

Photo: Vladimir Batagelj, UNI-LJ

Canonical Correlation Analysis

Anuška Ferligoj

UL, Ljubljana, Slovenia NRU HSE, Moscow, Russia

Content

1 Introduction 1
2 Some definitions 2
6 Estimation 6
10 Example 10

Introduction

Canonical correlation analysis describes a multivariate technique that investigates the relationship between two sets of variables.

Hotelling (1936) introduced canonical correlation analysis by the research question whether the reading ability (measured by reading speed and reading power) is related to the arithmetic ability (measured by arithmetic speed and arithmetic power).

To study this relationship he searched for a linear combination of two variables measuring reading ability and another linear combination of two variables measuring arithmetic ability in such a way that two linear combinations correlated as much as possible.

Some definitions

- The linear combination of the first set of variables is called canonical variable of the first set of variables (U).
- Similarly the linear combination of the second set of variables is called canonical variable of the second set of variables (V).
- The maximal correlation between two canonical variables is called canonical correlation coefficient ($r(U, V)$).
- The triplet U, V and $r(U, V)$ is called canonical solution.

The first set of variables: $X_{1}, X_{2}, \ldots, X_{p}$
The second set of variables: $Y_{1}, Y_{2}, \ldots, Y_{q}$
$\min (p, q)$ canonical solutions can be obtained.

First canonical solution:

$$
\begin{aligned}
U_{1} & =c_{11} X_{1}+c_{12} X_{2}+\ldots+c_{1 p} X_{p} \\
V_{1} & =d_{11} Y_{1}+d_{12} Y_{2}+\ldots+d_{1 p} Y_{q}
\end{aligned}
$$

We search for such canonical loadings $c_{i j}$ and $d_{i j}$ that

$$
r\left(U_{1}, V_{1}\right)=\max
$$

The second canonical solution is

$$
\begin{gathered}
U_{2}=c_{21} X_{1}+c_{22} X_{2}+\ldots+c_{2 p} X_{p} \\
V_{2}=d_{21} Y_{1}+d_{22} Y_{2}+\ldots+d_{2 p} Y_{q} \\
r\left(U_{2}, V_{2}\right)=\max
\end{gathered}
$$

U_{2} and V_{2} have to be uncorrelated with U_{1} and V_{1}.
The third canonical solution is

$$
\begin{gathered}
U_{3}=c_{31} X_{1}+c_{32} X_{2}+\ldots+c_{3 p} X_{p} \\
V_{3}=d_{31} Y_{1}+d_{32} Y_{2}+\ldots+d_{3 p} Y_{q} \\
r\left(U_{3}, V_{3}\right)=\max
\end{gathered}
$$

U_{3} and V_{3} have to be uncorrelated with U_{1}, V_{1}, U_{2}, and V_{2}; and so on.
The first canonical solution has the highest possible correlation and is the most important; the second solution has the second highest correlation and is therefore the second most important; etc.

Estimation

$$
\left|\Sigma_{X X}\right| \neq 0,\left|\Sigma_{Y Y}\right| \neq 0, \Sigma_{X Y}=\Sigma_{Y X}^{\prime}
$$

We have to estimate $c_{i j}, d_{i j}$, and r_{i} by solving the optimization problem:

$$
r_{i}\left(U_{i}, V_{i}\right)=\max
$$

The solution is obtained by determining of the eigenvalues and eigenvectors of the following matrices:

$$
\begin{aligned}
& Q_{1}=\Sigma_{X X}^{-1} \cdot \Sigma_{X Y} \cdot \Sigma_{Y Y}^{-1} \cdot \Sigma_{Y X} \\
& Q_{2}=\Sigma_{Y Y}^{-1} \cdot \Sigma_{Y X} \cdot \Sigma_{X X}^{-1} \cdot \Sigma_{X Y}
\end{aligned}
$$

The eigenvalues λ_{i} of Q_{1} and Q_{2} are the same and equal to

$$
\lambda_{i}=r_{i}^{2}
$$

Eigenvectors of the matrix Q_{1} are the canonical loadings of the canonical variables U_{i} and eigenvectors of the matrix Q_{2} are the canonical loadings of the canonical variables V_{i}.

