NA2-2, matrices
V. Batagelj

Network Analysis 2 Statistical Approaches and Modeling

Networks and matrices

Vladimir Batagelj

IMFM Ljubljana, IAM UP Koper, and NRU HSE Moscow
XIII Summer School of the ANR-Lab
Network Analysis and Contemporary Decision Sciences International Laboratory for Applied Network Research NRU HSE, Moscow, August 2022

Outline

NA2-2, matrices
V. Batagelj

Semirings

Matrices over semirings

Networks and matrices

Real matrices Markov chains Resources

1 Semirings
2 Matrices over semirings

3 Networks and matrices
4 Real matrices
5 Markov chains
6 Resources
$N(D)=\begin{aligned} & v_{1} \\ & v_{1} \\ & v_{2} \\ & v_{3} \\ & v_{4} \\ & v_{5} \\ & v_{6} \\ & v_{7}\end{aligned}\left[\begin{array}{ccccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\ a_{i} \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ \infty & 0 & \infty & 1 & 2 & 2 & 3 \\ \infty & \infty & 0 & \infty & \infty & 1 & 2 \\ \infty & \infty & \infty & 0 & 1 & 1 & 2 \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 0 & 1 \\ \infty & \infty & \infty & \infty & \infty & \infty & 0\end{array}\right] \begin{aligned} & 0 \\ & 3 \\ & 4 \\ & 0\end{aligned}$
F. Harary \&: Structural models. JW 1965, p. 273

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si
Current version of slides (August 16, 2022 at 02 : 31): slides PDF

Semirings

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Let \mathbb{K} be a set and a, b, c elements from \mathbb{K}. A semiring is an algebraic structure $(\mathbb{K}, \oplus, \odot, 0,1$) with two binary operations (addition \oplus and multiplication \odot) where:

- $(\mathbb{K}, \oplus, 0)$ is an abelian monoid with the neutral element 0 (zero):

$$
\begin{aligned}
& a \oplus b=b \oplus a \quad \text { commutativity } \\
& (a \oplus b) \oplus c=a \oplus(b \oplus c) \quad \text { associativity } \\
& a \oplus 0=a \quad \text { existence of zero }
\end{aligned}
$$

- ($\mathbb{K}, \odot, 1$) is a monoid with the neutral element 1 (unit):

$$
\begin{aligned}
& (a \odot b) \odot c=a \odot(b \odot c) \quad \text { associativity } \\
& a \odot 1=1 \odot a=a \quad \text { existence of a unit }
\end{aligned}
$$

- Multiplication \odot distributes over addition \oplus :

$$
\begin{aligned}
& a \odot(b \oplus c)=a \odot b \oplus a \odot c \\
& (b \oplus c) \odot a=b \odot a \oplus c \odot a
\end{aligned}
$$

In formulas we assume precedence of multiplicationover addition.

...Semirings

NA2-2, matrices
V. Batagelj

A semiring $(\mathbb{K}, \oplus, \odot, 0,1)$ is complete iff the addition is well defined for countable sets of elements and the commutativity, associativity, and distributivity hold in the case of countable sets.
These properties are generalized in this case; for example, the distributivity takes the form

$$
\left(\bigoplus_{i} a_{i}\right) \odot\left(\bigoplus_{j} b_{j}\right)=\bigoplus_{i}\left(\bigoplus_{j}\left(a_{i} \odot b_{j}\right)\right)=\bigoplus_{i, j}\left(a_{i} \odot b_{j}\right)
$$

The addition is idempotent iff $a \oplus a=a$ for all $a \in \mathbb{K}$. In this case the semiring over a finite set \mathbb{K} is complete.
The power $a^{n}, n \in \mathbb{N}$ of an element $a \in \mathbb{K}$ is defined by $a^{0}=1$ and $a^{n+1}=a^{n} \odot a$ for $n \geq 0$.

... Semirings

NA2-2, matrices
V. Batagelj

A semiring $(\mathbb{K}, \oplus, \odot, 0,1)$ is closed iff for the additional (unary) closure operation $*$ it holds for all $a \in \mathbb{K}$:

$$
a^{*}=1 \oplus a \odot a^{*}=1 \oplus a^{*} \odot a .
$$

A strict closure is defined as $\bar{a}=a \odot a^{*}$.
Different closures over the same semiring can exist. A complete semiring is always closed for the closure

$$
a^{*}=\bigoplus_{k \in \mathbb{N}} a^{k}
$$

In a semiring $(\mathbb{K}, \oplus, \odot, 0,1)$ the absorption law holds iff for all $a, b, c \in \mathbb{K}$:

$$
a \odot b \oplus a \odot c \odot b=a \odot b .
$$

Because of the distributivity, it is sufficient for the absorption law to check the property $1 \oplus c=1$ for all $c \in \mathbb{K}$.

