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Introduction
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Discriminant analysis involves deriving linear combination of the measured
variables that discriminate between the a priori defined groups in such a
way that the misclassification error rates are minimized.
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Assumptions
1. k ≥ 2.

2. At least 2 units in each group.

3. p < n− 2; p is the number of variables and n the number of all units.

4. No variable is a linear combination of the other variables (multicolin-
earity).

5. The variables must have a multivariate normal distribution in each
group when using the statistical tests.

6. The p×p variance-covariance matrix of the measured variables in each
of the two groups must be the same.
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The two-group discriminant problem
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groups means variance-

covariance m.

G1 µ1 Σ1

G2 µ2 Σ2

The assumption: Σ1 = Σ2 = Σ

Fisher (1936) suggested finding a linear combination of p variables Xi

Y = b0 + b1X1 + b2X2 + ...+ bpXp = Xb

so that the ratio of the difference in the means of the linear combinations
in G1 and G2 to its within-group variance is maximized.
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The means of the linear combinations in G1 and G2 are:

Ȳ1 = b′µ1

Ȳ2 = b′µ2

The variance is
varY1 = varY2 = b′Σb

The ratio to be maximized is

Ȳ1 − Ȳ2
varY1

=
b′µ1 − b′µ2

b′Σb
= max

From this optimization criterion the discriminat loadings b can be derived.
They are proportional to

Σ−1(µ1 − µ2)
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Sample-based estimates

Usually the parameters are estimated from a samples from each population
Gi.

µi can be estimated by:

x̄′i = (x̄i1, x̄i2, ..., x̄ip)

and Σ by pooled sample variance-covariance matrix

S =
1

n1 + n2 − 2
(X ′1X1 +X ′2X2)

where n1 is the number of units in the sample fromG1 and n2 is the number
of units in the sample from G2.

The estimated discriminat loadings are

b̂ = S−1(x̄1 − x̄2)
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Group centroid

The mean value of the discriminant function for the units of a group is
commonly referred to as the group centroid.

The centroid of the group i is

Ȳi = b′x̄i
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Classification rules
With the obtained (linear) discriminant variable Y = Xb each (new) unit
can be assigned to one of the two groups. The unit i is assigned to group
G1 if

yi − Ȳ1 ≤ yi − Ȳ2

or to G2 if
yi − Ȳ1 > yi − Ȳ2

An equivalent classification rule uses the midpoint of separation (cutoff
point). For equal sample sizes (n1 = n2) it is

Yc =
Ȳ1 + Ȳ2

2

For unequal sample sizes the point of separation is

Yc =
n2Ȳ1 + n1Ȳ2
n1 + n2
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Classification table

The performance of a discriminant function can be evaluated by calculating
the misclassification rate. Let us apply the obtained discriminant function
to the data from which it was derived. Each unit is assigned to one of
the groups according to the classification rule. The following table can be
produced:

Number Predicted Group Membership

Actual Group of Cases G1 G2

G1 n1 a b

G2 n2 c d
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The rate of correct classifications is

a+ d

n1 + n2

With equal sample size and two groups, the expacted chance accuaracy of a
rule is 50%.

The estimated nonerror rates (correct classifications) are optimistically
biased, since we utilize the same set of data to construct the rule and to
evaluate the performance.
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Example: Small companies
Let us consider the data of small companies in Slovenia. The groups are
defined as follows:

• G1 – service companies (n1 = 70)

• G2 – manufactoring companies (n2 = 75)

The variables are 12 factors of business success.
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Discriminant loadings
loadings

PROD-MET -.54

MARK-MET .40

PRODUCT -.00

RELATION .01

SKIL-EMP .22

SKIL-MAN .51

FAMILY -.33

ECON-ASO -.18

POL-CON .48

LOC-AUT -.28

STATE .16

COMPANY .06
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Centroids

group centroid

service .54

manufactoring -.50

Classification table

Number Predicted Group Membership

Actual Group of Cases service manufact.

service 70 70% 30%

manufact. 75 30.7% 69.3%

The percetage of correct classifications is 70%.
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Discussion

The owners of the service sector companies and the owners of the crafts
companies are the most distingushed by the following factors for the
business success:

• improvement of products,

• skilled managers,

• political connections, and

• improvement of marketing methods.

The service companies owners believe more than crafts companies own-
ers that improvement of products is less important, but more important
are skilled managers, good political connections, and improvement of
marketing methods.

Lectures



A. Ferligoj: Discriminant Analysis 17'

&

$

%

The k-group discriminant problem
DISKRIMINANTNA ANALIZA

Z diskriminantno analizo poǐsčemo tako linearno kombinacijo mer-

jenih spremenljivk, da bo maksimalno ločila vnaprej določene

skupine in da bo napaka pri uvrščanju enot v skupine najmanǰsa.

Pri diskriminantni analizi torej gre za iskanje tistih razsežnosti, ki

kar najbolj pojasnjujejo razlike med skupinami (pojasnjevanje)

in za kar se da dobro prirejanje enot vnaprej danim skupinam

(napovedovanje).

In the case of more than two groups more than one discriminant variable
may be needed to characterize effectively the differences between some
of the groups. The maximum number of the discriminant variables is
min(k − 1, p), where k is the number of groups and p the number of
variables.
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The approach

Let us assume that we have k groups and in each n1, n2, ... nk, units.

Let us denote by T the matrix of the total mean corrected sums-of-squares
and cross-products for all variables on all units n =

∑k
i=1 ni.

The matrix of sums-of-squares and cross-products for the ith group let be
denoted by Wi.

The within-groups sums of squares and cross-products are given by

W = W1 +W2 + ...+Wk

The matrix of between-groups sum-of-squares and cross-products can thus
be found by the difference

B = T −W
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The criterion that has to be maximazed is analogous to Fisher‘s criterion

variability between-groups
variability within-groups groups

= max

The variance of a discriminat variable Y = Xb is

varY = b′Σb

The variability between-groups is then

varY = b′Bb

and the variability within-groups is then

varY = b′Wb

Therefore, the discriminant criterion that has to be maximazed is

b′Bb

b′Wb
= λ = max
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The best solution is obtained by calculating the eigenvalues and eigenvectors
of the matrix W−1B. The eigenvalues are λi . There are r = min(k−1, p)

obtained solutions. The largest λ and the corresponding eigenvector, whose
elements are the discriminant loadings, define the first discriminant variable.
The relative value of the eigenvalue λi gives an index of the importance of
each discriminant variable:

λi∑r
j=1 λj
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Relationship between discriminat analysis and
canonical correlation analysis

In the case of the discriminant analysis we have k groups and p variables.
The eigenvalues and eigenvectors of the matrix W−1B are calculated to
estimate the discriminant variables. Let us denote the obtained eigenvalues
by λdaj .

From the nominal variable that defines the k groups let us form k − 1

dummy variables. With this we obtained the first set of k − 1 variables. On
the other hand we have p measured variables. We can perform canonical
correlation analysis. k − 1 eigenvalues of the matrix Σ−1XXΣXY Σ−1Y Y ΣY X

can be denoted by λkkaj . Than it holds

λdaj =
λkkaj

1 − λkkaj
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