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Introduction
Factor analysis studies the relationships among the measured variables in
an effort to find new variables - factors, fewer in number than the original
set of variables, which express that which is in common among the original
variables.

Factor analysis attempts to simplify complex and diverse relationships that
exist among a set of observed variables by uncovering common dimensions
or factors that link together the measured variables, and consequently
provides insight into the underlying structure of the data.
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Applications
In the social sciences there are many crucial concepts (constructs) that are
not directly measurable (e.g., social class, socio-economic development,
satisfaction with work). Usually, such complex concepts are measured
indirectly by several well chosen indicators (directly measured variables).
Then we study if the interrelationships among these indicators can be
explained by the assumed common variable - factor, which is in this case
indirectly measured variable.

Sometimes the concept or construct is multidimensional. In this case more
than one common variable or factor may account for the interrelationships
among the measured variables or indicators.

Factor analysis can be used for such studies.
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Goal
The goal of factor analysis is to find if the relationships among the
measured variables (covariances or correlations) can be explained by a
smaller number of variables - factors.
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Some history
The early development of factor analysis was due to Spearman (1904).
He studied correlations between test scores of various types and noted that
many of the observed correlations could be accounted for by a simple model
of scores.

For example for boys the correlations between their scores on tests on:
Classics (X1), French (X2), and English (X3) are

X1 X2 X3

X1 1.

X2 0.83 1.

X3 0.78 0.67 1.
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Spearman proposed the idea that each score has the form:

X1 = λ1F + E1

X2 = λ2F + E2

X3 = λ3F + E3

where

• Xi is the ith standardized score,

• λi is a constant (factor loading), and

• Ei is the part of Xi that is specific to the ith test only.

• Factor F means the common part of the test scores and measures the
pupils’ school performance.
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F

X1 X2 X3

E1 E2 E3
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General factor analysis model
Let us have the following variables: Xi (i=1,...,m), Fr (r=1,...,k), and Ei

(i=1,...,m). The general factor analysis model assumes that the relationship
among the variables Xi, Fr in Ei is the following one:

Xi =
k∑

r=1

airFr + Ei, i = 1, ...,m

where k < m.

• Xi is a measured variable,

• Fr is unobserved variable or common factor,

• Ei is unobserved or unique factor, and

• air is unknown constant called factor loading.
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X1 X2 X3 X4 X5

E1 E2 E3 E4 E5

F2F1

a1
a21

a12 a27 a31

a32

a41

a42

a51

a52
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Let us express the general model in matrix form. The following matrices
can be constructed:

Data matrix:

X =


x11 x12 . . . x1m

x21 x22 . . . x2m
...

...
. . .

...
xn1 xn2 . . . xnm


Factor matrix:

F =


f11 f12 . . . f1k

f21 f22 . . . f2k
...

...
. . .

...
fn1 fn2 . . . fnk


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Matrix with factor loadings:

A =


a11 a12 . . . a1k

a21 a22 . . . a2k
...

...
. . .

...
am1 am2 . . . amk


Unique factor matrix:

E =


e11 e12 . . . e1m

e21 e22 . . . e2m
...

...
. . .

...
en1 en2 . . . enm


Than the factor model can be expressed in matrix form:

X = FA′ + E
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Assumptions of factor model

As there are too many unknown parameters to be estimated the following
assumptions have to be introduced:

1. Unique factors are uncorrelated with each other
cov(Ei, Ej) = 0, if i 6= j;

2. Each unique factor Ei is uncorrelated with a common one Fj

cov(Ei, Fj) = 0 for each i and j;

3. Common factors are uncorrelated with each other
cov(Fi, Fj) = 0, if i 6= j;

4. Variables Xi, Fi and Ei are centered
E(Xi) = E(Fi) = E(Ei) = 0.
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Factor equation

The following factor equation can be deduced from the factor model
considering the assumptions:

Σ = AA′ + Ψ

In general Σ is a variance-covariance matrix. If the measured variables are
standardized the matrix Σ is a correlation matrix. Ψ is a diagonal matrix
with the variances of unique factors on the diagonal.
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Communality

If we compare the diagonal elements on the left and right side of the factor
equation Σ = AA′ + Ψ the following equality can be seen

σ2
i =

k∑
j=1

a2ij + ψii

which means that the variance of the measured variable Xi can be parti-
tioned into the common variance and the unique variance of Xi.

The common variance of a variable is also called the communality. The
communality of a variable is the proportion of a variable’s total variance
that is accounted for by the common factors. If we denote the communality
of the i-th variable by h2i , we can write

σ2
i = h2i + ψii
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Note that

h2i =
k∑

j=1

a2ij

is simply the sum of the squared elements in the i-th row of the matrix A.