Examples of semirings

NA2-2,

Combinatorial Semiring ($\mathbb{N},+, \cdot, 0,1$)
This is the most commonly used semiring. Also some other sets are used: $\mathbb{R}, \mathbb{R}_{0}^{+}, \mathbb{Q}$. For $\overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}$, the semiring is closed for $a^{*}=\sum_{k \in \overline{\mathbb{N}}} a^{k}$ because it is a complete semiring. An example of a closure for $\mathbb{R}=\mathbb{R} \cup\{\infty\}$ is $a^{*}=1 /(1-a)$ for $a \neq 1, \infty$ and $0^{*}=1$, $1^{*}=\infty$, and $\infty^{*}=\infty$. It is commutative. It is not idempotent.
Reachability Semiring ($\{0,1\}, \vee, \wedge, 0,1$)
The logical (boolean, reachability) semiring is suitable for solving the connectivity questions in networks. The multiplication is commutative and the absorption law holds. It is closed for $a^{*}=1 \vee a \wedge a^{*}=1$.

Shortest Paths Semiring ($\overline{\mathbb{R}}_{0}^{+}$, min $,+, \infty, 0$)

The semiring is commutative and closed for $a^{*}=\min \left(0, a+a^{*}\right)=0(0$ is the smallest element in the set \mathbb{R}_{0}^{+}). Since $\min (0, a)=0$, the absorption law also holds. For the set $\overline{\mathbb{N}}$, the semiring is called a tropical semiring. Another set is $\overline{\mathbb{R}}$ and in this case the semiring is isomorphic $(x \rightarrow-x)$ to max-plus semiring $(\mathbb{R} \cup\{-\infty\}$, max $,+,-\infty, 0)$.

... Examples of semirings

NA2-2, matrices
V. Batagelj

Pathfinder Semiring $\left(\overline{\mathbb{R}}_{0}^{+}\right.$, min, $\left.\boxed{r}, \infty, 0\right)$
The multiplicative operation is the Minkowski operation
$a \backslash b=\sqrt[r]{a^{r}+b^{r}}$. This semiring is closed for $a^{*}=0$ and the absorption law holds in it.

In Pathfinder algorithm the value r for the Minkowski operation is selected according to a dissimilarity measure. For a value $r=1$, the semiring is the shortest path semiring, and for a value $r=\infty$, the semiring is the min-max semiring.

```
> r = 2
> '%Pf+%' <- function(a,b){return(min(a,b))}
> '%Pf*%' <- function(a,b){return((a^r+b^r)^(1/r))}
> 3 %Pf+% 4
[1] 3
> 3 %Pf*% 4
[1] 5
> Pf0 <- Inf
> Pf1 <- 0
```


Matrices over semirings

NA2-2, matrices
V. Batagelj

An $m \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ over a set \mathbb{K} is a rectangular array of elements from the set \mathbb{K} that consists of m rows and n columns. The entry in the i-th row and j-th column is denoted by $a_{i j}$. If $m=n$ the matrix \mathbf{A} is called a square matrix. The matrix with all entry values equal to 0 is called the zero matrix and is denoted by $\mathbf{0}_{\mathrm{mn}}$.
The transpose of a matrix \mathbf{A} is a matrix \mathbf{A}^{T} in which the rows of \mathbf{A} are written as the columns of $\mathbf{A}^{T}: a_{i j}^{T}=a_{j j}$. A square matrix \mathbf{A} is symmetric if $\mathbf{A}=\mathbf{A}^{\top}$.

A diagonal matrix is a square matrix \mathbf{A} such that only diagonal elements are nonzero: $a_{i j}=0$, for $i \neq j$. If $a_{i i}=1, i=1, \ldots, n$, a diagonal matrix is called the identity matrix I_{n} of order n. A square matrix \mathbf{A} is upper triangular if $a_{i j}=0, i>j$, and its transpose is a lower triangular matrix.

