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Symbolic data

Data table

variable;

unit; | --- | value;;

In classical data analysis value, ; is a single element
(number or label) measured in standard measurement
scales (absolute, ratio, interval, ordinal, nominal).

In symbolic data table value; ; can be also a complex data
such as: interval, set of values, distribution (in general
sense), time series, tree, text, function, etc. Rules linking
variables and taxonomies of values can be specified.
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Symbolic data analysis

Symbolic data analysis aims to extend existing data analysis methods to
symbolic data and to develop new ones.

It was introduced in 1987 by Edwin Diday
[Diday, E. (1987), Diday, E. (1995), Diday, E. (2016)].
Three European projects:

e SODAS - Symbolic Official Data Analysis System (1996-99),

® |SO-3D - Interpretation of Symbolic Objects with 3D Representation
(1998-01),

® ASSO - Analysis System of Symbolic Official Data (2001-03).
resulted in a program for symbolic data analysis SODAS 2.

The results were published in many papers in conference proceedings
and scientific journals, and three books [Bock, H-H.,Diday, E. (2000),
Billard, L., Diday, E. (2006), Diday, E., Noirhomme, M. (2008)]. Additional
two books are to appear soon.
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Symbolic data analysis
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~ The SDA group regularly meets at workshops: Wienerwaldhof
m‘;’;gcda‘a (2009), Namur (2011), Beijing (2011), Madrid (2012), Taipei
— (2014), Orléans (2015), Ljubljana (2017), Viana do Castelo
optimization (201 8)

Leaders
method

Three packages for SDA are available in R:

Agglomerative

method ° RSDA,

Examples

References i SymbO“CDA,
¢ Clamix

Symbolic data analysis group at LinkedIn

V. Batagelj EDA, SDA


http://vladowiki.fmf.uni-lj.si/doku.php?id=sda:meet:lj17
https://sda2018.wixsite.com/ipvc
https://CRAN.R-project.org/package=RSDA
https://cran.r-project.org/web/packages/symbolicDA/index.html
https://r-forge.r-project.org/R/?group_id=864
https://www.linkedin.com/groups/4262817

EDA, SDA

V. Batagelj
Symbolic data
analysis

Clustering and
optimization

Leaders
method

Agglomerative
method

Examples

References

Symbolic data analysis and big data

aggregation
— =

big data symbolic data table

Aggregating data into symbolic data preserves much more
information than the standard approach using mean values.

Let X(S, V) denote a summary — a symbolic value of variable V
over the subset of units S.

A good summary satisfies the condition: for S; N S, = 0 it holds
Y(S1USs, V) = f(X(S1, V), X(S2, V)

With my collaborators (Simona Korenjak- Cerne and Natasa
Kejzar) we are developing the clusterln algorithms for symbolic
objects described by modal valued symbolic data

[Korenjak-Cerne, S., Batagelj, V. (1998), Korenjak-Cerne, S., Batagelj, V.. (2002),
Batagelj, V. et al. (2014), Kejzar, N. et al. (2021)].
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e For clustering of SOs we adapted two classical clustering

' methods:
aalyeis e e leaders method (a generalization of k-means method
Clustering and [Hartigan, J. A. (1975)], dynamic clouds [Diday, E. (1979)]).
optimization
Leaders e Ward’s hierarchical clustering method [Ward, J. H. (1963)].
method
Agglormersiive Both adapted methods are based on the same criterion function —
method they are solving the same clustering problem.
Examples

With the leaders method the size of the sets of units is reduced to
a manageable number of leaders.

References

The obtained leaders can be further clustered with the compatible
agglomerative hierarchical clustering method to reveal relations
among them and using the dendrogram also to decide upon the
right number of clusters.
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Symbolic objects described with distributions

An SO X is described by a list X = [x;] of descriptions of
variables V;. The values NA (not available) are treated as
an additional category for each variable. In our model, each
variable is described with frequency distribution (bar chari)
of its values

fii = [fits Faizs - - -5 Fii -
With

Xj = [Pxi1, Pxi2; - - - » Pxik;]
we denote the corresponding probability distribution.

ki
E pkj=1, i=1,....m
J=1
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Clustering and optimization

We approach the clustering problem as an optimization
problem over the set of feasible clusterings ¢, — partitions
of units into k clusters. The criterion function has the
following form

P(C) =) p(C). (1)
ceC
The total error P(C) of the clustering C is a sum of cluster

errors p(C).
We assume a model in which the error of a cluster is a sum
of differences of its units from the cluster’'s representative T

XeC

Note that in general the representative needs not to be from
the same “"space” (set) as units.
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Representatives

The best representative is called a leader

Tc = argminp(C, T). (3)
T
Then we define
p(C) = p(C. Tc) = min > _ d(X.T). )
XeC

The SO X is described by a list X = [x;]. Assume that also
representatives are described in the same way T = [t;],
ti = [t tiz, - - -, lixg]-
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Dissimilarity between SOs

We introduce a dissimilarity measure between SOs with
T) = Za,-d(x,-,t;), aj >0, Z aj =1, (5)
i i

where
k;

a(x;, tj) = Z Wi (Pxijs tj),  Wxij > 0. (6)
j=1
This is a kind of a generalization of the squared Euclidean
distance.
The weight w,; can be for the same unit X different for each
variable V; (needed in descriptions of ego-centric networks,
population pyramids, etc.).
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Leaders method

Leaders method is a generalization of a popular
nonhierarchical clustering k-means method.

