

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

Microsoft Academic Graph

Viszards session

Vladimir Batagelj

IMFM Ljubljana and IAM UP Koper

XXXVI Sunbelt 2016

Newport Beach, California; April 5-10, 2016

DQC2

V. Batagelj Corrected network measures

Outline

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

Microsoft Academic Graph
 Pajek files
 Years
 Authors and keywords

- 5 Derived networks
- 6 Citation network
 - 7 Conclusions
- 8 References

Vladimir Batagelj:

vladimir.batagelj@fmf.uni-lj.si

Current version of slides (April 11, 2016, 16:06): http://vlado.fmf.uni-lj.si/pub/slides/vbMAG16.pdf

V. Batagelj

Corrected network measures

< □ > < 同 > < 三 >

Microsoft Academic Graph

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

The Microsoft Academic Graph (MAG) is a heterogeneous graph containing scientific publication records, citation relationships between those publications, as well as authors, institutions, journals and conference "venues" and fields of study. The first version was published on June 5, 2015; the last updated version is from February 5, 2016. Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, and Kuansan Wang, An Overview of Microsoft Academic Service (MAS) and Applications, WWW – World Wide Web Consortium (W3C), 18 May 2015.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

MAG – entities and sizes

Corrected network measures

M Ac Gr

V. Batagelj	Entity name	Entity Count
	Papers	> 83 million
licrosoft cademic	Authors	> 20 million
raph	Institutions	> 770,000
ajek files ears	Journals	> 22,000
uthors and	Conference series	> 900
eywords	Conference instances	> 26,000
erived etworks	Fields of study	> 50,000

Citation network

Conclusions

References

The ZIP containing all data files has size 28.2 GB. Searching, machine learning, recomendation tasks.

↓ □ ▶ ↓ ⓓ ▶ ↓ ∈ ▶ ↓ ∈ ₽ ▶ ... ∈

DQC2

MAG – data files structure

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

Affiliations 1 Affiliation TD 1 2 Affiliation name 2 3 Authors Author ID 1 Author name 2 FieldsOfStudy 3 Field of study ID 1 2 Field of study name FieldOfStudyHierarchy Child field of study ID 2 Child field of study level Parent field of study ID Parent field of study level 4 5 Confidence

ConferenceSeries 1 Conference series ID 2 Short name (abbreviation) 3 Full name ConferenceInstances 1 Conference series ID 2 Conference instance ID 3 Short name (abbreviation) 4 Full name

- 5 Location
- 6 Official conference URL
- 7 Conference start date
- 8 Conference end date
- 9 Conference abstract registration date
- 10 Conference submission deadline date

<ロト < 同ト < ヨト < ヨト -

DQ P

- 11 Conference notification due date
- 12 Conference final version due date

Corrected network measures

(mf)

MAG – data files structure

Corrected network measures		
V. Batagelj	Papers	PaperAuthorAffiliations
	1 Paper ID	1 Paper ID
Microsoft	2 Original paper title	2 Author ID
Academic	3 Normalized paper title	3 Affiliation ID
	4 Paper publish year	4 Original affiliation name
Graph	5 Paper publish date	5 Normalized affiliation name
Pajek files	6 Paper Document Object Identifier	6 Author sequence number
Years	(DOI)	
Tears	7 Original venue name	PaperReferences
Authors and	8 Normalized venue name	1 Paper ID
keywords	9 Journal ID mapped to venue name	2 Paper reference ID
Reywords	10 Conference series ID	•
Derived	mapped to venue name	PaperUrls
networks	11 Paper rank	1 Paper ID
	1	2 URL
Citation	PaperKeywords	2 0102
network	1 Paper ID	Journals
	2 Keyword name	1 Journal ID
Conclusions	3 Field of study ID mapped to keyword	
	o itora of bouay ib mapped to keyword	2 bournar numo
References		

V. Batagelj

Corrected network measures

MAG into a collection of networks

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

MAG is similar to data from bibliographic data bases (Web of Science, Scopus, DBLP, ZB Math, etc.). In our paper On bibliographic networks we proposed to transform such data into a collection of one-mode and two-mode networks – in the case of MAG into:

Cite, WA, WK, WV, AC,

where: W – works (papers, books, etc.), A – authors, K – keywords, V – venues (conferences, journals, publishers), C - companies or institutions, F - field.

and some properties of nodes:

year - publication year of a work.