.. . Matrices over semirings

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Let $\mathcal{M}_{m n}(\mathbb{K})$ be a set of matrices of order $m \times n$ over the semiring $(\mathbb{K}, \oplus, \odot, 0,1)$ in which we additionally require

$$
\forall a \in \mathbb{K}: a \odot 0=0 \odot a=0,
$$

and let $\mathcal{M}(\mathbb{K})$ be a set of all matrices over the \mathbb{K}.
The operations \oplus and \odot can be extended to the $\mathcal{M}(\mathbb{K})$:

$$
\begin{aligned}
& \mathbf{A}, \mathbf{B} \in \mathcal{M}_{m n}(\mathbb{K}): \mathbf{A} \oplus \mathbf{B}=\left[a_{u v} \oplus b_{u v}\right] \in \mathcal{M}_{m n}(\mathbb{K}) \\
& \mathbf{A} \in \mathcal{M}_{m k}(\mathbb{K}), \mathbf{B} \in \mathcal{M}_{k n}(\mathbb{K}): \mathbf{A} \odot \mathbf{B}=\left[\bigoplus_{t=1}^{k} a_{u t} \odot b_{t v}\right] \in \mathcal{M}_{m n}(\mathbb{K}) .
\end{aligned}
$$

Then:

- $\left(\mathcal{M}_{m n}(\mathbb{K}), \oplus, \mathbf{0}_{m n}\right)$ is an abelian monoid.
- $\left(\mathcal{M}_{n^{2}}(\mathbb{K}), \odot, \mathbf{I}_{n}\right)$ is a monoid.
- $\left(\mathcal{M}_{n^{2}}(\mathbb{K}), \oplus, \odot, \mathbf{0}_{n}, \mathbf{I}_{n}\right)$ is a semiring.

For matrices \mathbf{A} and \mathbf{B}, it holds

$$
(\mathbf{A} \odot \mathbf{B})^{T}=\mathbf{B}^{T} \odot \mathbf{A}^{T} .
$$

Networks and matrices

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Let $\mathcal{N}=((\mathcal{I}, \mathcal{J}), \mathcal{A}, w)$ be a simple two-mode network, where \mathcal{I} and \mathcal{J} are (sub)sets of nodes, $\mathcal{V}=\mathcal{I} \cup \mathcal{J}$. We assume that the set of nodes is finite $\mathcal{V}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} . \mathcal{A} \subseteq \mathcal{I} \times \mathcal{J}$ is a set of arcs (directed links) linking \mathcal{I} and \mathcal{J}, and the mapping $w: \mathcal{A} \rightarrow \mathbb{K}$ is the arcs value function also called a weight. We can assign to a network its value matrix $\mathbf{W}=\left[w_{i j}\right]$ with elements

$$
w_{i j}=\left\{\begin{array}{cl}
w((i, j)) & (i, j) \in \mathcal{A} \\
0 & \text { otherwise } .
\end{array}\right.
$$

The problem with value matrices in computer applications is their size. The value matrices of large networks are sparse. There is no need to store the zero values in a matrix, and different data structures can be used for saving and working with value matrices: special dictionaries and lists.

Network multiplication

NA2-2,
matrices
V. Batagelj

Semirings
Matrices over semirings
Networks and matrices

Let $\mathcal{N}_{\mathbf{A}}=\left((\mathcal{I}, \mathcal{K}), \mathcal{A}_{\mathbf{A}}, w_{\mathbf{A}}\right)$ and $\mathcal{N}_{\mathbf{B}}=\left((\mathcal{K}, \mathcal{J}), \mathcal{A}_{\mathbf{B}}, w_{\mathbf{B}}\right)$ be a pair of networks with corresponding matrices $\mathbf{A}_{\mathcal{I} \times \mathcal{K}}$ and $\mathbf{B}_{\mathcal{K} \times \mathcal{J}}$, respectively. Assume also that $w_{\mathbf{A}}: \mathcal{A}_{\mathbf{A}} \rightarrow \mathbb{K}, w_{\mathbf{B}}: \mathcal{A}_{\mathbf{B}} \rightarrow \mathbb{K}$, and $(\mathbb{K}, \oplus, \odot, 0,1)$ is a semiring. We say that such networks/matrices are compatible.
The product $\mathcal{N}_{\mathbf{A}} \star \mathcal{N}_{\mathbf{B}}$ of networks $\mathcal{N}_{\mathbf{A}}$ and $\mathcal{N}_{\mathbf{B}}$ is a network $\mathcal{N}_{\mathbf{C}}=\left((\mathcal{I}, \mathcal{J}), \mathcal{A}_{\mathbf{c}}, w_{\mathbf{c}}\right)$ for $\mathcal{A}_{\mathbf{c}}=\left\{(i, j) ; i \in \mathcal{I}, j \in \mathcal{J}, c_{i j} \neq 0\right\}$ and $w_{\mathbf{c}}((i, j))=c_{i j}$ for $(i, j) \in \mathcal{A}_{\mathbf{c}}$, where $\mathbf{C}=\left[c_{i j}\right]=\mathbf{A} \odot \mathbf{B}$.
If all three sets of nodes are the same ($\mathcal{I}=\mathcal{K}=\mathcal{J}$), we are dealing with ordinary one-mode networks (square matrices).

