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Clustering and Networks

� clustering with relational constraint

� transforming data into graphs (neighbors)

� clustering of networks; dissimilarities between graphs (networks)

� clustering of vertices / links; dissimilarities between vertices

� clustering in large networks
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Clustering with relational constraint
Suppose that the units are described by attribute dataa:U ! [U℄ and related by a

binaryrelationR � U�U that determine therelational data(U; R; a).

We want to cluster the units according to the similarity of their descriptions, but also

considering the relationR – it imposes constraints on the set of feasible clusterings,

usually in the following form:

�(R) = fC 2 P (U) : each clusterC 2 C is a subgraph(C;R \ C � C) in the

graph(U; R) of the required type of connectednessg
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Some types of relational constraints

We can define different types of sets of feasible clusteringsfor the same relationR.

Some examples oftypes of relational constraint�i

(R) are

type of clusterings type of connectedness

�

1

(R) weakly connected units

�

2

(R) weakly connected units that contain at most one center

�

3

(R) strongly connected units

�

4

(R) clique

�

5

(R) the existence of a trail containing all the units of the cluster

A set of unitsL � C is acenterof clusterC in the clustering of type�2(R) iff the

subgraph induced byL is strongly connected andR(L) \ (C n L) = ;.
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Some graphs of different types
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Properties of relational constraints

The sets of feasible clusterings�i

(R) are linked as follows:

�

4

(R) � �

3

(R) � �

2

(R) � �

1

(R)

�

4

(R) � �

5

(R) � �

2

(R)

If the relationR is symmetric, then�3(R) = �

1

(R)

If the relationR is an equivalence relation, then�4(R) = �

1

(R)

Here are also examples of the corresponding fusibility predicates:

 

1

(C

1

; C

2

) � 9X 2 C

1

9Y 2 C

2

: (XRY _YRX)

 

2

(C

1

; C

2

) � (9X 2 L

1

9Y 2 C

2

: XRY) _ (9X 2 C

1

9Y 2 L

2

: YRX)

 

3

(C

1

; C

2

) � (9X 2 C

1

9Y 2 C

2

: XRY) ^ (9X 2 C

1

9Y 2 C

2

: YRX)

 

4

(C

1

; C

2

) � 8X 2 C

1

8Y 2 C

2

: (XRY ^YRX)

For 3 the property F5 fails.

We can use both hierarchical and local optimization methodsfor solving some types
of problems with relational constraint (Ferligoj, Batagelj 1983).
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Neighborhood Graphs
For a given dissimilarityd on the set of unitsU we can define several graphs:

Thek nearest neighbors graphG
N

(k) = (U; A)

(X;Y) 2 A, Y is among thek closest neighbors ofX

By setting fora(X;Y) 2 A its value tow(a) = d(X;Y) we obtain a network.

In the case of equidistant pairs of units we have to decide – orto include them all in

the graph, or specify an additional selection rule.

A special case of thek nearest neighbors graph is thenearest neighbor graphG
N

(1).

We shall denote byG�
NN

the graph with included all equidistant pairs, and byG
NN

a graph where a single nearest neighbor is always selected.

Thefixed-radius neighbors graphG
B

(r) = (U; E)

(X : Y) 2 E , d(X;Y) � r

There are several papers on efficient algorithms for determining the neighborhood

graphs (Fukunaga, Narendra (1975), Dickerson, Eppstein (1996), Ch́avez & (1999),

Murtagh (1999)). These graphs are a bridge between data and network analysis.
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Structure and properties of the nearest neighbor graphs

LetN = (U; A; w) be a nearest neighbor network. A pair of unitsX;Y 2 U are

reciprocal nearest neighborsor RNNs iff (X;Y) 2 A and(Y;X) 2 A.

Suppose
ard(U) > 1. Then inN

� every unit/vertexX 2 U has the outdeg(X) � 1 — there is no isolated unit;

� along every walk the values ofw are not increasing.

using these two observations we can show that inN

�
NN

:

� all the values ofw on a closed walk are the same and all its arcs are reciprocal

— all arcs between units in a nontrivial (at least 2 units) strong component are

reciprocal;

� every maximal (can not be extended) elementary (no arc is repeated) walk ends

in a RNNs pair;

� there exists at least one RNNs pair – corresponding tomin

X;Y2U;X6=Y

d(X;Y).
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Quick agglomerative clustering algorithms

Any graphG
NN

is a subgraph ofG�
NN

. Its connected components are directed

(acyclic) trees with a single RNNs pair in the root.