An important fact about these networks is that many pairs share a common set – using the network multiplication we can get *derived* networks.

V. Batagelj Corrected network measures

イロト イポト イヨト イヨト 三日

SOR

Problems

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

- the networks obtained from the complete MAG are very large and require substantial time for construction and analysis. We decided:
 - to limit in the first phase the analysis to some smaller subset of data on which the analyses can be performed fast.
 - to explore the data an see what are the problems
 - to identify problems and develop solutions.
- transforming and cleaning the data
 - identifying problems
 - missing "standard" bibliographic data such as Volume and First page.

イロト イポト イヨト イヨト

We selected as the subset the data related to SNA. Extraction was done by Juergen Pfeffer.

V. Batagelj Corrected network measures

MAG/SNA - sizes

Corrected
network
measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

W – works (papers, books, etc.)	634552
A – authors	1048433
K – keywords	24535
V – venues (conferences, journals, publishers)	
C – companies or institutions	
F – field	

< □ > < □ > < □ > < □ > < □ >

 \equiv

990

Cleaning

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

Authors.txt ×	
7CF2C714	joe hennessey
7CF2C724	p w brown
7CF2C758	r kumar
7CF2C83F	j decastro
7CF2C87B	a g bonchosmolovskii
7CF2C8A2	n romano
7CF2C90F	r kh makhmudov
7CF2C920	正義 上原
7CF2C980	h m ruijter
7CF2CA3D	eszter k vladar
7CF2CAE3	isis brook
7CF2CB1B	jeremy cardin
7CF2CB96	jose angel calderon
7CF2CBF3	blachowski stefan
7CF2CC11	mitsuru shinoda
7CF2CC32	真生 飯山
7CF2CC58	federico herrera
7CF2CCA7	jones paul r
7CF2CD18	博之 伊藤
7CF2CD1C	л в карпенко
7CF2CD29	長谷川
7CF2CD8B	cristieli sergio de menezes oliveira
7CF2CDAD	炳滿 田
7CF2CE5B	adir j perez
7CF2CEE6	doris r schwartz
7CF2D0AE	irene bartsch
7CF2D0B4	chong ren
7CF2D0D8	تیا صفاری مجید
7CF2D1A9	reno camilleri
7CF2D1BD 7CF2D1C8	kresz bierut 石原
7CF2D202	carrol a alvarez

The networks are too large to do individual cleaning in general. We can identify some problems that can be corrected using (short) programs. For example, the same author appears several times in the list of authors – the *identity problem*.

We produced a partition that puts all authors with the same name into the same class. The application of it to shrink the set of authors can be risky – in MathSciNet there exist 697 chinese mathematicians with the name

Wang, Li.

V. Batagelj

Corrected network measures

MAG – entities and sizes

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

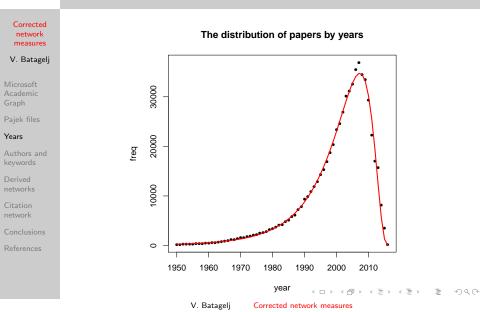
Authors and keywords

Derived networks

Citation network

Conclusions

References


Another such partition is the partition DOI the puts into the same class all works with the same DOI. In this case it is reasonable to assume that they identify the same work.

In general we treat the remaining inconsistencies in data as a noise. If they show up also in results we correct the data in an appropriate way and repeat the analysis.