Network multiplication

NA2-2,
matrices
V. Batagelj

Semirings
Matrices over semirings
Networks and matrices

When do we get an arc in the product network?

$$
c_{i j}=\bigoplus_{k \in \mathcal{K}} a_{i k} \odot b_{k j} .
$$

There is an $\operatorname{arc}(i, j) \in \mathcal{A}_{\mathrm{c}}$ iff $c_{i j}$ is nonzero. Therefore at least one term $a_{i k} \odot b_{k j}$ is nonzero, but this means that both $a_{i k}$ and $b_{k j}$ should be nonzero, and thus $(i, k) \in \mathcal{A}_{\mathbf{A}}$ and $(k, j) \in \mathcal{A}_{\mathbf{B}}$ (see figure):

$$
c_{i j}=\bigoplus_{k \in N_{\mathbf{A}}(i) \cap N_{\mathbf{B}}^{-}(j)} a_{i k} \odot b_{k j},
$$

where $N_{\mathbf{A}}(i)$ are the successors of node i in the network $\mathcal{N}_{\mathbf{A}}$ and $N_{\mathbf{B}}^{-}(j)$ are the predecessors of node j in the network $\mathcal{N}_{\mathbf{B}}$. The value of the entry $c_{i j}$ equals to the value of all paths (of length 2) from $i \in \mathcal{I}$ to $j \in \mathcal{J}$ passing through some node $k \in \mathcal{K}$.

Multiplication is about "traveling" on network.

R Network multiplication

NA2-2, matrices
V. Batagelj

Semirings

Matrices over semirings

Networks and matrices

Real matrices

Markov chains

Resources

Network multiplication

NA2-2, matrices
V. Batagelj

Semirings

The standard procedure to compute the product of matrices $\mathbf{A}_{\mathcal{I} \times \mathcal{K}}$ and $\mathbf{B}_{\mathcal{K} \times \mathcal{J}}$ has the complexity $O(|\mathcal{I}| \cdot|\mathcal{K}| \cdot|\mathcal{J}|)$ and is therefore too slow to be used for large networks. Since the matrices of large networks are usually sparse, we can compute the product of two networks much faster considering only nonzero entries:
for $k \in \mathcal{K}$ do for $i \in N_{A}^{-}(k)$ do for $j \in N_{B}(k)$ do if $\exists c_{i j}$ then

$$
c_{i j}=c_{i j} \oplus a_{i k} \odot b_{k j}
$$

else

$$
c_{i j}=a_{i k} \odot b_{k j}
$$

In general the multiplication of large sparse networks is a "dangerous" operation since the result can "explode" - it is not sparse. In many cases also the result is sparse [3].

The Algebraic Path Problem

The use of a special semiring and a multiplication of networks can lead us to the essence of the shortest path problem [1]. Many other network problems can be solved by replacing the usual addition and multiplication with the corresponding operations from an appropriate semiring.

Let $\mathcal{N}=(\mathcal{V}, \mathcal{A}, w)$ be a network where $w: \mathcal{A} \rightarrow \mathbb{K}$ is the value (weight) of arcs such that $(\mathbb{K}, \oplus, \odot, 0,1)$ is a semiring. We denote the number of nodes as $n=|\mathcal{V}|$ and the number of arcs as $m=|\mathcal{A}|$.