Based on the nearest neighbor graph very efficientO(n

2

) algorithms for agglomerative

clustering for methods with the reducibility property can be built.


hain := [ ℄;W := U;

while 
ard(W) > 1 do begin
if 
hain = [ ℄ then select an arbitrary unitX 2W else X := last(
hain);

grow a NN-chain fromX until a pair(Y;Z) of RNNs are obtained;

agglomerateY andZ:

T := Y [ Z;W :=W n fY;Zg [ fTg; computeD(T;W );W 2W

end;

It can be shown that if the clustering method has the reducibility property (minimum,

maximum, Ward, . . . ; but not Bock) then the NN-chain remains aNN-chain also after

the agglomeration of the RNNs pair.
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Clustering of Graphs and Networks
When the set of unitsU consists of graphs (for example chemical molecules) we

speak aboutclustering of graphs(networks). For this purpose we can use standard

clustering approaches provided that we have an appropriatedefinition of dissimilarity

between graphs.

The first approach is to define a vector description[G℄ = [g

1

; g

2

; : : : ; g

m

℄ of each

graphG, and then use some standard dissimilarityÆ on IRm to compare these vectors

d(G

1

;G

2

) = Æ([G

1

℄; [G

2

℄). We can get[G℄, for example, by:

Invariants: compute the values of selected invariants (indices) on each graph

(Trinajstíc, 1983).

Fragments count: select a collection of subgraphs (fragments), for exampletriads, and

count the number of appearences of each –fragments spectrum.
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Invariants and structural properties

LetGph be the set of all graphs. Aninvariant of a graph is a mappingi:Gph! IR
which is constant over isomorphic graphs

G � H) i(G) = i(H)

The number of vertices, the number of arcs, the number of edges, maximum degree

�, chromatic number�, . . . are all graph invariants.

Invariants have an important role in examining the isomorphism of two graphs.

Invariants onfamiliesof graphs are calledstructural properties: Let F � Gph be a
family of graphs. A propertyi:F ! IR is structuralonF iff

8G;H 2 F : (G � H) i(G) = i(H))

A collectionI of invariants/structural properties iscompleteiff

(8i 2 I : i(G) = i(H))) G � H

In most cases there is no efficiently computable complete collection.
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Transformations

Different dissimilarities between strings are based on transformations: insert, delete,

transpose (Levenshtein 1966, Kashyap 1983). For binary trees Robinson considered

a dissimilarity based on the transformation ofneighbors exchange over an edge.

There is a natural generalization of this approach to graphsand other structured objects

(Batagelj 1988): LetT = fT

k

g be a set ofbasic transformationsof unitsT
k

: U ! U

andv : T � U ! IR+ value of transformation, which satisfy the conditions:

8T 2 T : (T : X 7! Y ) 9S 2 T : (S : Y 7! X ^ v(T;X) = v(S;Y)))

andv(id; X) = 0.
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Transformations based dissimilarity

Suppose that for each pairX;Y 2 U there exists a finite sequence� = (T

1

; T

2

; : : : ; T

t

)

such that:�(X) = T

t

Æ T

t�1

Æ : : : Æ T

1

(X) = Y. Then we can define:
d(X;Y) = min

�

(v(�(X)) : �(X) = Y)

where

v(�(X)) =

8
<

:

0 � = id

v(�(T (X))) + v(T;X) � = � Æ T

It is easy to verify that so defined dissimilarityd(X;Y) is a distance.

University of Konstanz June 2002



V. Batagelj: Clustering and Blockmodeling 12/3
'

&

$
%

Examples of transformations

Using the transformations G1 and G2 we can transform any pairof connected simple

graphs one to the other. For triangulations of the plane onn vertices S is such a

transformation.
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Clustering in Graphs and Networks
Since in a graphG = (V; L) we have two kinds of objects – vertices and links we

can speak aboutclustering of verticesandclustering of links. Usually we deal with

clustering of vertices.

Again we can use the standard clustering methods provided that we have an appropriate

definition of dissimilarity between vertices.

The usual approach is to define a vector description[v℄ = [t

1

; t

2

; : : : ; t

m

℄ of each

vertexv 2 V , and then use some standard dissimilarityÆ on IRm to compare these

vectorsd(u; v) = Æ([u℄; [v℄). For some ’nonstandard’ such descriptions see Moody

(2001) and Harel, Koren (2001).

