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Approaches to Clustering

e |ocal optimization
e dynamic programming

e hierarchical methods; agglomerative methods; Lanceratl formula;
dendrogram; inversions; adding methods

e leaders and the dynamic clusters method

e graph theory (next, 3. lecture);
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/ Local optimization \

Often for a given optimization problet®, P) there exist rules which relate to each|
element of the seb some elements @b. We call themocal transformations

The elements which can be obtained from a given element deel ceeighbos —
local transformations determine theighborhood relatiors C & x @ in the setd.
Theneighborhoof elementX € & is called the sef(X) = {Y : XSY} .

The elemenK € & is alocal minimumnfor theneighborhood structuré®, S) iff

VY € S(X) : P(X) < P(Y)
In the following we shall assume thétis reflexive,vX € & : X SX.

They are the basis of tHecal optimization procedure

selectXy; X := Xp;

while 3Y € §(X) : P(Y) < P(X)do X :=Y;
which starting in an element &, € ® repeats moving to an element determined
by local transformation which has better value of the aotefunction until no such

\element exists. /
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Clustering neigborhoods

Usually the neighborhood relation in local optimizationstering procedures over
P (U) is determined by the following two transformations:

e transitiont clusteringC’ is obtained fromC by moving a unit from one cluster to
another

C' = (C\{Cu, Cu}) U{Cu \ {X,}, Cy U{X,}}

e transposition clusteringC’ is obtained fronC by interchanging two units from
different clusters

C' = (C\{Cu, Cu}) U{(Cu \ {Xp}) U{X ), (Cu \ {Xg}) U{Xp}}

The transpositions preserve the number of units in clusters

\_ _/
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Hints

Two basic implementation approaches are usually useged dataapproach and
stored dissimilarity matribapproach.

If the constraints are not too stringent, the relocationhmetcan be applied directly
on ®; otherwise, we can transform usipgnalty function methothe problem to an
equivalent nonconstrained probldfy, Q) with Q(C) = P(C) + aK(C) where

a > 0 is alarge constant anll (C) = 0, for C € &, andK (C) > 0 otherwise.

There exist several improvements of the basic relocatigorghm: simulated
annealing, tabu search, ... (Aarts and Lenstra, 1997).

Theinitial clustering C, can be given; most often we generate it randomly.
Let c[s] = u & X, € (. Fill the vectore with the desired number of units in each|
cluster and shuffle it:

for p := n downto 2 do beging := random(1, p); swap(c[pl, c|q]) end;

\_ _/
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Quick scanning of neighbors

TestingP(C’) < P(C) is equivalent taP(C) — P(C’) > 0.
For theS criterion function

AP(C,C') = P(C) = P(C') = p(Cu) + p(Cy) — p(C,,) — p(CY)

Additional simplifications can be done considering relasibetweer, andC/ , and
betweenC', andC).

Let us illustrate this on the generalized Ward’s method.tRigrpurpose it is useful to introduce
the quantity

a(Cu,C) = Y w(X)-w(Y)-d(X,Y)

Xely,Yely

Using the quantity:(C.,, C,) we can expresg(C) in the formp(C) = “2(5(’5)) and the equality

mentioned in the introduction of the generalized Ward elusg problem: ifC, N C, = () then

w(Cy UCY) - p(C, UC,) =w(Cy) - p(Cy) +w(Cy) - p(Cy) + a(Clu, Cy)

\_ _/
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/A for the generalized Ward’s method \

Let us analyze the transition of a uXit, from clusterC, to clusterC',:
We haveC,, = C, \ {Xs}, C, = C, U{Xs},

w(Cu) - p(Cu) = w(Cy) - p(Cy) + a(Xs, Cr) = (w(Cu) — w(Xs)) - p(C) + a(Xs, C)
and
w(C,) - p(Cy) = w(Cy) - p(C) + a(Xs, Co)
Fromd(Xs, Xs) = 0t follows a(Xs, Cy) = a(Xs, Cy,). Therefore

w(Cu) - p(Clu) — a(Xs, Cu) w(Co) - p(Co) + a(Xs, C)

w(Ca) — w(Xs) p(Co) = w(Cy) + w(Xsy)

p(Cy) =

and finally
AP(C,C'") = p(Cu) +p(Cv) — p(Cy) — p(Cy) =
_ w(Xs) - p(Cy) —a(Xs, Cn)  w(Xs) - p(Clu) — a(Xs, Cu)

w(Cy) + w(Xs) w(Cy) — w(Xs)
In the case whed is the squared Euclidean distance it is possible to ders@ efpression for

\corrections of centers (&fh, 1977). /
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Dynamic programming

Suppose thailin(®, P) # 0, k = 1,2, .... DenotingP*(U, k) = P(C,(U)) we
can derive the generalizeénsen equalit{Batagelj, Korenjak and Klaar, 1994):

,
p(U) {U} € &4
P*(U, k) = < min_ (P*(U\C,k—1)@p(C) k>1
\ aceq>k_1(U\CC):Cc:u{C}eq>k(U)

This is adynamic programmingBellman) equation which, for some special con-
strained problems, that keep the sizedgf small, allows us to solve the clustering
problem by the adapted Fisher’s algorithm.

