
Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Control
Summer School on R

Vladimir Batagelj

University of Ljubljana, FMF, Mathematics

Quantitative methods in the Social Sciences 2
University of Bucharest, Romania

September 1-7, 2010

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Outline

1 Sequences of expressions
2 Branching
3 Loops
4 Jumps
5 Functions

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Sequences of expressions

A program in R is a sequence of expressions. They are
separated by either a semi-colon, ;, or a newline.
The expressions in a sequence are evaluated in the same order
as they appear in the sequence. In the interactive execution of
a program the value of an expression is printed if it is not an
assignment.
The value of the most recently evaluated non-assignment
expression is stored in the variable .Last.value .

1 > a <- 3; a; b <- 5; a+b
2 [1] 3
3 [1] 8
4 > c <- a+b
5 > .Last.value
6 [1] 8
7 > (d <- c+2)
8 [1] 10

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Blocks

A sequence of expressions can be made an expression, called
compound expression or block, by enclosing it within braces
{ expression1; expression2; . . . ; expressionk }

The value of the compound expression is equal to the value of
its last expression.

1 > {p <- 3; s <- 2*p; s+5}
2 [1] 11
3 > ({p <- 3; s <- 2*p; q <- s+5})
4 [1] 11

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Branching

The control expressions (statements),
help(Control), enable us to branch or
repeat the evaluation.
A condition is an expression with (a sin-
gle) logical value (TRUE or FALSE).
Simple conditional

if(condition) expression
if the condition is satisfied it evaluates
and returns the value of the expression;
otherwise it returns the value NULL.
Branching conditional

if(condition) exprT else exprF
if the condition is satisfied it evalua-
tes and returns the value of the exprT ;
otherwise it evaluates and returns the
value of the exprF .

���������

���	

��	
����������

�����

���������

���	
��	

�����

See also switch and ifelse.
V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Branching – examples

1 > a <- 3
2 > (if (a > 2) "OK")
3 [1] "OK"
4 > a <- 0
5 > (if (a > 2) "OK")
6 NULL
7 > a <- 3
8 > (b <- if (a<0) "N" else "P")
9 [1] "P"

10 > a <- -3
11 > (b <- if (a<0) "N" else "P")
12 [1] "N"

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Loops

Loops enable us the repetitive evaluation
of an expression.
while loop
while(condition) expression

repeats the following: if the condition
is satisfied it evaluates the expression;
otherwise it breaks the repetition and
continues with the following expression.
repeat loop
repeat expression

repeats evaluating the expression until in-
side the expression a break is requested.

����������

���	�
���

���

�����

����������

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Loops – examples

repeat n times
1 > i <- 0; n <- 5
2 > while(i<n){ i <- i+1; print(i) }
3 [1] 1
4 [1] 2
5 [1] 3
6 [1] 4
7 [1] 5

sum of elements of vector x
1 > x <- c(3,7,8,5,1,3,6)
2 > i <- 0; s <- 0
3 > while(i<length(x)){ i <- i+1; s <- s+x[[i]] }
4 > print(s)
5 [1] 33

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Loops

for loop
The statement
for(v in V) expression

requires sequential evaluation of the expression for all values v
from the sequence V .

1 > s <- 0; for(i in 1:10) s <- s+i
2 > cat("i =",i," s =",s,"\n")
3 i = 10 s = 55
4 > sum(1:10)
5 [1] 55
6 > for(c in unlist(strsplit("Text",""))) print(c)
7 [1] "T"
8 [1] "e"
9 [1] "x"

10 [1] "t"

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Timing

Most tasks with vectors can be done using vector operations
and functions *apply that are much faster than for loops.

1 > system.time({a <- NULL; for(i in 1:50000) a <- c(a,sin(runif(1)))})
2 user system elapsed
3 13.44 0.02 12.65
4 > system.time({b <- numeric(50000)
5 + for(i in 1:50000) b[[i]] <- sin(runif(1))})
6 user system elapsed
7 0.87 0.00 0.78
8 > system.time({c <- sin(runif(50000))})
9 user system elapsed

10 0.03 0.00 0.04

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Jumps

Exit the loop
break

requires the exit of the innermost loop that contains it.
Back to start
next

requires the transition of execution flow to the first expression
in the innermost loop that contains it.
The loops return the value NULL.
There are some additional control statements: stop(message),
stopifnot(cond1,cond2,· · · condk), return(expression),
tryCatch(expression,...,finally=exitExpression)

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Hints

Attention: in control statements the condition should be
enclosed in braces () .
In conditions use || and &&.
In the branching conditional the part else has to be in the
same line as the end of expression exprT .
if(condition) {

exprT
} else {

exprF
}

When a control statement contains a compound expression we
indent its expressions to show the logical structure and increase
readability.

