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Abstract

In the paper an attempt to legalize the use of Ward and related clustering methods
also for dissimilarities different from squared Euclidean distance is presented.

1 Introduction

”The Ward method is often successfully used for solving clustering problems over dissim-
ilarity matrices which do not consist of squared Euclidean distances between units” [2,
p. 145]. ”While use of the centroid and incremental sum of squares strategies has been
regarded as dubious with other than distance measures and squared Euclidean distance,
it is argued that both can be viewed as formulated algebraically and then retain their es-
tablished space-distortion properties”. ”There is, however, some empirical evidence that
use of the ISS strategy with non-metrics does produce readily interpreted classifications”
[1, p. 439-440].

In this paper an attempt to legalize such ”extended”uses of Ward and related methods
is presented. We start with an overview of the properties of the ordinary Ward criterion
function (2-11). Replacing the squared Euclidean distance in (5) by any dissimilarity d
we get the generalized Ward clustering problem (1,2,13). To preserve the analogy
with the ordinary problem and for notational convenience we introduce the notion of
generalized center of cluster (15,16). In general there is no evident interpretation of
generalized centers. By the analogy with the ordinary cases, where the dissimilarity
d is the squared Euclidean distance, we generalize also the Gower-Bock dissimilarity
between clusters (28) and the dissimilarities based on inertia, variance and weighted
increase of variance (32-34). For all these generalized dissimilarities we obtain the same
coefficients in the Lance-Williams-Jambu formula (29,35-38). Therefore the corresponding
agglomerative clustering methods can be used for any dissimilarity d and not only for the
squared Euclidean distance. At the end the generalized Huyghens theorem and some
properties of generalized dissimilarities are given.

∗Published in: Classification and Related Methods of Data Analysis. H.H. Bock (editor). North-
Holland, Amsterdam, 1988. p. 67-74.
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2 Ward clustering problem

Let us first repeat some basic facts about Ward clustering problem . It can be posed
as follows:

Determine the clustering C? ∈ Πk, for which

P (C?) = min
C∈Πk

P (C) (1)

where
Πk = {C : C is partition of set of units E and card(C) = k}

and the Ward criterion function P (C) has the form

P (C) =
∑
C∈C

p(C) (2)

and
p(C) =

∑
X∈C

d2
2(X, C̄) (3)

where C̄ is the center (of gravity) of the cluster C

[C̄] =
1

nC

∑
X∈C

[X], nC = card(C), [X] ∈ IRm (4)

and d2 is the Euclidean distance. We make a distinction between the (name of) the unit
X and its value (description) [X].

In the French literature the quantity p(C) (error sum of squares of the cluster C) is
often called inertia of the cluster C [4, p. 30] and denoted I(C).

Let us list some well known equalities relating the above quantities [11, p. 50]:

p(C) =
1

2.nC

∑
X,Y ∈C

d2
2(X, Y ) (5)

∑
X∈C

d2
2(X,U) = p(C) + nC · d2

2(U, C̄) (6)

d2
2(U, C̄) =

1

nC

∑
X∈C

(d2
2(X,U)− d2

2(X, C̄)) (7)

C̄ = argminU

∑
X∈C

d2
2(X,U) (8)

If Cu ∩ Cv = ∅ then

(nu + nv) · p(Cu ∪ Cv) = nu · p(Cu) + nv · p(Cv) +
∑

X∈Cu,Y ∈Cv

d2
2(X, Y ) (9)

and
p(Cu ∪ Cv) = p(Cu) + p(Cv) +

nu · nv

nu + nv

d2
2(C̄u, C̄v) (10)

The last term in (10)

dW (Cu, Cv) =
nu · nv

nu + nv

d2
2(C̄u, C̄v) (11)

is also called Ward dissimilarity between clusters Cu and Cv.
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3 The generalized Ward clustering problem

To justify the use of Ward and related agglomerative clustering methods also for dissimi-
larities different from squared Euclidean distance we have to appropriately generalize the
Ward clustering problem. Afterward we shall show that we obtain for generalized prob-
lems the same coefficients in Lance-Williams-Jambu formula as for the ordinary problems
(based on the squared Euclidean distance). Therefore the agglomerative (hierarchical)
procedures corresponding to these problems can be used for any dissimilarity.