A finite sequence of nodes $\sigma=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{p-1}, u_{p}\right)$ is a walk of length p on \mathcal{N} iff every pair of neighboring nodes is linked: $\left(u_{i-1}, u_{i}\right) \in \mathcal{A}$, $i=1, \ldots, p$. A finite sequence σ is a semiwalk or chain on \mathcal{N} iff every pair of neighboring nodes is linked neglecting the direction of an arc: $\left(u_{i-1}, u_{i}\right) \in \mathcal{A} \vee\left(u_{i}, u_{i-1}\right) \in \mathcal{A}, i=1, \ldots, p$. A (semi) walk is closed iff its end nodes coincide: $u_{0}=u_{p}$. A walk is simple or a path iff no node repeats in it. A closed walk with different nodes, except first and last, is called a cycle.

Semiring operations and values of walks

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Real matrices

Markov chains

Resources

Extending the weight

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

We can extend the weight w to walks and sets of walks on \mathcal{N} by the following rules (see figure):

- Let $\sigma_{v}=(v)$ be a null walk in the node $v \in \mathcal{V}$; then $w\left(\sigma_{v}\right)=1$.
- Let $\sigma=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{p-1}, u_{p}\right)$ be a walk of length $p \geq 1$ on \mathcal{N}; then

$$
w(\sigma)=\bigodot_{i=1}^{k} w\left(u_{i-1}, u_{i}\right)
$$

- For empty set of walks \emptyset it holds $w(\emptyset)=0$.
- Let $S=\left\{\sigma_{1}, \sigma_{2}, \ldots\right\}$ be a set of walks in \mathcal{N}; then

$$
w(\mathcal{S})=\bigoplus_{\sigma \in \mathcal{S}} w(\sigma)
$$

Concatenation

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Let σ_{1} and σ_{2} be compatible walks on \mathcal{N} : the end node of the walk σ_{1} is equal to the start node of the walk σ_{2}. Such walks can be concatenated in a new walk $\sigma_{1} \circ \sigma_{2}$ for which holds

$$
w\left(\sigma_{1} \circ \sigma_{2}\right)= \begin{cases}w\left(\sigma_{1}\right) \odot w\left(\sigma_{2}\right) & \sigma_{1} \text { and } \sigma_{2} \text { are compatible } \\ 0 & \text { otherwise }\end{cases}
$$

Let \mathcal{S}_{1} and \mathcal{S}_{2} be finite sets of walks; then

$$
w\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right) \oplus w\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=w\left(\mathcal{S}_{1}\right) \oplus w\left(\mathcal{S}_{2}\right)
$$

In the special case when $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\emptyset$, it holds $w\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)=w\left(\mathcal{S}_{1}\right) \oplus w\left(\mathcal{S}_{2}\right)$. Also the concatenation of walks can be generalized to sets of walks:

$$
\mathcal{S}_{1} \circ \mathcal{S}_{2}=\left\{\sigma_{1} \circ \sigma_{2}: \sigma_{1} \in \mathcal{S}_{1}, \sigma_{2} \in \mathcal{S}_{2}, \sigma_{1} \text { and } \sigma_{2} \text { are compatible }\right\}
$$

It also holds $\mathcal{S} \circ \emptyset=\emptyset \circ \mathcal{S}=\emptyset$.

Sets of walks

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

We denote by:

- $\mathcal{S}_{u v}^{k}$ the set of all walks of length k from node u to node v
- $\mathcal{S}_{u v}^{(k)}$ the set of all walks of length at most k from node u to node v
- $\mathcal{S}_{u v}^{*}$ the set of all walks from node u to node v
- $\overline{\mathcal{S}}_{u v}$ the set of all nontrivial walks from node u to node v
- $\mathcal{E}_{u v}$ the set of all simple walks (paths) from node u to node v

The following relations hold among these sets:

$$
\begin{gathered}
\mathcal{S}_{u v}^{k} \subseteq \mathcal{S}_{u v}^{(k)} \subseteq \mathcal{S}_{u v}^{*} \\
k \neq I \Leftrightarrow \mathcal{S}_{u v}^{k} \cap \mathcal{S}_{u v}^{\prime}=\emptyset \\
\mathcal{S}_{u v}^{(k)}=\bigcup_{i=0}^{k} \mathcal{S}_{u v}^{i}, \quad \mathcal{S}_{u v}^{*}=\bigcup_{k=0}^{\infty} \mathcal{S}_{u v}^{k} \\
k \geq n-1: \mathcal{E}_{u v} \subseteq \mathcal{S}_{u v}^{(k)} \\
w\left(\mathcal{S}_{u v}^{(k)}\right)=\sum_{i=0}^{k} w\left(\mathcal{S}_{u v}^{i}\right)
\end{gathered}
$$