The unique variance of a variable, ψii is called the uniqueness of the
variable and reflects the extent to which the common factors fail to account
for the variance of a variable – it is the proportion left unexplained by the
common factors.
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Parameter estimaton

From the known elements of the variance-covariance (correlation) matrix Σ

the unknown parameters in the factor equation, the factor loadings A and
the unique variances Ψ, have to be estimated.

Before the parameter estimation we have to ask ourselves two questions.
Does a solution of the factor equation exist, and if it does, is it unique? This
means that we have to consider two issues:

• identificability of the factor model and

• uniqueness of parameter estimates.
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Identificability

The total number of parameters to be estimated is the number of factor
loadings, namely m × k, and m unique variances. There are m(m+1)

2

different variances and covariances in Σ. Hence, we can determine m(m+1)
2

equations. Generally, the necessary requirement for indentification is that
the number of parameters be less or equal than the number of equations,
therefore

mk +m ≤ m(m+ 1)/2

or

k ≤ (m− 1)

2

Unfortuately, this does not guarantee that a solution will exist.
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Uniqueness
The second question is, can we uniquelly estimate the unknown parameters
A and Ψ from the given Σ satisying the equation

Σ = AA′ + Ψ

If k > 1 and if it exists a unique matrix Ψ, than there are infinite number
of matrices A that satisfy the factor equation. Let us demonstrate why: Let
Mk×k be an orthonormal matrix (MM ′ = I) and

A∗ = AM

Than

A∗A∗′ = (AM)(AM)′ = AMM ′A′ = AA′ = Σ−Ψ

This means that also A∗ is a solution of the factor equation. There are
infinite number of solutions for the factor equation.

Therefore, some new assumptions have to be defined for a unique solution.
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Estimation strategy
The strategy to find a unique estimation of a factor model is the following
one:

1. the estimation of the communalities (common space) by a factor
method,

2. the estimation of a simple structure of factor loadings by factor
rotation.

Factor analysis is not completed if factor rotation was not performed.
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Factor methods
There are several factor extraction procedures or factor methods for
estimating the communalities. Some of them are:

• principal axis factor (PAF)

• maximum likelihood (ML)

• image factor analysis

• alpha factor analysis, ...

The principal axis factor method is presented in more detail.

lectures



A. Ferligoj: Factor Analysis 20'

&

$

%

Principal axis factor method (PAF)

The factor equation
Σ = AA′ + Ψ

can be written as follows
Σ−Ψ = AA′

Let us assume that all variables are standardized. The left side of the
equation is the correlation matrix with the diagonal elements replaced by
the respective variables’ communality estimates.

In general the communalities can be determined if the matrix A is known.
Matrix A can be determined from the matrix Σ−Ψ.

Principal axis factor method (PAF) solves the problem iteratively.
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• First, the diagonal elements in the correlation matrix are replaced by
the respective variables’ communality estimates (e.g., by the largest
correlation coefficient in the raw of the correlation matrix or by multiple
correlation coefficient of a variable by the other variables).

• Repeat

– We can obtain the matrix A by calculating the eigenvalues and
eigenvectors of the corrected correlation matrix. The estimate of
the matrix A can be obtained by ordering the eigenvalues from the
largest to the smallest and place the eigenvectors on this order into
the matrix A.

– Then new communalities can be calculated from the estimated
matrix A by the sum of the squared elements in each row of A.

The diagonal elements in the correlation matrix are replaced by
these new communalities.
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The convergence of this procedure is not proved yet, but empiricaly works
very well.

By estimating the matrix Ψ we obtain the common factor space.

The matrixA is obtained in such a way that the variance of the first common
factor is maximal. Orthogonal to the first factor, the second factor with the
maximal variance is obtained, etc. Such a matrix A is one among many and
most of the times it does not find the common dimensions. Therefore, we
do not consider this solution for the interpretation.

Only after factor rotation we can obtain an adequate matrix A.
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Factor rotation
When solving the factor equation

Σ = AA′ + Ψ

where Σ is known and the matrices A in Ψ are unknown, we realized that
it is not possible to estimate the matrix A uniquely. We mentioned that by
multiplying the matrix A by an orthonormal matrix M a new matrix A∗ is
obtaned which also satifies the factor equation. By matrix M we rotate the
axes.