\_ _/
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Hierarchical methods

The set of feasible clusterings determines thésasibility predicate¢(C) = C € &
defined orP(P(U) \ {0}); and converselp = {C € P(P(U) \ {0}) : #(C)}.

In the set® the relation oftlustering inclusioric can be introduced by

CiCGCy=V(C;€C1,0,eCy:CiNCY E{@,Cl}

we say also that the clusterilgg; is arefinemenbf the clusteringC,.

It is well known that(P(U), C) is a partially ordered set (even more, semimodulay
lattice). Because any subset of partially ordered set saastially ordered, we have:
Let® C P(U) then(®,C) is a partially ordered set.

The clustering inclusion determines two related relati@mms®):
CiCcC,=C{CCy,NCy 7£ Cs — strict inclusion, and
CicECo=CiCCoAN-dCedP: (C;CECACLCCy) — predecessor.

\_ _/
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/Conditions on the structure of the set of feasible clusterigs

conditions:

F1. O={{X}:XeU}led

wherep(C) is a predicate defined dA(U) \ {0} (clusters).

predicatey(C1,Cs), i.e.,
Cl M CQ = @ N\ QO(Cl) N\ QO(CQ) A w(Ol, CQ) = gp(C’l U CQ)

This condition means: in a 'good’ clustering, a fusion of tifiesible’ clusters
\produces a 'good’ clustering.

We shall assume that the set of feasible clusterddags P(U) satisfies the following

F2.  The feasibility predicatep is local — it has the form@(C) = A .. ¢(C)

The intuitive meaning ofp(C) is: ¢(C') = the clusterC' is 'good’. Therefore the
locality condition can be read: a 'good’ clusteritge ® consists of ‘'good’ clusters.

F3. The predicated has the property diinary hereditywith respect to théusibility

~

_/
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...conditions

F4. The predicate) is compatiblewith clustering inclusiort, i.e.,

VC1,Co € ®: (C1 C CaAC1\ Cy ={C1,C} = ¢(Cq,Cs) V (Cy, C1))

F5. Theinterpolationproperty holds inb, i.e., VC{,Cy € & :

(Cl C Co A CaI‘d(Cl) > CaI‘d(Cz) +1=dC e o : (C1 CCACLC Cg))

These conditions provide a framework in which the hierar@hmethods can be
applied also for constrained clustering probledng U) C P (U).

In the ordinary problem both predicate$C') andvy(C,,C,) are always true — all
conditions F1-F5 are satisfied.

\_ _/
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Criterion functions compatible with a dissimilarity betwe en clusters

We shall call adissimilarity between clusteesfunctionD : (Cy,Cs) — IR{ which is
symmetric, i.e.D(Cy,Cy) = D(Cy, Ch).

Let (IR(J{, @®,0,<) be an ordered abelian monoid. Then the criterion function
P(C) = B p(C), VX € U : p({X}) = 0is compatiblewith dissimilarity D
over® iff for all C' C U holds:

1 — i D
p(C) Acard(C) > 1 = p(C) (Cl’crgl)lgql(c)(p(Cl)@p(Cz)@ (C1,C%))

Theorem 2.1 A S criterion function is compatible with dissimilarit defined by
D(Cyp, Cy) = p(Cp U Cy) — p(Cp) — p(Cy)
In this case, leC’' = C\ {C,,C,} U{C, U(C,}, C,,C, € C, then

P(C') = P(C) = D(C,, C,)

\_ _/
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/Greedy approximation \

Theorem 2.2 Let P be compatible withD over ®, ¢ distributes oveimin, and
F1 — F5 hold, then

P(Ck) - CHElglk P(C) - Cl,CQIg(iJIelék+1 (P(C) @ D(Clj 02))
¥ (C1,C2)

The equality from theorem 2.1 can also be written in the form

P(Ck) — Cénq}?+1(P(C) D 5(1?12%(3 D(Cl, CQ))

from where we can see the following 'greedy’ approximation:

P(Cy) = P(Cyyy) ® o L. D(Cy, ()

P(Cq1,C9)

which is the basis for the following agglomerative (binapypcedure for solving the

clustering problem.
\_ _/
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Agglomerative methods

1. k:=n;Ck) = {{X}: X e U}
2. while 3C;, C; € C(k): (i # j ANY(C;, Cj)) repeat

2.1. (Cp,Cy) = argmin{D(C;,C;):i # j ANY(C;,C;)};
2.2. C:=0C,UCy; k:=Fk—1;

2.3. C(k):=C(k+1)\{C,,C,} U{C};

2.4, determine) (C, Cs) for all Cs € C(k)

3. m:=k

Note that, because it is based on an approximation, thisedwoe is not an exact
procedure for solving the clustering problem.

For another,probabilistic view on agglomerative methods see Kamvar, Klein,
Manning (2002).

Divisivemethods work in the reverse direction. The problem herewstbcefficiently
find a good spli{C,,, C,) of clusterC.

\_ _/
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/Some dissimilarities between clusters \

We shall use the generalized Ward's c.e.f.

P(0) = gy O W) ul)-dX.Y)

and the notion of thgeneralized cente€ of the clusteiC, for which the dissimilarity
to any cluster or unit U is defined by

(V.0) = d(C.U) = —==( 3 w(X) - d(X.U) = p(C)

XeC
Minimal: D™ (Cy,C,) = Xééil,i}r}ecqj d(X,Y)
Maximal: D™ (C,,C,) = cednax d(X,Y)
Average:D(C,, C,) = w(Cu)lw(Cv) > wX) wY) d(X,Y)

\ XelC,,Yel, /
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/.. .some dissimilarities \

Gower-Bock:D%(C,, C,) = d(Cy, Co) = D*(Cy, Cy) — =

w(Cy)w(Cy)
w(Cy U Cy)

Inertia: D' (C,,, C,,) = p(C, UC,)

Ward: DV (C,,, C,) = D¢(C,,Cy)

Variance:D" (C,,, C,,) = var(C, U C,) =
Weighted increase of variance:

~w(Cy) -var(Cy) + w(Cy) - var(Cy) _ DWW (C,,Cy)
w(Cy UCy) w(Cy U Cy)

D*(C,,C,) = var(C,UCy)

For all of themLance-Williams-Jambu formulaolds:

D(C,uUCy,Cs) = ai1D(Cy,Cs) + asD(Cy, Cs) + BD(C, Cy) +
\_ #91D(Cy C) = D(Cyr Co)| + 010(Cy) + 0(Cy) + B30(C)
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Lance-Willlams-Jambu coefficients
method a1 a9 5] y Oy v(Cy)
minimum s s 0 —1 0 -
maximum - - 0 : 0 -
average ﬁppq ;”pqq 0 0 0 -
Gower-Bock| —= — — 2 0 0 —
pq pq prq
Ward Lps a5 — Ws 0 0 —
Wpqs Wpgs Wpgs
inertia sl Bl B 0 | =25 | p(CY)
. 1028 1028 102
variance wgpqs wgqs ﬁ 0 | — w"g: p(Ch)
2 2
W.i. variance| —p= | g | —Xaled | 0 —
pgs prgs rgs
wy = w(Cp), wpy = w(Cp UC,), wpes = w(Cp U CCy U )

N _
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The agglomerative clustering procedure produces a sefifsasible clusterings
C(n),C(n—1),...,C(m) with C(m) € Max ® (maximal elements for).

lerarchies

Their unionT = |J,_, C(k) is called ahierarchyand has the property
vC,,C,eT :C,NC, €{0,C,,C,}

The set inclusiorC is atreeor hierarchicalorder on7. The hierarchy/ is complete
iff UeT.

For W C U we define thesmallest clusteC+ (W) from T containinglV as:
cl. W CCr(W)
c2. YCeT :(WCC=Cr(W)CC(O)

C'r Is aclosureon7 with a special property

Z¢Cr({X,Y}) = Cr(iX,Y}) C Cr({X, Y, Z2}) = Or({1X,Z}) = Or({Y, Z})

\_ _/
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/Level functions

A mappingh : T — Ry is alevel functionon 7~ iff

1. VX eU:h({X})=0

2. C,CC,= h(C,) <h(Cy)

A simple example of level function i5(C') = card(C) — 1.

Every hierarchy / level function determines an ultramedigsimilarity onU

The converse is also true (see Dieudonne (1960)):.dle¢ an ultrametric ofU.

