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Clustering and Networks

e clustering with relational constraint

e transforming data into graphs (neighbors)
e clustering of networks; dissimilarities between graphet\{rorks)
e clustering of vertices / links; dissimilarities betweemtiees

e clustering in large networks
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Clustering with relational constraint

Suppose that the units are described by attribute @dth — [U| and related by a
binaryrelation R C U x U that determine theslational data(U, R, a).

We want to cluster the units according to the similarity daditldescriptions, but also
considering the relatio® — it imposes constraints on the set of feasible clusterings,
usually in the following form:

®(R) = {C € P(U) : each cluste€’ € Cis a subgraphC, RN C x C) in the
graph(U, R) of the required type of connectedngss
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Some types of relational constraints

We can define different types of sets of feasible clusterfogthe same relatioi®.
Some examples df/pes of relational constrain®*(R) are

type of clusterings type of connectedness
1 (R) weakly connected units
??(R) weakly connected units that contain at most one center
®3(R) strongly connected units
$*(R) cligue
?°(R) the existence of a trail containing all the units of the aust

A set of unitsL. C C' is acenterof clusterC in the clustering of typed?(R) iff the
subgraph induced b¥ is strongly connected anBl(L) N (C'\ L) = 0.
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Some graphs of different types
3 4
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/Propertiesof relational constraints

The sets of feasible clusterings(R) are linked as follows:

®*(R) C ®3(R) C ®*(R) C ®*(R)

®4(R) C ®°(R) C ®*(R)

If the relationR is symmetric, the®?(R) = & (R)

If the relationR is an equivalence relation, thdrt (R) = ®!(R)

Here are also examples of the corresponding fusibility ioedds:
WH(Ch,C) = 3X € C13Y € Cy ¢ (XRY V YRX)

Y2(C1,05) = (X € L1AY € Oy : XRY) V (IX € C1IY € Ly : YRX)
Pp3(C1,05) = (IX € C1IY € Oy : XRY) A (IX € C13Y € O : YRX)
WA (C1,Co) = VX € C1VY € Cy : (XRY A YRX)

For)® the property F5 fails.

\of problems with relational constraint (Ferligoj, Batgd)83).

We can use both hierarchical and local optimization methodsolving some types

_/

University of Konstanz

June 2002



V. Batagelj: Clustering and Blockmodeling 5/3

/ Neighborhood Graphs \

For a given dissimilarityl on the set of unitdJ we can define several graphs:

The k nearest neighbors grapG (k) = (U, A)
(X,Y) € A<« Y isamong the: closest neighbors of
By setting fora(X,Y) € A its value tow(a) = d(X,Y) we obtain a network.
In the case of equidistant pairs of units we have to decidete mrclude them all in
the graph, or specify an additional selection rule.

A special case of the nearest neighbors graph is thearest neighbor grapt x(1).
We shall denote by, the graph with included all equidistant pairs, and®y;
a graph where a single nearest neighbor is always selected.

Thefixed-radius neighbors grapGg(r) = (U, F)
X:Y)e E<dX,)Y)<r

There are several papers on efficient algorithms for detengithe neighborhood
graphs (Fukunaga, Narendra (1975), Dickerson, Eppsté@6(] Ctavez & (1999),
Qﬂurtagh (1999)). These graphs are a bridge between datastwonk analysis. /
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/Structure and properties of the nearest neighbor graphs \

Let N = (U, A, w) be a nearest neighbor network. A pair of umsY € U are
reciprocal nearest neighboiar RNNs iff (X,Y) € A and(Y,X) € A.

Supposeard(U) > 1. Then inN
e every unit/verteXX € U has the outdgd) > 1 — there is no isolated unit;
e along every walk the values af are not increasing.

using these two observations we can show tha& fp,,:

e all the values ofw on a closed walk are the same and all its arcs are reciprodal
— all arcs between units in a nontrivial (at least 2 unitsprsiy component are
reciprocal,

e every maximal (can not be extended) elementary (no arc eated) walk ends
In a RNNSs pair;

\o there exists at least one RNNs pair — correspondingitck yeu x-v d(X, Y)./
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/Quick agglomer ative clustering algorithms \

Any graphG y Is a subgraph o7, . Its connected components are directed
(acyclic) trees with a single RNNs pair in the root.