Using one of the factor extraction procedures (e.g., PAF) we estimate
communalities and with them the common factor space. We also obtain
an estimate of factor loadings. The rotated matrix represents an alternative
interpretation of the data, which is in mathematical sense equally valid.
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Example

Let us analyze 12 factors that influence the business success of small
companies in Slovenia (J. Prašnikar, 1994).

The population consists of small companies employing at least 1 and
up to 50 employees in all sectors of the economy except agriculture in
Slovenia. A random sample was drown from the data-bank of the Chamber
of Commerce of Slovenia and from the Crafts Chamber. Out of the 200
companies selected, 151 agreed to participate in the study. Each company
was visited and a quationnaire was filed by personal interview (CAPI). The
survey was conducted in 1993.
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Variables
Survey question:

Please indicate your opinion about the influence of the following factors on
business success of your company on 5 point scale (1 - not important at all,
5 - very important)

X1 – PROD-MET improvement of productive methods
X2 – MARK-MET improvement of marketing methods
X3 – PRODUCT improvement of products
X4 – RELATION good relations among employees
X5 – SKIL-EMP skilled employees
X6 – SKIL-MAN skilled managers
X7 – FAMILY support of the family
X8 – ECON-ASO support of economic associations
X9 – POL-CON political connections
X10 – LOC-AUT support of local authorities
X11 – STATE support of the state
X12 – COMPANY support of other companies
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Two factors were obtained by PAF:

F1 F2 h2

X1 – PROD-MET .38 .41 .31
X2 – MARK-MET .42 .32 .28
X3 – PRODUCT .39 .42 .33
X4 – RELATION .60 .43 .54
X5 – SKIL-EMP .63 .44 .58
X6 – SKIL-MAN .46 .33 .32
X7 – FAMILY .20 .15 .06
X8 – ECON-ASO .47 -.39 .37
X9 – POL-CON .46 -.44 .41
X10 – LOC-AUT .63 -.59 .75
X11 – STATE .54 -.50 .55
X12 – COMPANY .48 -.30 .32
eigenvalue 2.82 2.00
% p.v. 23.5 16.7 40.1

Let us present the obtained results in a two dimensional coordinate system,
where the axes are the obtained factors and the points are variables.
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From the graphical presentation it can be seen that there are two distinctive
groups of variables in the two dimensional space:

• variables from X1 to X6 and

• variables from X8 to X12.

Only the variable X7 (the support from the family) is not a member of any
of these two groups.

If the coordinate system is rotated in such a way that the axes are as close
as possible to each of the mentioned two groups of variables new factor
loadings can be obtained by projections of variables on the new coordinates.
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The rotated factor loading matrix is the following one:

F1 F2

X1 – PROD-MET .56 -.03
X2 – MARK-MET .52 .06
X3 – PRODUCT .57 -.03
X4 – RELATION .73 .11
X5 – SKIL-EMP .75 .13
X6 – SKIL-MAN .56 .09
X7 – FAMILY .25 .03
X8 – ECON-ASO .06 .60
X9 – POL-CON .02 .64
X10 – LOC-AUT .04 .86
X11 – STATE .03 .74
X12 – COMPANY .13 .55
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The obtained factor structure is much simpler for the interpretation:

1. The first factor has very large and positive loadings on all variables
which measure the factors which have to be done inside the company
to obtain its business success.

2. The second factor has large loadings on the rest of variables measuring
all kind of outside supports to obtain the company business success.
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Thurston’s criteria

Thurston (1947) developed the criteria of ’simple structure’ as a guide to
rotation. The three major criteria are the following ones:

1. Any column of the factor loadings matrix should have several small
values, as close to zero as possible.

2. Any row of the matrix should have only a few entries far from zero.

3. Any two columns of the matrix should exhibit a different pattern of
high and low loadings.

Most of the rotation procedures use Thurston’s criteria to construct appro-
priate criterion functions which are optimized to obtain simple structures of
factor loadings.
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Rotation methods

There are two methods in which the factor axes can be rotated:

• orthogonal rotation (the rotated factors are perpendicular)

• oblique rotation (the rotated factors are not perpendicular)
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Orthogonal rotation

There are at least three orthogonal rotation methods:

• QUARTIMAX simplifies the structure by rows in factor loading
matrix. The consequence is that a general factor is usually generated
with all or most of the variables having high loadings.

• VARIMAX simplifies the structure by columns.

• EQUIMAX simplifies the structure by rows and columns.
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Oblique rotation

There are several oblique rotation methods: OBLIMIN, OBLIMAX,
QUARTIMIN, COVARMIN in BIQUARTIMIN.

In the case of oblique rotation the projection of each variable on an axis
which represents the loading of a variable on that factor can be done at least
on two ways:

• parallel projection, with which ’pattern’ loadings are obtained. These
loadings are the regression coefficients between variables and factors.