イロト イポト イヨト イヨト

$\mathsf{MAG}/\mathsf{SNA}-\mathsf{The}\xspace$ distribution of papers by years

$\mathsf{MAG}/\mathsf{SNA}-\mathsf{The}\xspace$ distribution of papers by years

```
Corrected
  network
              > setwd("c:/users/Batagelj/work/Python/MAG")
 measures
              > years <- read.table(file="Year.clu",header=FALSE,skip=2)$V1</pre>
              > t <- table(years)</pre>
 V. Batagelj
              > min(years)
              [1] 1803
              > max(years)
              [1] 2016
              > year <- as.integer(names(t))
              > freq <- as.vector(t[1950<=year & year<=2016])</pre>
              > y <- 1950:2016
Years
              > model <- nls(freq~c*dlnorm(2017-y,a,b),start=list(c=500000,a=2.5,b=0.7</pre>
              > model
Authors and
              Nonlinear regression model
                model: freq ~ c * dlnorm(2017 - y, a, b)
                 data: parent.frame()
                                            b
                       C
                                  а
              6.317e+05 2.655e+00 6.164e-01
               residual sum-of-squares: 51166952
              Number of iterations to convergence: 6
              Achieved convergence tolerance: 9.371e-06
              > plot(y,freq,pch=16,cex=0.75,main="The distribution of papers by years"
              + xlab="year",ylab="freq")
              > lines(y,predict(model,list(x=2017-y)),col='red',lw=2)
                                                           <ロト < 同ト < ヨト < ヨト -
                                                                                      DQC2
```


WK – keywords with the largest indegree

Corrected network	rank	freq	Id
measures	1	24104	Social network
	2	10349	Network analysis
V. Batagelj	3 4	9726	internet
	4	8974	genetics
Microsoft	5 6	8921	bioinformatics
Academic		8919	computer model
Graph	7	8203	Flow network
	8	8094	developing countries
Pajek files	9	8066	computer network
Manua	10	7688	mathematical model
Years	11	7359	Network model
Authors and	12	7240	neural network model
keywords	13	7043	algorithms
	14	6741	human factors
Derived	15	6257	indexing terms
networks	16	6232	biomedical research
<u></u>	17		occupational safety
Citation	18	6036	signal transduction
network	19	5939	injury prevention
Conclusions	20	5937	suicide prevention
conclusions	21	5736	research methodology
References	22	5310	biological sciences
	23	5303	higher education
	24	5138	medicine
	25	5128	data mining

V. Batagelj

WK – outdegree distribution

network measures d f f d f f f f f f f f f d f f f f f d f f f f f f f f f f f
V. Batagelj 0 185261 25 144 50 93 75 4 1 82195 26 109 51 94 76 5 2 69677 27 106 52 62 77 2 Academic 4 54083 29 51 54 39 79 3 Graph 6 34880 31 45 56 19 82 2 Pajek files 7 27853 32 49 57 15 83 1 Years 9 17855 34 27 59 14 86 1 Authors and 11 10905 36 41 61 16 92 1 keywords 13 6465 38 37 63 14 100 1 Derived 14 4975 39 31 64 14 102 1 networ
Defined networks 15 16 3397 2325 40 41 44 55 65 11 106 1 1 Citation 17 1739 42 258 67 6 112 1 Citation 17 1739 42 258 67 6 112 1 network 19 789 44 337 69 5 Conclusions 20 510 45 339 70 4 References 22 268 47 232 72 3 23 233 48 187 73 2

V. Batagelj

990

3

Derived network **AK**

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

$$\mathbf{A}\mathbf{K} = \mathbf{W}\mathbf{A}^T \ast \mathbf{W}\mathbf{K}$$

 $ak_{ak} =$ number of works authored by the author *a* taged by the keyword *k*

In the following picture we present the link-cut in AK at level 40 – we preserve only links with value at least 40.

Other possibilities: collaboration network

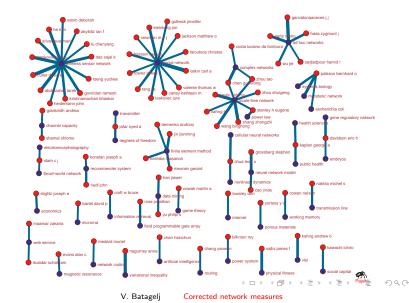
$$AA_W = WA^T * WA$$

co-taging network

$$\mathbf{K}\mathbf{K}_W = \mathbf{W}\mathbf{K}^T * \mathbf{W}\mathbf{K}$$

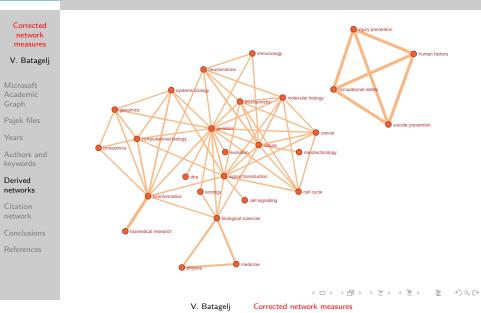
V. Batagelj

Corrected network measures


AK link cut at level 40

Corrected network measures

- V. Batagelj
- Microsoft Academic Graph
- Pajek files
- Years
- Authors and keywords