C(A)={BX,r): XeU,re AJUu{{U}}U{{X}:X e U}

Is a complete hierarchy, artdC') = diam(C)) is a level function.

\as atree.

DenoteB(X,r) = {Y € U:d(X,Y) < r}. Then for any given set C R™ the set

The pair(7, h) is called adendrogranor aclustering treebecause it can be visualized

_/
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/Association coefficients, Monte Carlom = 15
CLUSE — maximumni0.00, 0.33]

Kulczynski —

Driver-Kroeber —
Jaccard

Baroni-Urbani
Simpson
Russel-Rao

Braun-Blanquet
un4

Pearson ]_
Michael —

Yule
uns

Sokal-Michener
— bC —

\_

_/
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/Inversions \

Unfortunately the functiohp, (C) = D(C,,C,), C = C, U C, is not always a level
function — for someDs theinversiors, D(C,,C,) > D(C, U Cy, Cs), are possible.

Batagelj (1981) showed:
Theorem 2.3 hp is a level function for the Lance-Williams procedyte , as, 3, )
Iff:

(i) v + min(ay, ) >0
(ii) a1 +ag >0
(i) o +ax+p>1

The dissimilarityD has thereducibility property (Bruynooghe, 1977) iff
D(C,,C,) <t, D(C,,Cs)>t, D(C,,Cs) >t = D(C,UC,,Cs) >t

Theorem 2.4 If a dissimilarity D has the reducibility property thehp is a level

function.
\_ /
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Adding hierarchical methods

Suppose that we already built a clustering tfeever the set of unit¥J. To add a new
unit X to the tre€7 we start in the root and branch down. Assume that we reachgd
the node corresponding to clustér which was obtained by joining subclusters
andC,. There are three possibilities: or to addto ', or to addX to C,, or to form
a new clustef X }.

Consider again the 'greedy approximatid®(C;) = P(C3. ;) + D(C,, Cy) where

D(C,,C,) = min¢c, c,ece.. D(Cy,C,) andC? are greedy solutions.

k+1
Since we wish to minimize the value of criteridh it follows from the greedy
relation that we have to select the case corresponding tméxémal among values
D(C, U{X},Cy), D(CqU{X},C,) andD(C, U Cy, {X}).

This is a basis for the adding clustering method. We staf witree on the first two
units and then successively add to it the remaining unite dmt X is included into
all clusters through which we branch it down.

\_ _/
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... adding hierarchical methods
X
/
C
\
CP Cq
CuUX CuUX
C,UuxX  C, c, C,UX

CuX

_/
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About the minimal solutions of (P, SR)

Theorem 2.5 In the (locally with respect to transitions) minimal clusikgy for the
problem(P;, SR)

SR.  PC)=) > wX)-dX,C)
ceCXel
each unit is assigned to the nearest representatived®be (locally with respect to
transitions) minimal clustering then it holds:

VO, € C*VX € C,VC, € C*\ {C,} : d(X,T,) < d(X,T,)

\_ _/
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LetC' = (C* \ {Cu,Cy}) U{Cy \ {X},C, U {X}} be any clustering neighbouring with respect to
transitions to the clusterin@® . From the theorem assumptioffi$C®) < P(C’) and the type of criterion
function we have:

roof

p(Cu) +p(Cy) < p(Cu \ X) + p(Cy U X)

and by proposition 1.4.b< p(Cy) — w(X).d(X, Cy) + p(Cy U X).
Thereforep(Cy) < p(Cp U X) — w(X).d(X,C), and

w(X).d(X,Cy) < p(CyUX)—p(Cy) =
= p(Co UX) — (p(Cv) +w(X).d(X,Cv)) + w(X).d(X,Cy)

= w(X)d(X,Co) + (P(Co UX) = Y w(Y).d(Y,C))
YeC,UX

By the definition of cluster-error function of type R the sedderm in the last line is negative. Therefore
< w(X).d(X,Cy)
Dividing by w(X) > 0 we finally get

\_ _/

University of Konstanz June 2002




V. Batagelj: Clustering and Blockmodeling 24/2

/ Leaders method \

In order to support our intuition in further development viral$ briefly describe a

simple version of dynamic clusters method — edersor k-means method, which is
the basis of the ISODATA program (one among the most poplulgtering programs)
and several recent 'data-mining’ methods. In the leadetbodehe criterion function

has the form SR.