• orthogonal projection, with which structure loadings are obtained.
These loadings are the correlations coefficients between variables and
factors.
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In the case of orthogonal rotation ’pattern’ in ’structure’ loadings are the
same.
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Factor scores
• Estimated are: A and Ψ(h2i )

• Not yet estimated factor scores: Fn×k = [fij ]

fij is the value of the jth factor on ith unit

F is not a linear combination Xi
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Regression estimates of factor scores

F̂ = XB

B has to be obtained. Let us assume that the variables are standardized.
Than the elements of the vector B are standardized regression coefficients.
The following regression estimates of the factor scores can be obtained by
some linear algebra:

F̂ = XΣ−1A

These are only regression estimates and not the real values of factor scores.
This, for example, means that the correlation between orthogonal factors
can be slightly different from 0.
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Example
Population and sample

The data used in the example were gathered as a part of the research Quality
of measurement of egocentered social networks by Ferligoj et al.

The target population of the research were the inhabitants of Ljubljana that
were at least 18 years old at the time of the research. The sample consisted
of 1033 randomly selected individuals. The data analyzed consist of 631
individuals and were gathered using computed aided personal interviewing
(CAPI) between March and June 2000 (the others were interviewed by
telepnone - CATI).
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Variables

Factor analysis was performed on variables measuring emotional sta-
bility and extraversion (personal(lity) characteristics from the Big Five,
International Personality Item Pool:

EMOCC – Seldom feel blue.
EMOCDR – Get upset easily. (*)
EMOCF – Am relaxed most of the time.
EMOCGR – Get irritated easily. (*)
EMOCJR – Am easily disturbed. (*)
EMOCKR – Worry about things. (*)
EMOCMR – Have frequent mood swings. (*)
EMOCQR – Change my mood a lot. (*)
EMOCSR – Often feel blue. (*)
EMOCTR – Get stressed out easily. (*)
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EXTA – Am the life of the party.
EXTB – Don’t mind being the center of attention.
EXTE – Talk to a lot of different people at parties.
EXTH – Start conversations.
EXTIR – Don’t like to draw attention to myself. (*)
EXTLR – Don’t talk a lot. (*)
EXTNR – Am quiet around strangers. (*)
EXTOR – Keep in the background. (*)
EXTP – Feel comfortable around people.
EXTRR – Keep in the background. (*)

The respondents expressed how accurate description for them each state-
ments is on a 5 item ordinal scale: from 1 (very inaccurate) to 5 (very
accurate).

The statements marked with (*) were negative statements and were recoded:
(1=5) (2=4) (3=3) (4=2) (5=1).
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The variables are measuring two dimensions of the personality characteris-
tics. The first 10 variables are measuring emotional stability and the other
10 variables extraversion.

Therefore, we expect the following factor solution:

• one factor should have large factor loadings on the variables of
emotional stability and very low ones on extraversion (the factor of
emotional stability)

• the other factor should have have large factor loadings on the variables
of extraversion and very low ones on emotional stability (the factor of
extraversion)

We test the validity of the measurement instrument for two dimensions of
the personality characteristics.
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First we perform the first step of factor analysis: the estimation of the
common space. We do this by principal axis factor method.

We first look to the scree diagram to see if the data really show 2 dimensions.

Then we look to the percentage of the common variance obtained by the
two factors and the estimated communalities.
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Scree Plot
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Total Variance Explained

4,460 22,301 22,301 3,820 19,100 19,100

2,867 14,337 36,638 2,219 11,097 30,197

1,436 7,180 43,818

1,188 5,939 49,757

,992 4,960 54,717

,954 4,769 59,486

,884 4,418 63,904

,831 4,157 68,061

,794 3,970 72,031

,674 3,371 75,402

,656 3,282 78,684

,595 2,974 81,658

,584 2,919 84,577

,538 2,692 87,269

,516 2,582 89,851

,493 2,467 92,318

,458 2,291 94,609

,392 1,958 96,567

,385 1,924 98,491

,302 1,509 100,000

Factor
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Total % of Variance Cumulative % Total % of Variance Cumulative %

Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Axis Factoring.
 