Derived networks

- Citation network
- Conclusions
- References

KK link cut at level 2500

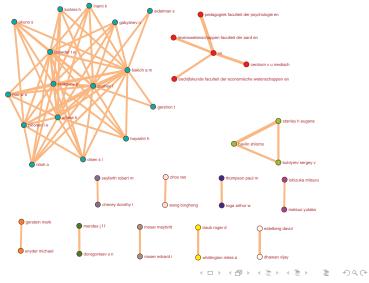
$\boldsymbol{\mathsf{AA}}$ link cut at level 40

V. Batagelj

Microsoft Academic Graph

Pajek files

Years


Authors and keywords

Derived networks

Citation network

Conclusions

References

V. Batagelj

Corrected network measures

Cite citation network

Corrected network measures

V. Batagelj

Microsoft Academic Graph

Pajek files

Years

Authors and keywords

Derived networks

Citation network

Conclusions

References

By its nature: citing work is usually citing an older work, a citation network is usually almost acyclic. In acyclic networks we can compute the importance of arcs using Hummon-Doreian's SPC weights.

A first analysis of **Cite**/SNA network revealed some quite large strong components – there are some inconsistent arcs. In general, it is very hard to detect them. But in MAG we have a publication year for each work. This allows us to split the set of arcs to the set of *inconsistent* arcs (year(citing work) < year(cited work)) and *consistent* arcs still contains some very small strong components that we remove using the preprint transformation. In this subnetwork we compute the SPC weights and analyze it.

<ロト < 同ト < ヨト < ヨト -

Cite nodes with largest indegree – the most cited

1998:Collective dynamics of 'small-world' network

1998:Collective dynamics of |[lsquo]|small-world|

1999:Emergence of scaling in random networks

Corrected
network
measures

rank ideg Id

1

2

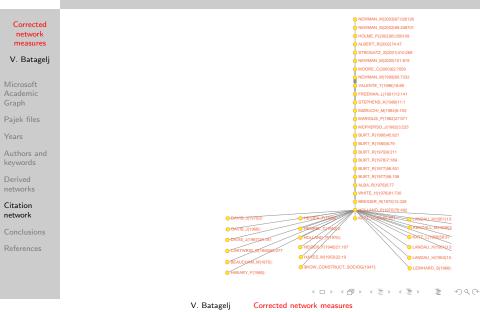
З 1591

2733

7DE3F24E

5F4231F7

1778 7DFD00FF


V. Batagelj

	4	1522	7AE62067	1994:Social network analysis : methods and applic
Microsoft	5	1518	801120F4	2006: The Structure and Function of Complex Networ
Academic	6	1111	7A9A7CE3	1978:Centrality in social networks conceptual cla
Graph	7	938	7EA36534	2001:Statistical mechanics of complex networks
Pajek files	8	917	7C4E1302	1988:Social capital in the creation of human capi
T ajek mes	9	807	7EFAA2E1	2003:Birds of a Feather: Homophily in Social Netw
Years	10	601	5F4C44DB	1985:Network Externalities, Competition, and Comp
	11	562	5DCAEA41	1967:The small world problem
Authors and	12	555	7AE8C51A	1992:Structural Holes: The Social Structure of Co
keywords	13	554	7CE3A440	2003:Finding and evaluating community structure i
Derived	14	548	758182E5	2002:Community Structure in Social and Biological
networks	15	479	78201C0E	1991:Social network analysis : a handbook
	16	475	7FD85A5E	2000: The large-scale organization of metabolic ne
Citation	17	474	08F73288	2002:Ucinet for Windows: Software for Social Netw
network	18	440	805DB3F6	2002:Network Motifs: Simple Building Blocks of Co
Conclusions	19	412	797C66A2	2001:Epidemic spreading in scale-free networks
Conclusions	20	409	074A990C	1999:Diameter of the World Wide Web
References	21	408	7672CE5D	1983: THE STRENGTH OF WEAK TIES: A NETWORK THEORY
	22	405	7F014945	2001:Lethality and centrality in protein networks
	23	399	7AE4E1EC	2003:Maximizing the spread of influence through a
	24		0E9A2F6A	1993:Social Network Analysis
	25	381	7B21241E	2000:Error and attack tolerance of complex networ