The basic scheme of leaders method is simple:

determineCy; C := Cg;
repeat
determine for eacly € C its leaderC;
the new clustering’ is obtained by assigning each unit
to its nearest leader
until leaders stabilize

To obtain a 'good’ solution and an impression of its qualitg wan repeat this

\procedure with different (randon@,. /

June 2002
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The dynamic clusters method

The dynamic clusters method is a generalization of the abolreme. Let us denote:

A — set ofrepresentatives
LCA — representation
v — set offeasible representations

W :® x ¥ — R] —extended criterion function
G:®dxV¥ —- ¥ —representation function
F:®&xW¥ —® —clustering function

and

\_ _/
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Basic scheme of the dynamic clusters method

the following conditions have to be satisfied:
WO. P(C) — mil’lLE\p W(C, L)

the functions7 and F' tend to improve (diminish) the value of the extended ciateri
function W

W1. W(C,G(C,L)) < W(C,L)
W2. W(F(C,L),L) < W(C,L)

then thedynamic clusters methazén be described by the scheme:

C :=Cgy;L :=Lg;

repeat
L:=G(C,L);
C:=F(C,L)

until the clustering stabilizes

\_ _/
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Properties of DCM

To this scheme corresponds the sequence= (C,,,L,),n € IN determined by
relations
Ln—|—1 — G<Cn7 Ln) and Cn—i—l — F(Cna Ln—|—1)

and the sequence of values of the extended criterion funatjo= W (C,, L,,). Let
us also denote* = P(C*). Then it holds:

Theorem 2.6 Foreveryn € IN, up, 11 < Uy, u* < Uy,
and if fork > m, vy = v,,, thenvn > m : u,, = u,,.

The Theorem 2.6 states that the sequemgas monotonically decreasing and
bounded, therefore it is convergent. Note that the limitgfis not necessarily* —
the dynamic clusters method is a local optimization method.

\_ _/
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... types of of DCM sequences

Type A:—mdk,m € N,k > m : vy = vy,
Type B:dk,m e INJE > m : vy = vy
Type By: Type B withk = m + 1

The DCM sequencéy,,) is of type B if

e sets® andV¥ are both finite.
For example, when we select a representativ@ ainong its members.

e 10 >0:Yne€IN: (v,11 # Uy = Up — Upi1 > 0)

Because the seld and consequentlp are finite we expect from a good dynamic
clusters procedure to stabilize in finite number of stepsof tgpe B. /

University of Konstanz June 2002




V. Batagelj: Clustering and Blockmodeling 29/2

4 N

Additional requirement

The conditions W0, W1 and W2 are not strong enough to ensigeWe shall try to

compensate the possibility that the set of representatiiassnfinite by the additional
requirement:

W3. W(C,G(C,L)) = W(C,L) = L = G(C,L)

With this requirement the 'symmetry’ betwednand ¥ is distroyed. We could
reestablish it by the requirement:

w4, W(F(C,L,L))=W(C,L) = C=F(C,L)
but it turns out that W4 often fails. For this reason we shablic it.

Theorem 2.7 1f W3 holds and if there exista € IN such thatu,,,+1 = u.,, then also
Lm—|—1 — Lm

\_ _/
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Simple clustering and representation functions

Usually, in the applications of the DCM, the clustering ftiog takes the form
F : ¥ — &. In this case the condition W2 simplifies td7 (F'(L),L) < W(C, L)
which can be expressed also B§L) € Mincee W(C,L). For such,simple
clustering functions it holds:

Theorem 2.8 If the clustering functionf’ is simple and if there exista € IN such
thatL,,.1 = L,,, then for everyn, > m : v,, = v,,.

What can be said about the case wiiers simple— has the fornG : & — ¥?
Theorem 2.9 If W3 holds and the representation functiéns simple then:

G(C) = argminrcy W(C, L)

dk,m e INJE > mVi € IN @ vy = Uyag

dm € NVn > m : u, = u;m,

if also F' is simple therdm € NVn > m : v, = v,

\_ _/
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Original DCM

In the original dynamic clusters method (Diday, 1979) bathctionsF andG are
simple—F : ¥ —» ®andG : ® — V.

We proved, if also W3 holds and the functiohsandG are simple, then:

G0. G(C) = argmin W(C, L)
Lew

and
FO. F(L) € Mingcea W(C, L)

In other words, given an extended criterion functidn the relations GO and FO
define an appropriate pair of functio6sand F' such that the DCM stabilizes in finite
number of steps.

\_ _/
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... Clustering and Networks
In the next, 3. lecture we shall discuss
e clustering with relational constraint
e transforming data into graphs (neighbors)
e clustering of networks; dissimilarities between graphet\{rorks)
e clustering of vertices / links; dissimilarities betweemtiees

e clustering in large networks

\_ _/
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