There is a relationship between loadings c and d :

$$
\begin{aligned}
& c=\frac{\Sigma_{X X}^{-1} \cdot \Sigma_{X Y} \cdot d}{\sqrt{\lambda}} \\
& d=\frac{\Sigma_{Y Y}^{-1} \cdot \Sigma_{Y X} \cdot c}{\sqrt{\lambda}}
\end{aligned}
$$

These loadings are regression coefficients.

Canonical structure loadings c^{*} and d^{*} are:

$$
\begin{aligned}
c_{j}^{*} & =\Sigma_{X X} \cdot c_{j} \\
d_{j}^{*} & =\Sigma_{Y Y} \cdot d_{j}
\end{aligned}
$$

Canonical structure loadings are correlation coefficients.

Example

1st set of variables: Extraversion
(from Big Five, International Personality Item Pool http://ipip.ori.org/ipip/)

EXTA Am the life of the party.
EXTB Don't mind being the center of attention.
EXTE Talk to a lot of different people at parties.
EXTH Start conversations.
EXTIR Don't like to draw attention to myself. (*)
EXTLR Don't talk a lot. (*)
EXTNR Am quiet around strangers. (*)
EXTOR Have little to say. (*)
EXTP Feel comfortable around people.
EXTRR Keep in the background. (*)

Scale:

1 Very Inaccurate
2 Moderately Inaccurate
3 Neither Accurate Nor Inaccurate
4 Moderately Accurate
5 Very Accurate

The statements marked with (*) were negative statements and were in prior to the analysis recoded $(1=5) \quad(2=4) \quad(3=3) \quad(4=2) \quad(5=1)$.

```
2nd set of variables: education and age
EDU education (ordinal scale)
1 - uncompleted primary school
2 - completed primary school
3 - vocational school
4 - four year secondary school
5 - non-university collage
6 - university collage
7 - masters
8 - PhD
AGE (ratio scale)
```

$$
\begin{array}{lcc}
\text { Root } \begin{array}{l}
\text { No. } \\
1
\end{array} & \text { Eigenvalue } & \text { Canon Cor. } \\
2 & , 227 & , 430 \\
& , 046 & , 210 \\
\text { Standardized } & \text { canonical coefficients } \\
\text { Variable } & 1 & 2 \\
\text { EKSTA } & -, 326 & , 781 \\
\text { EKSTB } & , 035 & , 003 \\
\text { EKSTE } & , 048 & , 268 \\
\text { EKSTH } & -, 013 & -, 548 \\
\text { EKSTIR } & , 282 & , 252 \\
\text { EKSTLR } & -, 095 & , 164 \\
\text { EKSTNR } & , 081 & , 053 \\
\text { EKSTOR } & , 417 & -, 192 \\
\text { EKSTP } & -, 270 & -, 147 \\
\text { EKSTRR } & , 639 & -, 012
\end{array}
$$

Correlations between variables and canonical variables

Variable	1	2
EKSTA	,- 090	, 762
EKSTB	, 242	, 152
EKSTE	, 170	, 326
EKSTH	, 117	,- 310
EKSTIR	, 528	, 340
EKSTLR	, 301	, 236
EKSTNR	, 466	, 128
EKSTOR	, 636	,- 036
EKSTP	,- 084	,- 076
EKSTRR	, 798	, 210

Standardized canonical coefficients

$$
\begin{array}{lll}
\text { VARIABLE } & 1 & 2
\end{array}
$$

AGE -,893 -, 457

EDU

$$
, 524-, 855
$$

Correlations between variables and canonical variables

VARIABLE 1

$$
\begin{array}{lrr}
\text { AGE } & -, 852 & -, 523 \\
\text { EDU } & , 456 & -, 890
\end{array}
$$