Based on the nearest neighbor graph very effidigmt?) algorithms for agglomerative
clustering for methods with the reducibility property camiuilt.

chain = | |; W := U
while card(W) > 1 do begin
if chain = | ] then select an arbitrary unX € W else X := last(chain);
grow a NN-chain fromX until a pair(Y,Z) of RNNs are obtained;
agglomeraté& andZ:
T:=YUZ W :=W\{Y,Z}U{T}; computeD(T, W), W € W
end;

It can be shown that if the clustering method has the reditgiproperty (minimum,
maximum, Ward, ... ; but not Bock) then the NN-chain remaihi\achain also after

\the agglomeration of the RNNs pair. /
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Clustering of Graphs and Networks

When the set of unit®J consists of graphs (for example chemical molecules) we
speak aboutlustering of graphgnetworks). For this purpose we can use standarg

clustering approaches provided that we have an appropieditaition of dissimilarity
between graphs.

The first approach is to define a vector descriptiGh = (91, 92, - - -, g Of €ach
graphG, and then use some standard dissimilafipn R"" to compare these vectors
d(G1,G2) = 6(|G1], |Gz]). We can getG], for example, by:

Invariants compute the values of selected invariants (indices) oim ggaph
(Trinajstic, 1983).

Fragments countselect a collection of subgraphs (fragments), for exarirdds, and
count the number of appearences of eaflagments spectrum
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/Invariants and structural properties \

Let Gph be the set of all graphs. Ainvariant of a graph is a mapping Gph — R
which is constant over isomorphic graphs

G~H-=iG)=i(H)

The number of vertices, the number of arcs, the number ofssdgaximum degree
A, chromatic numbey, ... are all graph invariants.

Invariants have an important role in examining the isommplof two graphs.

Invariants onfamiliesof graphs are calledtructural propertiesLet 7 C Gph be a
family of graphs. A property: 7 — IR is structuralon F iff

VG, He F:(GrH=iG)=iH))
A collectionZ of invariants/structural propertieseasmpletdff

(VieT:i(G)=i(H)) = G~H

Q\ most cases there is no efficiently computable completecadn. /
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Transformations

Different dissimilarities between strings are based onsfi@mations: insert, delete,
transpose (Levenshtein 1966, Kashyap 1983). For binagg fRebinson considered
a dissimilarity based on the transformationrafighbors exchange over an edge

L=

There is a natural generalization of this approach to graptdsther structured objects
(Batagelj 1988): LeT = {T} } be a set obasic transformationsf units7y, : U/ — U
andv : T x U — IR™ value of transformation, which satisfy the conditions:

VT €T :(T:X—=Y=35€T:(S:Y—XAv(T,X)=v(5,Y)))

andv(id, X) = 0.
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Transformations based dissmilarity

suchthatr(X) =T, 0T;_10...0T1(X) =Y. Then we can define:

d(X,Y) = min(v(r(X)) : 7(X) = Y)

where
0 7 =1d

v(T(X)) =
(r(X)) v(n(T(X))) +v(T,X) T7=noT

It is easy to verify that so defined dissimilardyX,Y) is a distance.

\_

Suppose that for each p&ir Y € U there exists a finite sequence= (11,715, . . .
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Examples of transformations
@ T e

S. m@(—)

Using the transformations G1 and G2 we can transform anyobpawonnected simple
graphs one to the other. For triangulations of the plane aertices S is such a
transformation.
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Clustering in Graphsand Networks

Since in a graplG = (V, L) we have two kinds of objects — vertices and links we]
can speak aboutiustering of verticeandclustering of links Usually we deal with
clustering of vertices.

Again we can use the standard clustering methods provi@gevinhave an appropriatg
definition of dissimilarity between vertices.

