set of feasible clusterings is also finite. Efere
the setMin(®, P) of all solutions of the problem (optimal clusterings) is eotpty.
(In theory) the seMin(®, P) can be determined by the complete search.

We shall denote the value of criterion function for an optiolastering bymin(®, P).
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Units

real or imaginary objects of analysis
WORLD UNITS DESCRIPTIONS

X} <+ X — (X

formalization operationalization
{ produced cars } car T | seats=4, max-speed=]..
Usually an unitX is represented by a vector/descripti&n= [X] = [z, z2, ..., Tm]
from the seti/] of all possible descriptionst; = V;(X) is the value of the-th of

selected properties eariableson X. Variables can be measured in differentles:
nominal, ordinal, interval, rational, absolute (Robei$/6).

There exist other kinds of descriptions of units: symbobgect (Bock, Diday, 2000),
list of keywords from a text, chemical formula, vertex in gan graph, digital picture,

\_ _/
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Clusterings

Generally the clusters of clusterifg = {C,C5, ..., Ck} need not to be pairwise
disjoint; yet, the clustering theory and practice mainlaldeith clusterings which are
the partitions of U

i £j=CNC; =10
Each partition determines an equivalence relatioyjrand vice versa.

We shall denote the set of all partitionsGfinto k classes (clusters) i, (U).

\_ _/
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/ Simplecriterion functions \

Joining the individual units into a clustéf we make a certain "error”, we create
certain "tension” among them — we denote this quantitypb§). The criterion
function P(C) combines these "partial/local errors” into a "global efror

Usually it takes the form:

S P(C)= ) »(C)
o CceC

M. P(C) = maxp(C)

which can be unified and generalized in the following way:

Let (R, &, e, <) be an ordered abelian monoid then:
& P(O) =P O
CeC
For simple criterion functions usualiytin( Py 1 U), P) < min(Pg(U), P) — we fix

\the value oft and set® C P, (U). /
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Cluster-error function / disssmilarities

Thecluster-errorp(C') has usually the properties:

p(C) >0 and VX eU:p{X}) =0

In the continuation we shall assume that these propertig&(of hold.

To express the cluster-errp(C') we define on the space of unitsdasimilarity
d:U x U — RZ for which we require D1 and D2:

D1L.VX el :dX,X)=0
D2. symmetric VX,Y el : d(X,Y) = d(Y,X)

Usually the dissimilarity! is defined using another dissimilarify: [1/] x U] — RZ
as
d(X,Y) = o([X], [Y])

\_ _/
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Properties of dissimilarities
The dissimilarityd is:
D3.evenVX, Y el : (dX,Y)=0=>VZecl:dX,Z)=4d(Y,Z))
D4. definite VX, YelU:(dX,Y)=0=X=Y)
D5. metric  VX,Y,ZelU :d(X,Y) <d(X,Z)+d(Z,Y) — triangle
D6. ultrametric  VX,Y,Z e U :d(X,Y) < max(d(X,Z),d(Z,Y))

D7. additive iff the Buneman’s or four-point condition holdsX, Y, U,V € I/ :
d(X,Y)+d(U,V) <max(d(X,U) +d(Y,V),dX,V)+d(Y,U))

The dissimilarityd is adistanceff D4, D5 hold.

\_

Since the descriptiop] : U — [U] need not to be injective] can be indefinite.
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Dissimilaritieson R™ / examples 1

n | measure definition range | note

1 | Euclidean \ Zm:(xz- —yi)? | [0,00) | M(2)
1=1

2 | Sg. Euclidean i(xi —y:)* | [0,00) | M(2)?

1=1

3 | Manhattan i |z, — v 0,00) | M(1)

4 | rook I;i&}( |z — il 0,00) | M(00)

5 | Minkowski P Em:(xz —y;)? | [0,00) | M(p)
1=1

\_ _/
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Dissimilaritieson R™ / examples 2

n | measure definition range | note
— T — Yl
6 | Canberra 0, o0
; ‘xz + yz| [ )
) = ‘xz yz|
7 | Heincke 2110, 00)
& rrul” ||
- ‘xz yz|
8 | Self-balanced 0
Z max (x;, y; ) 0, 00)
zzlm
9 | Lance-Williams Zi,,il zi — il [0, 00)
i—=1 Li + Y
. X,Y
10 | Correlation c. cov(X, V) (1, —1]
v/ var(X)var(Y)
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(Dis)smilaritieson B™ / examples

LetB = {0,1}. ForX,Y € B™ we definea = XY, b= XY,c= XY,d = XY.
It holdsa + b+ ¢+ d = m. The counters:, b, ¢,d are used to define several
(dis)similarity measures on binary vectors.