We can assign to each vertexv also different neighborhoods

N(v) = fu 2 V : (v; u) 2 Lg

and other sets. In these cases the dissimilarities between sets are used on them.
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Properties of vertices

For a given graphG = (V; L) a propertyt : V ! IR is structural iff for every

automorphism' ofG it holds

8v 2 V : t(v) = t('(v))

Examples of such properties are

t(v) = degree (number of neighbors) of vertexv

t(v) = number of vertices at distanced from vertexv

t(v) = number of triads of typex at vertexv
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Properties of pairs of vertices

For a given graphG = (V; L) a property of pairs of verticesq : V � V ! IR is

structural if for every automorphism' ofG it holds

8u; v 2 V : q(u; v) = q('(u); '(v))

Some examples of structural properties of pairs of vertices

q(u; v) = if (u; v) 2 L then 1 else 0

q(u; v) = number of common neighbors of unitsu andv

q(u; v) = length of the shortest path fromu to v

Using a selected property of pairs of verticesq we can describe each vertexu with a

vector

[u℄ = [q(u; v

1

); q(u; v

2

); : : : ; q(u; v

n

); q(v

1

; u); : : : ; q(v

n

; u)℄

and again define the dissimilarity between verticesu; v 2 V asd(u; v) = Æ([u℄; [v℄).
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Matrix dissimilarities

The following is a list of dissimilarities, used in literature, based on properties of pairs

of vertices for measuring the similarity between verticesv

i

andv
j

(p � 0):

Manhattan: d

m

(v

i

; v

j

) =

P

n
s=1

(jq

is

� q

js

j+ jq

si

� q

sj

j)

Euclidean: d

E

(v

i

; v

j

) =

p

P

n
s=1

((q

is

� q

js

)

2

+ (q

si

� q

sj

)

2

)

Truncated Man.: d

s

(v

i

; v

j

) =

P

n

s=1

s 6=i;j

(jq

is

� q

js

j+ jq

si

� q

sj

j)

Truncated Euc.: d

S

(v

i

; v

j

) =

q

P

n

s=1

s 6=i;j

((q

is

� q

js

)

2

+ (q

si

� q

sj

)

2

)

Corrected Man.: d




(p)(v

i

; v

j

) = d

s

(v

i

; v

j

) + p � (jq

ii

� q

jj

j+ jq

ij

� q

ji

j)

Corrected Euc.: d

e

(p)(v

i

; v

j

) =

p

d

S

(v

i

; v

j

)

2

+ p � ((q

ii

� q

jj

)

2

+ (q

ij

� q

ji

)

2

)

Corrected diss.: d

C

(p)(v

i

; v

j

) =

p

d




(p)(v

i

; v

j

)

The corrected dissimilarities withp = 1 should be used.
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Graph theory approaches
The basic decomposition of graphs is to (weakly) connected components – partition

of vertices (and links); and to (weakly) biconnected components – partition of links.

For both very efficient algorithms exist.

From a networkN = (V; L;w) we can get for a tresholdt a layer networkN(t) =

(V; L

t

; w) whereL
t

= fp 2 L : w(p) � tg. From it we can get a clusteringC(t)

with connected components as clusters. For different tresholds these clusterings form

a hierarchy.

In seventies and eighties Matula studied different types ofconnectivities in graphs and

structures they induce. In most cases the algorithms are toodemanding to be used on

larger graphs. A recent overview of connectivity algorithms was made by Esfahanian.

For directed graphs the fundamental decomposition resultscan be found in Harary,

Norman, and Cartwright (1965).
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Decomposition of directed graphs

Given a simple directed graphG = (V;R), R � V � V we introduce two new

relations,R? (transitive and reflexive closure) andR (transitive closure), based onR:

uR

?

v := 9k 2 IN : uR

k

v and uRv := 9k 2 IN+

: uR

k

v

or equivalently

R

?

=

[

k2IN
R

k and R =

[

k2IN+

R

k

Theorem 3.1
a) uRk

v iff in the graphG = (V;R) there exists a walk of lengthk fromu to v.

b) uR?

v iff in the graphG = (V;R) there exists a walk fromu to v.

c) uRv iff in the graphG = (V;R) there exists a non-null walk fromu to v.
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Acyclic Relations

A relationR 2 V � V is acyclic if and only if

8v 2 V 8k > 0 : :v(R n I)

k

v

i.e. if its graph, except for loops, contains no cycles. Thiscondition can be written

also in the form(R n I) \ I = ;. We shall denote by Acy(V ) the set of all acyclic

relations onV .