The usual approach is to define a vector descripion= [t1,ts,...,t,,] of each

vertexv € V, and then use some standard dissimilasign IR™ to compare these
vectorsd(u, v) = d([ul, [v]). For some 'nonstandard’ such descriptions see Moody
(2001) and Harel, Koren (2001).

We can assign to each vertexalso different neighborhoods
N@w)={ueV :(v,u) € L}

and other sets. In these cases the dissimilarities betvagsiai® used on them.
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Properties of vertices

For a given graptG = (V, L) a propertyt : V — IR is structural iff for every
automorphisny of G it holds

Vo eV :t(v) =t(pv))

Examples of such properties are

t(v) = degree (number of neighbors) of vertex
t(v) = number of vertices at distanddrom vertexw
t(v) = number of triads of type at vertexv

\_
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Properties of pairsof vertices

For a given graptG = (V, L) a property of pairs of verticeg : V x V — R is
structuralif for every automorphisnp of G it holds

Vu,v € V i q(u,v) = q(p(u), p(v))
Some examples of structural properties of pairs of vertices

q(u,v) = if (u,v) € Lthen 1else0
q(u,v) = number of common neighbors of uniisandv
q(u,v) = length of the shortest path fromto v

Using a selected property of pairs of vertieewe can describe each vertexwith a
vector

[U,] — [Q(ua vl)a Q(ua v2)7 <o 7Q(u7 Un)a Q(Ula ”U,), <o 7Q(Un7 U)]
and again define the dissimilarity between vertices € V asd(u,v) = §([u], [v]).
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Matrix dissmilarities

The following is a list of dissimilarities, used in literay based on properties of pair$
of vertices for measuring the similarity between vertiegandv; (p > 0):

Manhattan: dm(’Ui, Uj) = Zg—l(‘q?ls — st‘ + ‘qsi - QSjD
Euclidean: dE Uz, UJ \/ZS 1 q'Ls st)2 + (QS'L' - QSj)2)
Truncated Man.: d,(v;,v;) = 3" =t (|gis — ajs| + |asi — as54l)

Truncated Euc.: ds(v;, v;) \/Z = ((gis — qjs)? + (qsi — qs5)?)
Corrected Man.: d.(p)(vi,v;) = ds(vi,v;) +p - (| — 55| + @i — a54])
Corrected Euc.: de(p)(vz-,vj = /ds( vi,vj)2 +p - ((qis — 455)° + (qi5 — 45:)?)

Corrected diss.: dc(p)(vi, v;) = v/de(p)(vi, v))

The corrected dissimilarities with= 1 should be used.
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Graph theory approaches

The basic decomposition of graphs is to (weakly) connectadponents — partition
of vertices (and links); and to (weakly) biconnected congrda — partition of links.
For both very efficient algorithms exist.

From a networkN = (V, L, w) we can get for a tresholta layer networkN (¢) =
(V, Ly, w) whereL; = {p € L : w(p) > t}. From it we can get a clustering(t)
with connected components as clusters. For differentdtdslihese clusterings form
a hierarchy.

In seventies and eighties Matula studied different typasoahectivities in graphs and|
structures they induce. In most cases the algorithms aredo@nding to be used on
larger graphs. A recent overview of connectivity algorigwas made by Esfahanian|

For directed graphs the fundamental decomposition resatide found in Harary,
Norman, and Cartwright (1965).
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Decomposition of directed graphs

Given a simple directed grap@ = (V,R), R C V x V we introduce two new
relations,R* (transitive and reflexive closuyandR (transitive closurg, based orR:

wR*v := 3k € IN : uR*v and wRv =3k € NT : uRFv

or equivalently

R* = UR’“ and R = U RF
kcIN keINT

Theorem 3.1

a) uRFv iff in the graphG = (V, R) there exists a walk of lengthfrom v to v.
b) uR*v iff in the graphG = (V, R) there exists a walk from to v.

c) uRwv iff in the graphG = (V, R) there exists a non-null walk fromto v.
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/Acyclic Relations \

ArelationR € V x V is acyclicif and only if

Vo € VVE > 0:—v(R\ I

l.e. If its graph, except for loops, contains no cycles. Tduadition can be written
also in the form(R \ I) N I = (). We shall denote by Ady) the set of all acyclic
relations onl/.