In some cases the definition can yield an indefinite expra%idn such cases we

can restrict the use of the measure, or define the valuesalsodiefinite cases. For
example, we extend the values of Jaccard coefficient suckth&, X) = 1. And for

Kulczynski coefficient, we preserve the relatibn= i — 1 by

(0 a=0,d=m
1 d=m 4
S4 = herwi S =T =9 oo a=0,d<m
N otherwise
atbte | < otherwise

S

We transform a similarity from [1, 0] into dissimilarityd on [0, 1] byd = 1 — s.

For details see Batagelj, Bren (1995).

\_ _/
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(Dis)smilaritieson B™ / examples 1
n | measure definition range
1 | Russel and Rao (1940) s 1, 0]
2 | Kendall, Sokal-Michener (1958) — [1,0]
3 | Kulczynski (1927)1 ! o (00, 0]
4 | Jaccard (1908) e 1,0
5 | Kulczynski 5 (2% + 25%) 1,0]
6 | Sokal & Sneath (1963)n, GG+ 2+ g5+ 75 | [1L0]
7 | Driver & Kroeber (1932) \/(a—i—Z)(a—l—c) 1,0]
8 | Sokal & Sneath (1963)n5 W%)(aﬁ;(d%)(HC) 1,0

\_
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(Dis)similaritieson IB™ / examples 2

n | measure definition range
9 QO % [0, OO]
10 | Yule (1927),Q ad—oc 1, -1]
11 | Pearson ad—be 1,—1
) V/ (a+b)(a+c)(d+b)(d+c) | |
12 | —bc — L 0, 1]
i i * a—i—m I 1
13 | Baroni-Urbani, Buser (19764 oo 1,0]
14 | Braun-Blanquet (1932) maX(ajb,aJrc) 1,0]
15 | Simpson (1943) T CERRE) 1, 0]
- 4(ad—bc)
16 | Michael (1920) CEZIEEE (= 11, —1]
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/Dissimilarities between sets \

Let F be a finite family of subsets of the finite 46t A, B € F and letA & B =
(A\ B)U (B \ A) denotes the symmetric difference betwetandB.

The 'standard’ dissimilarity between sets is themming distance
dry (A, B) := card(A & B)

Usually we normalize id, (A, B) = - card(A @ B). One normalization is
M = card(U); the otherM = m; + my, Wwherem; andms are the first and the

second largest value frard(X) : X € F}.

Other dissimilarities

B card(A & B) ~ card(A @ B)
ds(4, B) = card(A) + card(B) b4, B) = card(AU B)
4 (A B) — max(card(A \ B),card(B \ A))

max(card(A), card(B))
\For all these dissimilaritied(A, B) = 0if A= B = 0. /
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Problemswith dissmilarities

What to do in the case ohixed unitgwith variables measured in different types of
scales)?

e conversion to a common scale

e compute the dissimilarities on homogeneous parts and cartbem (Gower’s
dissimilarity)

Fairnessof dissimilarity — all variables contribute equally. Appiches: use of
normalized variables, analysis of dependencies amongblas.

\_ _/
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/ Cluster-error function / examples
Now we can define several cluster-error functions:
S. pC)= Y  wX) w(Y) dX,Y)
X,\iEC,X<Y
S pO)=—= > wX)-w(Y)-dX,Y)

w(C) X YEC.X<Y

w{X) =wX), Xeu
w(Cl U 02) = w(Cl) + w(Cg), Cl M 02 — @

Oftenw(X) = 1 holds for eaclX € U. Thenw(C') = card(C).

M. p(C) = Juax, d(X,Y) = diam(C) — diameter

T. p(C) = min Z d(X,Y)

T is a spanning tree over C

\ (X:Y)eT

wherew : i/ — R™ is aweightof units, which is extended to clusters by:

_/
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We shall use the labels in front of the forms of (partial)emibn functions to denote
typesof criterion functions. For example:

SM.  P(C)= Y max d(X,Y)
CECX,YEC

It IS easy to prove:

Proposition 1.1 LetP < {SS,SS, SM, MS, MS, MM} then there exists an
ot (U) > 0 such that for eaclC € P,(U):
> qF :
P(C) > a3, (U) max max, d(X,Y)

holds.