To generalize the Ward clustering problem we proceed as follows:
Let E ⊂ E , where E is the space of units (set of all possible units; the set [E ] of

descriptions of units is not neccessary a subset of IRm), be a finite set,

d : E × E → IR+
0

be a dissimilarity between units and

w : E → IR+

be a weight of units, which is extended to clusters by:

∀X ∈ E : w({X}) = w(X)

Cu ∩ Cv = ∅ ⇒ w(Cu ∪ Cv) = w(Cu) + w(Cv) (12)

To obtain the generalized Ward clustering problem we must appropriately replace formula
(3). We define, relying on (5):

p(C) =
1

2 · w(C)

∑
X,Y ∈C

w(X) · w(Y ) · d(X, Y ) (13)

Note that d in (13) can be any dissimilarity on E and not only the squared Euclidean
distance.

From (13) we can easily derive the following generalization of (9) : If Cu∩Cv = ∅ then

w(Cu ∪ Cv) · p(Cu ∪ Cv) = w(Cu) · p(Cu) + w(Cv) · p(Cv) +∑
X∈Cu,Y ∈Cv

w(X) · w(Y ) · d(X, Y ) (14)

All other properties are expressed using the notion of center C̄ of cluster C and for
dissimilarities different from squared Euclidean distance these properties usually do not
hold.

There is another possibility: to replace C̄ by a generalized, possibly imaginary (with
descriptions not neccessary in the set [E ]) central element and try to preserve the prop-
erties characteristic for Ward problem. For this purpose let us introduce the extended
space of units :

E? = {C̃ : C ⊂ E , 0 < card(C) <∞} ∪ E (15)

The generalized center of cluster C is called an (abstract) element C̃ ∈ C? for which
the dissimilarity between it and any U ∈ E? is determined by

d(U, C̃) = d(C̃, U) =
1

w(C)
(
∑
X∈C

w(X) · d(X,U)− p(C)) (16)
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When for all units w(X) = 1, the right part of (16) can be read: average dissimilarity
between unit/center U and cluster C diminished by average radius of cluster C.

It is easy to verify that for every X ∈ E and U ∈ E?

C = {X} ⇒ d(U, C̃) = d(U,X) (17)

Note that the equality (16) tells us only how to determine the dissimilarity between
two units/centers; but does not provide us with an explicit expression for C̃. Therefore
the generalized centers can be viewed as a notationaly convenient notion generalizing our
intuition relaying on the squared euclidean distance; although in some cases it may be
possible to find a representation for them. It would be interesting to obtain some results
in this direction. Can the Young-Householder theorem [9] be used for this purpose?

Multiplying (16) by w(U) summing on U running over C we get

p(C) =
∑
X∈C

w(X) · d(X, C̃) (18)

which generalizes the original definition of p(C) given by formula (3).
Substituting (18) in (16) we obtain generalized (7):

d(U, C̃) =
1

w(C)

∑
X∈C

w(X) · (d(X,U)− d(X, C̃)) (19)

which gives for U = C̃ : d(C̃, C̃) = 0.
Again, applying (16) twice we get:

d(C̃u, C̃v) =
1

w(Cu) · w(Cv)

∑
X∈Cu
Y ∈Cv

w(X) · w(Y ) · d(X, Y )− p(Cu)

w(Cu)
− p(Cv)

w(Cv)
(20)

Multiplying (20) by w(Cu) · w(Cv), rearanging and substituting so obtained double sum
into (14) we get for Cu ∩ Cv = ∅ :

p(Cu ∪ Cv) = p(Cu) + p(Cv) +
w(Cu) · w(Cv)

w(Cu ∪ Cv)
d(C̃u, C̃v) (21)

which generalizes (10).
Therefore we can define the generalized Ward dissimilarity between clusters Cu

and Cv as:

DW (Cu, Cv) =
w(Cu) · w(Cv)

w(Cu ∪ Cv)
d(C̃u, C̃v) (22)

4 Agglomerative methods for Ward

and related clustering problems

It is well known that there are no efficient (exact) algorithms for solving the clustering
problem (1), except for some special criterion functions; and there are strong arguments
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that no such algorithm exists [5]. Therefore approximative methods such as local opti-
mization and hierarchical (agglomerative and divisive) methods should be used.

The equality (21) gives rise to the following reasoning:
Suppose that the criterion function P (C) takes the form

P (C) =
∑
C∈C

pD(C) (23)

where
pD(Cu ∪ Cv) = pD(Cu) + pD(Cv) +D(Cu, Cv) (24)

and D(Cu, Cv) is a dissimilarity between clusters Cu and Cv. Some examples of such
dissimilarities will be given in the continuation.

Let be C′ = (C \ {Cu, Cv}) ∪ {Cu ∪ Cv} then

P (C′) = P (C) +D(Cu, Cv) (25)

We can found on the last equality the following greedy heuristic:

if we start with C0 = {{X} : X ∈ E} and at each step we join the most similar
pair of clusters, we probably obtain clusterings which are (almost) optimal.

This heuristic is the basis for the agglomerative methods for solving the clustering prob-
lem. It is useful to slightly generalize ([7], [3]) the equality (24) to:

pD(C) = min
∅⊂C′⊂C

(pD(C ′) + pD(C \ C ′) +D(C ′, C \ C ′)) (26)

which still leads to the same heuristic.
Therefore we can, for a given dissimilarity between clusters D(Cu, Cv), look at the

agglomerative methods as the approximative methods for solving the clustering problem
(1) for the criterion function defined by (23,26) and pD({X}) = 0.

Very popular scheme of agglomerative clustering algorithms is the scheme based on the
Lance-Williams-Jambu formula for updating dissimilarities between clusters [10, 6]:

D(Cs, Cp ∪ Cq) = α1 ·D(Cs, Cp) + α2 ·D(Cs, Cq) + β ·D(Cp, Cq) + (27)

γ · |D(Cs, Cp)−D(Cs, Cq)|+ δ1 · f(Cp) + δ2 · f(Cq) + δ3 · f(Cs)

where f(C) is a value of cluster C. In the following (29,35-38) we shall show that the
(generalized) Ward and some related dissimilarities satisfy this formula.

We can generalize the Gower-Bock dissimilarity by defining

DG(Cu, Cv) = d(C̃u, C̃v) (28)

It is not difficult to verify, using (14) and (21), the Gower-Bock equality (generalized
median theorem, [4, p. 57]):

DG(Cs, Cp ∪ Cq) =
wp

wpq

DG(Cs, Cp) +
wq

wpq

DG(Cs, Cq)−
wp · wq

w2
pq

DG(Cp, Cq) (29)
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For this purpose it is useful to introduce the quantity

a(Cu, Cv) =
1

wu · wv

∑
X∈Cu
Y ∈Cv

w(X) · w(Y ) · d(X, Y ) (30)

for which the relations

wuv · a(Ct, Cu ∪ Cv) = wu · a(Ct, Cu) + wv · a(Ct, Cv)

wuv · p(Cu ∪ Cv) = wu · p(Cu) + wv · p(Cv) + wu · wv · a(Cu, Cv) (31)

DG(Cu, Cv) = d(C̃u, C̃v) = a(Cu, Cv)−
p(Cu)

wu

− p(Cv)

wv

hold.
Using (29) and relations among the following dissimilarities [6, 10, p. 127]:

Inertia :
DI(Cu, Cv) = p(Cu ∪ Cv) (32)

Variance:

DV (Cu, Cv) = var(Cu ∪ Cv) =
1

wuv

p(Cu ∪ Cv) (33)