The idea is to get "optimal” clustering into a pre-specified
number of clusters with the following iterative procedure:

determine an initial clustering
repeat
determine leaders of the clusters in the current clustering;
assign each unit to the nearest new leader — producing a
new clustering
until the leaders stabilize.
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Selection of the new leaders
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Given a cluster C, the corresponding leader T is the
Ssess solution of the problem
Clu_su_erm_g and m
Em':'zat"’” Tc = argmin Z d(X, T) = [argmin Z d(x;, ti)]i:1
meeathgzis T x eC t; XeC
Agglomerative .
method Therefore Tc = [t;] and t; = argming, ) |y d(X;, t;). To
Examples simplify the notation we omit the index i.
References
. : k
t* = argmin Z d(x,t) = [argmin Z Wyid (Dy;, tj)]j:1
t XeC GER XeC
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Leaders
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V. Batagel] Again we omit the index j
s t" = argmin > wd(px, 1)
Clustering and € Xec
optimization
Leaers This is a standard optimization problem with one real
metho

variable. The solution has to satisfy the condition

Agglomerative

method
0

Examples o _

References ot Z WX(S(va t) 0

XeC
or -

B )
XeC
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For 61(px, t) = (px — t)? we get from (8)

_ 9 2
0= Z WXE(PX —t)
XeC

= -2 Z Wy (px — t)
XeC
Therefore
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Let wy; = wy; then foreach i=1,... m:
Symbolic data

analysis
ki
Clustering and *
optimization E tlj A g § WXIpXI] - 1
Leaders j—
method =1 =1 XeC

AT The leaders’ components are distributions.
Let further w,; = n,; then foreach i=1,... m:

Examples

References

£ — dxecMiPxi  Doxechi @ — poi
- - ]
v YxecMi  Yoxec™i  Nci '

The leader of a cluster is its distribution.
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Determining the new clustering

Given leaders T the corresponding optimal clustering C* is
determined from

P(C) =) mind(X,T)= > d(X,To)  (8)
Xeu Xeu

where
c*(X) = argmind(X, Ty)
k

We assign each unit X to the closest leader T € T.
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- Hierarchical agglomerative clustering

The hierarchical agglomerative clustering procedure is

based on a step-by-step merging of the two closest clusters.

each unit forms a cluster: C, = {{X}: X e U} ;
they are at level 0: h({X}) =0, X e U ;
fork=n—1to1do
determine the closest pair of clusters
(u,v) = argmin; ;. ., {D(Cj, Gj): Cj, Gj € Cyy1};
join the closest pair of clusters C,,) = C, U Cy
Ck = (Ckt1\ {Cu, Cv}) U{Cun)} ;
h(C(uv)) = D(Cy, Cv)
determine the dissimilarities D(C(,y), Cs), Cs € Ck
endfor

Cy is a partition of the finite set of units ¢/ into k clusters.
The level h(C) of the cluster C,,y = Cy U Cy.
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Dissimilarity between clusters

Therefore the computation of dissimilarities between new
(merged) cluster and the rest has to be specified.

To obtain the compatibility with the adapted leaders method,
we define the dissimilarity between clusters C, and C,,
Cu N CV - (Z), as

D(Cy, Cv) = p(Cy U Cy) — p(Cu) — p(Cv)

_ Auu Aw/ 32

a generalized Ward’s relation. u; and v; are components of
the leaders of clusters C, and C,.
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Other dissimilarities

Instead of the squared Euclidean distance other
dissimilarity measures §(x, t) can be used (see

[Kejzar, N. et al. (2011)]). Relations similar to Ward’s can be
derived for them.

The proposed approach is implemented in the R-package
Clamix.

It was successfully applied on different data sets (population
pyramids, TIMSS, cars, foods, citation patterns of patents,
and others).
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[Korenjak-Cerne, S. et al. (2015)]
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Population pyramids / US counties
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X k-means clusters of patents with patents’
- temporal distributions and cluster leaders
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Symbolic data # patents: 89 ; Cluster 4 # patents: 66 ; Cluster 18
analysis
0.30 0.30
Clustering and
optimization 0.25 1 025+
Leaders 0.20 4 0.20 4
method
0.15 1 0.15
Agglomerative
method 0.10 1 0.10
Examples 0.05 0.05
References 000 . § . 000 : : :
1980 1985 1990 1995 1980 1985 1990 1995

The classical k-means approach based on 41 gives uninteresting results
— the clusters have a single peak. The peak value prevails over other
smaller values in the distributions. Using 3 as the basic dissimilarity we
obtained much more interesting results [Kejzar, N. et al. (2011)].
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#patents: 100 Cluster 18 # patents: 37 Cluster 2

# patents: 27 Cluster 27

# patents: 201 ; Cluster 14

patents: 230 ; Cluster 16
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Patents / clustering of leaders
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