lectures



A. Ferligoj: Factor Analysis 45'

&

$

%

Communalities

,215 ,186

,164 ,128

,178 ,116

,478 ,491

,251 ,267

,369 ,264

,519 ,476

,199 ,198

,187 6,478E-02

,537 ,543

,283 ,250

,361 ,416

,217 ,161

,354 ,378

,348 ,348

,306 ,192

,386 ,363

,439 ,433

,381 ,353

,379 ,412

EKSTA  Dusa vsake

družbe

EKSTB  Ne moti -

sredisce pozornosti

EMOCC  Redkokdaj potrt

EMOCDR  Zlahka vrze iz

tira

EKSTE  Na zabavah se

pomenkujem z mnogo

ljudmi

EMOCF  Vecidel

sproscen

EMOCGR  Zlahka me kaj

razdrazi

EKSTH  Pogovore

nacenjam jaz

EKSTIR  Nerad

pozornost nase

EMOCJR  Zlahka me kaj

vznemiri

EMOCKR  Sem

zaskrbljene narave

EKSTLR  Sem

redkobeseden

EMOCMR  Velikokrat

muhasto razpolozen

EKSTNR  Neznane

osebe - sem molcec

EKSTOR  Imam malo

povedati

EKSTP  Med ljudmi

pocutim sprosceno

EMOCQR  Moje

razpolozenje pogosto

menja

EKSTRR  Zadrzujem se

v ozadju

EMOCSR  Pogosto sem

potrt

EMOCTR  Zlahka se me

poloti napetost

Initial Extraction

Extraction Method: Principal Axis Factoring.
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The scree diagram confirms two dimensions. The results obtained by
PAF show that the two factors explain 30.2 % of total variance (common
variance).

It is recommended that the communalities are greater than 0.20.

13 variables satisfiy this recommentation. 6 variables have still satisfying
communalities (greater than 0.10).

The communality of the variable EKSTIR (Don’t like to draw attention
to myself) has too low communality. This means that this indicator is not
enough related to the other indicators measuring the extraversion.
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First, let us look to the oblique rotation, especially to the correlation
coefficient between two obtained factors:

Factor Correlation Matrix

1,000 ,220

,220 1,000

Factor

1

2

1 2

Extraction Method: Principal Axis Factoring.  

Rotation Method: Oblimin with Kaiser Normalization.
 

As the correlation coefficient is relatively small we perform orthogonal
rotation.
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Rotated Factor Matrix a

-,038 ,430

-,008 ,358
,326 ,097

,698 ,054

,058 ,514

,274 ,435

,688 -,045

-,043 ,443

,052 ,249

,737 -,016

,444 ,228

-,004 ,645

,401 -,011

,169 ,591

,096 ,582

,122 ,421

,601 ,043

,195 ,628

,561 ,195

,634 ,104

EKSTA  Dusa vsake 
družbe 
EKSTB  Ne moti - 
sredisce pozornosti 
EMOCC  Redkokdaj potrt
EMOCDR  Zlahka vrze iz
tira 
EKSTE  Na zabavah se
pomenkujem z mnogo 
ljudmi 
EMOCF  Vecidel 
sproscen 
EMOCGR  Zlahka me kaj
razdrazi 
EKSTH  Pogovore 
nacenjam jaz
EKSTIR  Nerad 
pozornost nase 
EMOCJR  Zlahka me kaj
vznemiri 
EMOCKR  Sem 
zaskrbljene narave 
EKSTLR  Sem 
redkobeseden 
EMOCMR  Velikokrat 
muhasto razpolozen
EKSTNR  Neznane 
osebe - sem molcec 
EKSTOR  Imam malo 
povedati
EKSTP  Med ljudmi 
pocutim sprosceno 
EMOCQR  Moje 
razpolozenje pogosto 
menja 
EKSTRR  Zadrzujem se 
v ozadju
EMOCSR  Pogosto sem 
potrt 
EMOCTR  Zlahka se me 
poloti napetost 

1 2
Factor

Extraction Method: Principal Axis Factoring. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations. a. 

lectures



A. Ferligoj: Factor Analysis 49'

&

$

%

Two measured variables (indicators) are problematic:

• EMOCF (Am relaxed most of the time): the indicator should measure
emotional stability but has a large factor loading on the factor of
extraversion. This is a major error of the measurement instrument used.

• EKSTIR (Don’t like to draw attention to myself): there is no factor
loading large enough. This is expected as its communality was very
low.

We have shown that the measuremet instrument is not good. The reason
might be in the translation from English to Slovenian.
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Let us save factor scores obtained by the regression estimation (PAF
and VARIMAX rotation). Let us calculate averages for both factors for
each gender (males and females) and draw the obtained centroids in the
coordinate system defined by both factors:

emocionalna stabilnost

,2,10,0-,1-,2

e
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s
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,06

,04

,02

0,00

-,02
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-,06

-,08

SPOL

zenski

moski
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