Weighted increase of variance:

Dv(Cu, Cv) = var(Cu ∪ Cv)−
1

wuv

(wu · var(Cu) + wv · var(Cv)) =
1

wuv

DW (Cu, Cv) (34)

we derive the well known equalities, w = w(Cp ∪ Cq ∪ Cs):

DW (Cs, Cp ∪ Cq) =
wps

w
DW (Cs, Cp) +

wqs

w
DW (Cs, Cq)−

ws

w
DW (Cp, Cq) (35)

DI(Cs, Cp ∪ Cq) =
wps

w
DI(Cs, Cp) +

wqs

w
DI(Cs, Cq) +

wpq

w
DI(Cp, Cq)−

wp

w
p(Cp)−

wq

w
p(Cq)−

ws

w
p(Cs) (36)

DV (Cs, Cp ∪ Cq) = (
wps

w
)2DV (Cs, Cp) + (

wqs

w
)2DV (Cs, Cq) + (

wpq

w
)2DV (Cp, Cq)−

ws

w2
p(Cp)−

wq

w2
p(Cq)−

ws

w2
p(Cs) (37)

Dv(Cs, Cp ∪ Cq) = (
wps

w
)2Dv(Cs, Cp) + (

wqs

w
)2Dv(Cs, Cq)−

ws · wpq

w2
Dv(Cp, Cq) (38)

which therefore hold also in the case when we take for p(C) in relations (27-29) the
generalized cluster error function (13). So, we can conclude that the coefficients in the
Lance-Williams-Jambu formula for Ward and related agglomerative clustering methods
are valid for any dissimilarity d.

5 The generalized Huyghens theorem

Taking in (20) Cu = C and Cv = E, multiplying it with w(C) ·w(E) and summing it over
all C ∈ C, we obtain:

p(E) =
∑
C∈C

(w(C) · d(C̃, Ẽ) + p(C)) (39)
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If we denote [4, p. 50]:

I = p(E), IW =
∑
C∈C

p(C), IB =
∑
C∈C

w(C) · d(C̃, Ẽ) (40)

we can express (39) in the form (generalized Huyghens theorem):

I = IW + IB (41)

6 Some properties of the generalized dissimilarities

For dissimilarities different from d2
2 the extended dissimilarity d(U, C̃) is not neccessarily

positive quantity for every U ∈ E? ; so do DG(Cu, Cv) and DW (Cu, Cv).
To obtain a partial answer to this problem we substitute (13) into (14) giving

d(U, C̃) =
1

2 · w(C)2

∑
X,Y ∈C

w(X) · w(Y ) · (2 · d(X,U)− d(X, Y ))

=
1

2 · w(C)2

∑
X,Y ∈C

w(X) · w(Y ) · (d(X,U) + d(U, Y )− d(X, Y )) (42)

Therefore: if the dissimilarity d satisfies the triangle inequality then for each U ∈ E it
holds

d(U, C̃) ≥ 0 (43)

The property (43) has another important consequence. Considering it in (16) we get:
for each U ∈ E ∑

X∈C
w(X) · d(X,U) ≥ p(C) (44)

which in some sense generalizes (8).
Note that (42) does not imply d(C̃u, C̃v) ≥ 0, because we do not know that

d(X, C̃) + d(C̃, Y ) ≥ d(X, Y ) (45)

but it is easy to verify that: if d satisfies the triangle inequality then also

d(C̃, Z) + d(Z,X) ≥ d(C̃,X)

d(C̃u, Z) + d(Z, C̃v) ≥ d(C̃u, C̃v) (46)

for X,Z ∈ E .
So, it is still possible that there exists a center C̃1 for which∑

X∈C
w(X) · d(X, C̃1) < p(C) (47)

Note also that d2
2 does not satisfy the triangle inequality.

The main open question remains: for which dissimilarities d it holds d(U, V ) ≥ 0 for
every U, V ∈ E? ? This inequality combined with (16) gives us the generalized (8).
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