Note that this inequality can be writen alsoR&C) > ot (U) - MM(C).

\_ _/
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Sendgitive criterion functions

The criterion functionP(C), based on the dissimilarity, is sensitiveiff for each
feasible clustering’ it holds

P(C)=0<=VC e CVX,Yec(C:d(X,Y)=0
and isa-sensitiveff there exists amy;’ (U) > 0 such that for eaclC € P (U) :
P(C) > oj (U) - MM(C)
Proposition 1.2 Everya-sensitive criterion function is also sensitive.

The proposition 1.1 can be reexpressed as:

Proposition 1.3 The criterion functions$S, SS, SM, MS, MS, MM are a-sensitive.

\_ _/
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/ Representatives \

Another form of cluster-error function, which is frequgntised in practice, is based
on the notion of leader or representative of the cluster:
R. p(C) = min w(X) - d(X,L)

LeF
Xedl

whereF C F is the set ofrepresentativesThe elementC € F, which minimizes

the right side expression, is called tlepresentativeof clusterC'. It is not always
uniquely determined.

Example 1 The representation space need not be the same as the des@pzice.
U] C R* and[F] = {(a,b,¢) : ax + by = ¢,a® +b? = 1}. O

Example 2 In the casgU] € R™, [F] = R™ ,d(X,L) = d5(X,L) =

S (z: — 1;)? there exists a uniquely determined representativenter of gravity

C = ey 2xec X - In this case the criterion functicBR is calledWard's
D/

Kcriterion function(Ward, 1963).
University of Konstanz June 2002
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Kl'hegeneralized Ward’s criterion function \

To obtain thegeneralized Ward'’s clustering problewe, relying on the equality

2 N 1 2
p(C) = X%dm 0) = 3 eard(C) X;Cdm Y)
replace the expression fp(C') with
HO) = oy o w(X)-w(Y)-d(X.Y) =5(0)

X,YeC
Note thatd can be any dissimilarity oty.
From the definition we can easily derive the following eagyalif C,, N C,, = () then

w(CuUCL)P(CLUC,) = w(Ca)p(C)+w(C)P(C)+ D w(X)w(Y)d(X,Y)

Xel,,Yely,

In Batagelj (1988) it is also shown how to repla€eby a generalized, possibly
Imaginary (with descriptions not neccessary in the samasi¢}, central element in
Kthe way to preserve the properties characteristic for \Wanidistering problem. /
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/Representatives cluster error

Proposition 1.4 Letp(C') be of typeR then

a) pC)+wX) - dX,CUX)<pCUX),X&C
b) p(C\X)+wX) dX,0) <p(C), XeC

VLEF:p(C) =) w(Y)-d(Y,C)< > w(Y)

YeC YeCl

Therefore in case a):

= > w(Y)-d(Y,0) < > w(Y) - d(Y,CUX) =

YeC YeC
= > w(Y)-d(Y,CUX) —w(X)-d(X,CUX) =
YeCuX

= p(CUX) —w(X) - d(X,CUX)

Q] the similar way we can prove also inequality b).

Proof: The definition ofC' can be equivalently expressed in the form:

J
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/ Other criterion functions \

Several other types of criterion functions were proposethnliterature. A very
Important class among them are thgdtistical’ criterion functions based on the as-
sumption that the units are sampled from a mixture of muitta normal distributions
(Marriott, 1982) .

General criterion function

Not all clustering problems can be expressed by a simplermtt function. In some
applications ayeneralcriterion function of the form

P<C) — @ Q(Clv 02)7 Q<Cla 02) 2 O
(C1,C2)eCxC

IS needed. We shall use it in blockmodeling.

Multicriteria clustering

In some problems several criterion functions can be defided,, P, ..., P;).

Qee Ferligoj, Batagelj (1994). /
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/Example: problem of partitioning of a generation of pupilsinto a\
given number of classes

so that the classes will consist of (almost) the same numibeumls and that they
will have a structure as similar as possible. An appropiaterion function is

P(C) = max min ~ max d(X, f(X))
{C{,Co}eCxC f:C1—Co Xe(C;
card(Cq)>card(Cg) f is surjective

whered(X,Y) is a measure of dissimilarity between pupilandY .

A 0
4 —>
—> [l
O
o A
o o)
o
= A
A — 0
o)

\_ _/

University of Konstanz June 2002




V. Batagelj: Clustering and Blockmodeling 23/1

Example: Regionalization

The motivation comes fromegionalizationproblem: partition given set of territorial
units intok connected subgroups of similar units — regions.