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Jumps – example

Number of throws of dice until 6 appears
1 > k <- 0
2 > repeat {
3 + k <- k+1
4 + dice <- 1+trunc(6*runif(1))
5 + if (dice==6) break
6 + }
7 > print(k)
8 [1] 2

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Jumps – example

Guess the number
1 > m <- 50
2 > a <- 1+trunc(m*runif(1))
3 > s <- 0
4 > repeat{
5 + s <- s+1
6 + g <- as.integer(readline(paste(s,". Your guess = ",sep="")))
7 + if(a < g) {cat("smaller\n"); next}
8 + if(a > g) {cat("larger\n"); next}
9 + break

10 + }
11 1. Your guess = 25
12 larger
13 2. Your guess = 37
14 larger
15 3. Your guess = 44
16 larger
17 4. Your guess = 47
18 smaller
19 5. Your guess = 45
20 > c(s,a,g)
21 [1] 5 45 45

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Functions

Expression
function(arguments) expression

creates a function. If we assign it to a name we obtain a named
function.
arguments is a comma-separated list of (formal) arguments –
function’s input data.
An argument can have either the form name or the form
name = expression. Argument of the form name = expression defines
a default value that is used if the value of this argument is not given
in the call of the function.
expression determines how the value of the function is computed.
The execution of the expression can be terminated using the
expression return(valueExpr) that requires that the value of
valueExpr is returned as the function’s value. If it terminates without
return its value is the last computed expression value.

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Functions

We use (call) the function with expression of the form
fun(actual arguments)

where fun is a function or a function name, actual arguments
determine the values of function’s arguments. To the arguments of
the form name the values of actual arguments have to be supplied in
the same order as they are listed in the function definition.
Arguments of the form name = expression can follow in any order.
Definition and call of the function should contain () also in the case
when the function has no argument.
If a function has ... as a formal argument then any actual
arguments that do not match a formal argument are matched with
....
Functions are used to: structure larger programs – levels of
abstraction; eliminate repetitions of similar parts of program; increase
readability; division of work – black box approach – libraries of
functions.

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Scope of variables

The scope of a variable tells us where a variable is ”visible”.
Variables defined within the function are local – visible only inside the
function. We can use the variable with the same name in different
functions without risk of their clash.
Variables defined in the interactive input are global – visible in any
user-defined function and functions defined in it.
We can control the scope of variables also by environments and
namespaces in packages.
args, body, formals, environment, alist, debug,

invisible

help("function")

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Functions – examples

> (function(x) x^2-x+41)(3)
[1] 47
> ascii <- function(char) {
+ a <- as.integer(charToRaw(char))
+ if (length(a)>1) NA else a[1] }
> ascii("A")
[1] 65
> ascii("a")
[1] 97
> ascii("\u263A")
[1] NA
> gcd <- function(a,b)
+ if (b==0) abs(a) else gcd(b,a%%b)
> gcd(12,21)
[1] 3
> gcd(624,918)
[1] 6
> "%m%" <- function(a,b) min(a,b)
> "%M%" <- function(a,b) max(a,b)
> 4 %m% 3 %M% 5
[1] 5
> set <- function(x) union(x,NULL)
> card <- function(x) length(set(x))
> is.set <- function(x) length(x)==card(x)
> subseteq <- function(x,y){setequal(intersect(x,y),x)}
> charSet <- function(z)
+ union(substring(tolower(z),1:nchar(z),1:nchar(z)),NULL)

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Functions – examples

1 > dif <- function(a,b) return(a-b)
2 > dif(7,3)
3 [1] 4
4 > dif(b=3,a=7)
5 [1] 4
6 > dif(b=3,7)
7 [1] 4
8 > dif(3,a=7)
9 [1] 4

10 > x <- 3
11 > f <- function(x,a=7,u,z="a"){
12 + x <- x+3
13 + cat("f: x=",x," a=",a," u=",u," z=",z,"\n",sep="")
14 + return(x+u)
15 + }
16 > g <- function(p,q,...){
17 + v <- f(u=p,q,...)
18 + cat("g: x=",x," p=",p," q=",q," v=",v," ...=",...,"\n",sep="")
19 + return(v)
20 + }
21 > g(2,11,z="b")
22 f: x=14 a=7 u=2 z=b
23 g: x=3 p=2 q=11 v=16 ...=b
24 [1] 16

V. Batagelj Control

Control

V. Batagelj

Sequences of
expressions

Branching

Loops

Jumps

Functions

Functions – examples

> counter
Error: object "counter" not found
> count <- function(){

if (!exists("counter")) counter <<- 0;
counter <<- counter+1; counter}

> count()
[1] 1
> count()
[1] 2
> count()
[1] 3
> count()
[1] 4
> counter
[1] 4

> eval(parse(text="x <- 5"))
> x
[1] 5
> run <- function(s) eval(parse(text=s))
> run("x <- 6; x")
[1] 6
> source(textConnection("y <- 14; z <- y*(y+1); print(z)"))
[1] 210

Write to file and then use it as a source.

V. Batagelj Control

	Sequences of expressions
	Branching
	Loops
	Jumps
	Functions