A relationR 2 V � V is strictly acyclicif and only if
8v 2 V 8k > 0 : :vR

k

v

i.e. if its graph contains no cycles and, also, loops are not allowed. This condition can

be written also in formR \ I = ;. Each strictly acyclic relation is also acyclic.

Theorem 3.2 For an acyclic relationR 2 Acy(V ) over a finite, nonempty setV

there is at least one minimal,R�1

(v) � fvg, and at least one maximal,R(v) � fvg,

element.
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Factorization

Suppose that on the setV we have a relationR 2 V � V and an equivalence�. The

equivalence� partitions the setV into equivalence classes which form the family

V=�. In V=�we can define thefactor relationr = R=�

r

= R=� := f9x 2 X9y 2 Y : xRyg

We will see, later, that all blockmodels can be described in these terms. The factor

relation is the image of a blockmodel.

For a relationR 2 V � V the strong connectivity relationRS

= R

?

\ (R

�1

)

? is

an equivalence. It partitions the setV into equivalence classes (strong components)

which form a familyV=RS .

Theorem 3.3 LetR 2 V � V . The relationv:= R=R

S is acyclic onV=RS .

If R is a preorder (transitive and reflexive) thenv is a partial order onV=RS .

If R is a tournament (asymmetric and comparable) thenv is a linear order onV=RS .
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Graph, strong components and factorization
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Cores

The notion of a core was introduced by Seidman in 1983.

In a given graphG = (V; L) a subgraphH
k

= (W;LjW ) induced by the setW is

a k-coreor acore of orderk iff 8v 2 W : deg

H

(v) � k, andH
k

is the maximum

subgraph with this property. The core of maximum order is also called themaincore.

Thecore numberof vertexv is the highest order of a core that contains this vertex.

The degreedeg(v) can be: in-degree, out-degree, in-degree+ out-degree, . . . dete-

rmining different types of cores.

In figure an example of cores decomposition of a

given graph is presented. We can see the following

properties of cores:

� The cores are nested:i < j =) H

j

� H

i

� Cores are not necessarily connected subgraphs.
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Determining and using cores

A very efficientO(m) algorithm (Batagelj, Zaveršnik 2002) for determining the cores

hierarchy can be built based on the following property:

If from a given graphG = (V; L) we recursively delete all vertices, and lines

incident with them, of degree less thank, the remaining graph is thek-core.

The notion of cores can be generalized to networks.

Using cores we can identify the densiest parts of a graph. Forrevealing the internal

structure of the main core we can use standard clustering procedures on dissimilarities

between vertices. Afterwards we can remove the links of the main core and analyse

the residium graph.

Cores can be used also to localize the search for some computationally more

demanding substructures.
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Short cycles

A subgraphH = (V

0

; A

0

) ofG = (V;A) is cyclick-gonal if each its vertex and each

its edge belong to at least one cycle of length at mostk and at least 2 inH.

A sequence(C
1

; C

2

; : : : ; C

s

) of cycles of length at mostk (and at least 2) ofG cyclic

k-gonally connectsvertexu 2 V to vertexv 2 V iff u 2 C

1

andv 2 C

s

or u 2 C

s

andv 2 C
1

andV (C
i�1

) \ V (C

i

) 6= ;, i = 2; : : : s; such sequence is called acyclic

k-gonal chain.

A pair of verticesu; v 2 V is cyclic k-gonally connectediff u = v, or there exists a

cyclic k-gonal chain that connectsu to v.

Theorem 3.4 Cyclic k-gonal connectivity is an equivalence relation on the set of

verticesV .

An arc iscyclic iff it belongs to some cycle (of any length) in the graphG.

Theorem 3.5 If in the graphG for each cyclic arc the length of a shortest cycle that

contains it is at mostk then the cyclick-gonal reduction ofG is an acyclic graph.
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Final remarks
The agglomerative methods can be adapted for large sparse networks in sense of

relational constraint clustering – we have to compute dissimilarities only between

units/vertices connected by a link.

The Sollin’s MST algorithm can be very efficiently implemented for large sparse

networks.
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