ArelationR € V x V is strictly acyclicif and only if
Yv € VVEk > 0: —vRFv

l.e. if its graph contains no cycles and, also, loops are lhmtvad. This condition can
be written also in form? N I = (). Each strictly acyclic relation is also acyclic.

Theorem 3.2 For an acyclic relationR € Acy(V) over a finite, nonempty sét
there is at least one minimak~1(v) C {v}, and at least one maximaR(v) C {v},

\element. /
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Suppose that on the sétwe have a relatio? € V' x V and an equivalence. The
equivalence~ partitions the sel’ into equivalence classes which form the family
V/~ InV /~we can define thé&ctor relationr = R/~

Factorization

r=R/~:={JdreX3dyeY xRy}

We will see, later, that all blockmodels can be describedh@sé terms. The factor
relation is the image of a blockmodel.

For a relationR € V x V the strong connectivity relatioR® = R* N (R~1)* is
an equivalence. It partitions the détinto equivalence classes (strong components
which form a familyV/R>.

~—

Theorem 3.3 LetR € V x V. The relationC:= R/R” is acyclic onV/R".
If R is a preorder (transitive and reflexive) thénis a partial order onV/R®.
If Ris atournament (asymmetric and comparable) theis a linear order onl//R”.
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Graph, strong components and factorization
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Cores

The notion of a core was introduced by Seidman in 1983.

In a given grapiG = (V, L) a subgrapH; = (W, L|W) induced by the sl is

a k-coreor acore of orderk iff Vo € W : degy(v) > k, andHj, is the maximum
subgraph with this property. The core of maximum order is alled themaincore.
Thecore numbeiof vertexwv Is the highest order of a core that contains this vertex.

The degreeleg(v) can be: in-degree, out-degree, in-degteeut-degree, . ..dete-
rmining different types of cores.
In figure an example of cores decomposition of a

given graph is presented. We can see the following
properties of cores: \@

e The cores are nested:< ;7 = H, C H;,

e Cores are not necessarily connected subgraphs.
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Deter mining and using cores

A very efficientO(m) algorithm (Batagelj, Zavénik 2002) for determining the cores
hierarchy can be built based on the following property:

If from a given graphG = (V, L) we recursively delete all vertices, and lines
Incident with them, of degree less thanthe remaining graph is thiecore.

The notion of cores can be generalized to networks.

Using cores we can identify the densiest parts of a graphrdvaaling the internal
structure of the main core we can use standard clusterirgp@uwes on dissimilarities
between vertices. Afterwards we can remove the links of thanrmore and analyse
the residium graph.

Cores can be used also to localize the search for some camopatly more
demanding substructures.
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/Short cycles \

A subgraphH = (V’/, A") of G = (V, A) is cyclic k-gonalif each its vertex and each
Its edge belong to at least one cycle of length at nhcmtd at least 2 iH.

A sequencéCy,Cs, ..., C5) of cycles of length at mogi (and at least 2) o& cyclic
k-gonally connectvertexu € V to vertexv € V iff uw € C7 andv € C; oru € Cy
andv € Cy andV (C;_1) NV (C;) # 0,3 = 2,...s; such sequence is calleccgclic
k-gonal chain

A pair of verticesu,v € V is cyclic k-gonally connectedff © = v, or there exists a
cyclic k-gonal chain that connectsto v.

Theorem 3.4 Cyclic k-gonal connectivity is an equivalence relation on the set of
verticesV'.

An arc iscycliciff it belongs to some cycle (of any length) in the graah

Theorem 3.5 If in the graphG for each cyclic arc the length of a shortest cycle that
\contains it is at most then the cyclid:-gonal reduction ofG is an acyclic graph./
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Final remarks

The agglomerative methods can be adapted for large spatserke in sense of

relational constraint clustering — we have to compute ahgarities only between
units/vertices connected by a link.

The Sollin’s MST algorithm can be very efficiently implemedtfor large sparse
networks.
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