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Introduction

G,

Discriminant analysis involves deriving linear combination of the measured
variables that discriminate between the a priori defined groups in such a
way that the misclassification error rates are minimized.
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Assumptions

. k> 2.

At least 2 units in each group.

. p < n — 2; pis the number of variables and n the number of all units.

No variable is a linear combination of the other variables (multicolin-
earity).

. The variables must have a multivariate normal distribution in each

group when using the statistical tests.

The p X p variance-covariance matrix of the measured variables in each

of the two groups must be the same.
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The two-group discriminant problem
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groups | means variance-
covariance m.
G {1 21
Go 2 219

The assumption: X1 = Yo = X

Y =bo+ b X1 + 0o Xo + ... + b, X, = Xb

in G, and G5 to its within-group variance is maximized.

Fisher (1936) suggested finding a linear combination of p variables X,

so that the ratio of the difference in the means of the linear combinations
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The means of the linear combinations in G; and G5 are:

Yl = b/,u1
YQ = b/,ug
The variance 1s
varYy; = varYs = b'Yb
The ratio to be maximized is

Vi - Y, . 'y — bz .
= — max

varYi b'>b

From this optimization criterion the discriminat loadings b can be derived.
They are proportional to

Sy — o)
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/ Sample-based estimates \

Usually the parameters are estimated from a samples from each population

G.
(4 can be estimated by:

Ty = (Ti1, Tizy s Tip)
and 22 by pooled sample variance-covariance matrix

1
S = XX+ XX
nl—l—n2—2( 1 X1+ X5Xo)

where n; is the number of units in the sample from (G; and ns is the number
of units in the sample from Go.

The estimated discriminat loadings are

b= Sz — )
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Group centroid

The mean value of the discriminant function for the units of a group is
commonly referred to as the group centroid.

The centroid of the group 7 is

o
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/ Classification rules \

With the obtained (linear) discriminant variable Y = Xb each (new) unit

can be assigned to one of the two groups. The unit ¢ is assigned to group
Gy if

yi — Y1 <y — Yo
or to Gy if

yi — Y1 >y — Y5
An equivalent classification rule uses the midpoint of separation (cutoff
point). For equal sample sizes (n; = ns) it 1s

Y1+ Y,
2

For unequal sample sizes the point of separation is

Y, =

V. — naY1 + n1Ys
© ni1 + N9
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Cutoff point
Group A Group B
Ka “p
Classify as A Classify as B
Group B
Group A
Opziﬂg::;vsgi;g:ed \ Unweighted cutoff point
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Classification table

The performance of a discriminant function can be evaluated by calculating
the misclassification rate. Let us apply the obtained discriminant function
to the data from which it was derived. Each unit is assigned to one of
the groups according to the classification rule. The following table can be

produced:
Number | Predicted Group Membership
Actual Group | of Cases G4 G
G ni a b
Go no C d
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The rate of correct classifications is
a-+d
n1 —|— no

With equal sample size and two groups, the expacted chance accuaracy of a
rule is 50%.

The estimated nonerror rates (correct classifications) are optimistically
biased, since we utilize the same set of data to construct the rule and to
evaluate the performance.
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Example: Small companies

Let us consider the data of small companies in Slovenia. The groups are
defined as follows:

e (51 —service companies (n; = 70)
e (75 — manufactoring companies (n, = 79)

The variables are 12 factors of business success.
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Discriminant loadings

loadings
PROD-MET -.54
MARK-MET 40
PRODUCT -.00
RELATION 01
SKIL-EMP 22
SKIL-MAN S
FAMILY -.33
ECON-ASO -.18
POL-CON 48
LOC-AUT -.28
STATE 16
COMPANY .06
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Centroids
group centroid
service 54
manufactoring -.50

Classification table

Number | Predicted Group Membership
Actual Group | of Cases service manufact.
service 70 70% 30%
manufact. 75 30.7% 69.3%

o

The percetage of correct classifications is 70%.
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Discussion

The owners of the service sector companies and the owners of the crafts
companies are the most distingushed by the following factors for the

business success:
e improvement of products,
e skilled managers,
e political connections, and
e 1mprovement of marketing methods.

The service companies owners believe more than crafts companies own-
ers that improvement of products is less important, but more important
are skilled managers, good political connections, and improvement of
marketing methods.
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/ The k-group discriminant problem \

Discrienii
function ¥

In the case of more than two groups more than one discriminant variable
may be needed to characterize effectively the differences between some
of the groups. The maximum number of the discriminant variables is

min(k — 1,p), where k is the number of groups and p the number of

\Variables. /
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The approach

Let us assume that we have k groups and in each nq, no, ... ny, units.

Let us denote by T’ the matrix of the total mean corrected sums-of-squares

and cross-products for all variables on all units n = Z,]f:l n;.

The matrix of sums-of-squares and cross-products for the ¢th group let be
denoted by W.

The within-groups sums of squares and cross-products are given by

W =W, + Wy + ...+ W

The matrix of between-groups sum-of-squares and cross-products can thus

be found by the difference

B=T-W
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/T he criterion that has to be maximazed 1s analogous to Fisher‘s criterion \

variability between-groups

— — = max
variability within-groups groups

The variance of a discriminat variable Y = Xb is

varY = b'Yb
The variability between-groups is then
varY = b'Bb
and the variability within-groups is then
varY = b'Wb
Therefore, the discriminant criterion that has to be maximazed 1is

b’ Bb
= \ = max

\ b'Wb /
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The best solution is obtained by calculating the eigenvalues and eigenvectors
of the matrix W ! B. The eigenvalues are )\; . There are r = min(k — 1, p)
obtained solutions. The largest A and the corresponding eigenvector, whose
elements are the discriminant loadings, define the first discriminant variable.
The relative value of the eigenvalue \; gives an index of the importance of
each discriminant variable:

Z;:1 )‘j
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canonical correlation analysis

In the case of the discriminant analysis we have k groups and p variables.
The eigenvalues and eigenvectors of the matrix W1 B are calculated to
estimate the discriminant variables. Let us denote the obtained eigenvalues

by )\g-l“.

From the nominal variable that defines the £ groups let us form k£ — 1

dummy variables. With this we obtained the first set of & — 1 variables. On
the other hand we have p measured variables. We can perform canonical
correlation analysis. £ — 1 eigenvalues of the matrix E;&X XY E;%/Ey X

can be denoted by )\?ka. Than it holds

kka
)\j

kka

da __
)\j —

/
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