title

Cite CPM main path

Works on the CPM main path

Corrected network measures

measures		2016: Influence maximization in social networks under an independent cascade-based mode
	796367FF	2015:A fast algorithm for finding most influential people based on the linear threshol
V. Batagelj	7BD90FAA	2014:Conformity-aware influence maximization in online social networks
	7A0295DE	2013:Confluence: conformity influence in large social networks
	074F8859	2013: Mining structural hole spanners through information diffusion in social networks
Microsoft	76E3785A	2013:Learning to predict reciprocity and triadic closure in social networks
Academic	7892819F	2012:Inferring social ties across heterogenous networks
Graph	807589F1	2011:Who will follow you back?: reciprocal relationship prediction
orupn	7D3DB51F	2010:What is Twitter, a social network or a news media?
Pajek files	7E35209C	2009:Characterizing user behavior in online social networks
i ajek mes	80574CC0	2009:On the evolution of user interaction in Facebook
Years	7A09829C 7EA5C7A7	2009:User interactions in social networks and their implications 2008:Comparison of online social relations in volume vs interaction: a case study of c
Tears	7DFD6839	2008:Planetary-Scale Views on an Instant-Messaging Network
A set la sur sur st	75A740C8	2008:Yes, there is a correlation: - from social networks to personal behavior on the w
Authors and	7CEFD341	2008: res, there is a correlation from social networks to personal behavior on the w 2007: Model-based clustering for social networks
keywords		8
	7F4E4D82	2007:Recent developments in exponential random graph (p *) models for social networks
Derived	80C31505	2007: An introduction to exponential random graph ($p * $) models for social networks
networks	7F5B174D 801120F4	2006: NEW SPECIFICATIONS FOR EXPONENTIAL RANDOM GRAPH MODELS
	7B58E93A	2006:The Structure and Function of Complex Networks 2001:The risk environment for HIV transmission: results from the Atlanta and Flagstaff
Citation	78866E79	2000: The Atlanta Urban Networks Study: a blueprint for endemic transmission
network	78687B67	1998: Social network dynamics and HIV transmission
neemoni	7C05C659	1995:Choosing a centrality measure: Epidemiologic correlates in the Colorado Springs s
Conclusions	79B75E43	1994:Social networks and infectious disease: the Colorado Springs Study
conclusions	7AD762F3	1985: Social networks and the spread of infectious disease: The AIDS example
References		1980:Social networks: A promising direction for research on the relationship of the sc
References	7D317928	1978:Social Networks and Schizophrenia*
	10311920	1310. BOCIAL NELWOIKS AND SCHIZOPHIEHIA-

Conclusions

Corrected network measures

- V. Batagelj
- Microsoft Academic Graph
- Pajek files
- Years
- Authors and keywords
- Derived networks
- Citation network
- Conclusions
- References

- add the networks WV, WF and AC and analyze them
- Fractional analysis of ${\bf K}{\bf K}$ and ${\bf A}{\bf A}$
- Find a good (content based) identifier for works and analyze **Cite** using main multi-paths and islands
- repeat the analyses on MAG

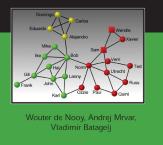
イロト イポト イヨト イヨト

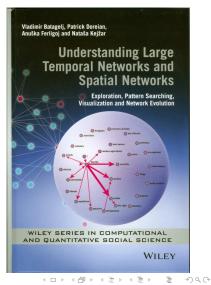
DQ P

Support

CAMBRIDGE

Corrected network measures


- V. Batagelj
- Microsoft Academic Graph
- Pajek files
- Years
- Authors and keywords
- Derived networks
- Citation network
- Conclusions


References

STRUCTURAL ANALYSIS IN THE SOCIAL SCIENCES 3

Exploratory Social Network Analysis with Pajek

Revised and Expanded

V. Batagelj

Corrected network measures

References I

Corrected network measures

V. Batagelj

Academic

Years

References

Vladimir Batagelj: WoS2Pajek

Vladimir Batageli, Patrick Doreian, Anuška Ferligoj and Nataša Kejžar: Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution. Wiley Series in Computational and Quantitative Social Science. Wiley, October 2014.

Wouter De Nooy, Andrej Mrvar, Vladimir Batagelj: Exploratory Social Network Analysis with Pajek; Revised and Expanded Second Edition. Structural Analysis in the Social Sciences, Cambridge University Press, September 2011.

Wikipedia: Peer review

V. Batageli Corrected network measures

・ロト ・ 中 ・ ・ ヨ ・ ・ ヨ ・