Suppose that besides the descriptions of uftifisthey are related also by a binary
relation R C U x U.

In such a case we have an additional requiremealational constrainton clusterings
to be feasible. The set of feasible clusterings can be defised

®(R) = {C € P(U) : each cluste€’ € Cis a subgraphC, RN C x C) in the
graph(U, R) with the required type of connectednéss

If R is nonsymmetric we can define different types of sets of idamlusterings for
the same relation (Ferligoj and Batagelj, 1983).

\_ _/
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/ Complexity of the clustering problem \

Because the set of feasible clusteridgss finite the clustering problertib, P) can be
solved by the brute force approach inspecting all feasibisterings. Unfortunately,
the number of feasible clusterings grows very quickly witl~or example

k—1
card(Py) = S(n, k) = % Z(—l)i (lj) (k—4)", 0<k<n

whereS(n, k) is a Stirling number of the second kind. And to get an imp@ssi

$(20,8) = 15170932662679
S(30,11) = 215047101560666876619690
S(n,2) = 2"1 -1

For this reason the brute force algorithm is only of thegedtinterest.

We shall assume that the reader is familiar with the basionstof the theory of
Kcomplexity of algorithms (Garey and Johnson, 1979) . /
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Complexity results

Although there are some polynomial types of clustering [@ois, for example
(P>, MM) and (P, ST), it seems that they are mainly NP-hard.

Bricker (1978) showed that denotes the polynomial reducibility of problems) :

Theorem 1.5 Let the criterion function

such that P, (U), P) « (Pyy1(U"), P).

\_ _/
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/Proof: Select a valug’™ such thatP* > maxcep, (uy P(C), extend U’ = U U {X*}, trs
set of units with a new uniX®, and define the dissimilarities between it and the ’old’ sisiich
thatd(X,X*) > P*/a’, for X € U anda’ = aj,,,(U’). We get a new clustering problem
(Pe+1(U"), P).

Consider a clusterin@’ € Px41(U’). There are two possibilities:
a. X* forms its own clusteC’ = C U {{X*}}, C € P,(U). Then

P(C) = P(C) @ p({X"}) = P(C) < _max P(C) < P’

b. X* belongs to a cluster’® with card(C*®) > 2. Then

P(C') > o' - max max d(X,Y)>a'- max d(X,Y)=

CeC! X,YeC X,YeC®
=o' - max d(X,X*)> P’
XeCo\{X*}

We see that all optimal solutions of the probl¢f.;1(U’), P) have the forma. Since in this
caseP(C') = P(C)

C’ € Min(Px+1(U"), P) & C € Min(Px(U), P)

\_ o/

University of Konstanz June 2002




V. Batagelj: Clustering and Blockmodeling

2711

/Complexity results 1

Theorem 1.6 Let the criterion functionP be sensitive then

3 — COLOR  (Ps, P)

A, v) = 1 (u:v)€eFE
0 (u:v)¢FE

SinceP is sensitive it holds: the grapi
is 3-colorablaff min(Ps(V), P) = 0.
Let C = {C4,C5,C5} thenP(C) = 0 iff
c:V —={1,2,3}: (c(v) =i < v e ()
IS a vertex coloring.

\_

Proof: LetG = (V, E) be a simple undirected graph. We assign to it a clustering
problem(Ps(V), P) as follows. We define a dissimilarity (on which P is based) by

~
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Complexity results 2

Polynomial | NP-hard | note

(P, MM) | (Ps,MM) | Theorem 1.6
(P3,SM) | Theorem 1.6
(Ps, SS) MAX-CUT « (P, SS)
(P, SS) (P3,SS) o (P, SS)
(P5,MS) | PARTITION x (P, MS)

(IR, SS)

(R;, SS)

(R, SM)

(IR}, MM)

\_

Note that, by the Theorem 1.8P,, MM), k£ > 3 are also NP-hard ...
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Conseguences

From these results it follows (it is believed) that no effinti€¢polynomial) exact
algorithm exists for solving the clustering problem.

Therefore the procedures should be used which give "go@dilt® but not necessarily
the best, in a reasonable time.

The most important types of these procedures are:
e |ocal optimization
e hierarchical (agglomerative, divisive and adding)
e leaders and the dynamic clusters method

e graph theory methods

\_ _/
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