Unique factorization

NA2-2, matrices
V. Batagelj

A set of walks \mathcal{S} is uniquely factorizable to sets of walks \mathcal{S}_{1} and \mathcal{S}_{2} iff $\mathcal{S}=\mathcal{S}_{1} \circ \mathcal{S}_{2}$, and for all walks $\sigma_{1}, \sigma_{1}^{\prime} \in \mathcal{S}_{1}, \sigma_{2}, \sigma_{2}^{\prime} \in \mathcal{S}_{2}, \sigma_{1} \neq \sigma_{1}^{\prime}, \sigma_{2} \neq \sigma_{2}^{\prime}$, it holds $\sigma_{1} \circ \sigma_{2} \neq \sigma_{1}^{\prime} \circ \sigma_{2}^{\prime}$.
For example, for $s, 0<s<k$, a nonempty set $\mathcal{S}_{u v}^{k}$ is uniquely factorizable to sets $\mathcal{S}_{u \bullet}^{s}$ and $\mathcal{S}_{\bullet v}^{k-s}$, where $\mathcal{S}_{u \bullet}^{s}=\bigcup_{t \in \mathcal{V}} \mathcal{S}_{u t}^{s}$, etc.
Theorem: Let the finite set \mathcal{S} be uniquely factorizable to \mathcal{S}_{1} and \mathcal{S}_{2} or a semiring is idempotent. Then it holds

$$
w\left(\mathcal{S}_{1} \circ \mathcal{S}_{2}\right)=w\left(\mathcal{S}_{1}\right) \odot w\left(\mathcal{S}_{2}\right)
$$

The k-th power \mathbf{W}^{k} of a square matrix \mathbf{W} over \mathbb{K} is unique because of associativity.

\mathbb{B}

The k-th power of value matrix

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Theorem: The entry $w_{u v}^{k}$ of k-th power \mathbf{W}^{k} of a value matrix \mathbf{W} is equal to the value of all walks of length k from node u to node v :

$$
w\left(\mathcal{S}_{u v}^{k}\right)=\mathbf{W}^{k}[u, v]=w_{u v}^{k} .
$$

Attention, $w_{i j}^{k}$ is not the k-th power of $w_{i j}!!!$

Proof by induction. It holds for $k=0$ and $k=1$.
Induction step: $k \Rightarrow k+1$. Let K denote the set of indices of nodes that can be reached from the node v_{i} by a walk of length k and an arc leads from them to the node v_{j}. If $K=\emptyset$ then also $\mathcal{S}_{i j}^{k+1}=\emptyset$ and therefore $w_{i j}^{k+1}=0$. In the other case $K \neq \emptyset$. Because each walk of length $k+1$ is uniquely factorizable to a walk of length k and walk of length 1 we have:

$$
\begin{aligned}
w\left(\mathcal{S}_{i j}^{k+1}\right) & =\sum_{t \in K} w\left(\mathcal{S}_{i(t) j}^{k+1}\right)=\sum_{t \in K} w\left(\mathcal{S}_{i t}^{K} \circ \mathcal{S}_{t j}^{1}\right)= \\
& =\sum_{t \in K} w\left(\mathcal{S}_{i t}^{k}\right) \cdot w\left(\mathcal{S}_{t j}^{1}\right)=\sum_{t \in K} w_{i t}^{k} \cdot w_{t j}=\sum_{t=1}^{n} w_{i t}^{k} \cdot w_{t j}=w_{i j}^{k+1}
\end{aligned}
$$

Matrices and sets of walks

NA2-2, matrices
V. Batagelj

Semirings

Therefore if a network \mathcal{N} is acyclic, then it holds for a value matrix \mathbf{W} :

$$
\exists k_{0}: \forall k>k_{0}: \mathbf{W}^{k}=\mathbf{0},
$$

k_{0} is the length of the longest walk in the network.
If \mathbf{W} is the network adjacency matrix over the combinatorial semiring, the entry $w_{u v}^{k}$ counts the number of different walks of length k from u to v.

Let us denote

$$
\mathbf{w}^{(k)}=\bigoplus_{i=0}^{k} \mathbf{w}^{i}
$$

In an idempotent semiring, it holds $\mathbf{W}^{(k)}=(\mathbf{1} \oplus \mathbf{W})^{k}$.
Theorem: $w\left(S_{u v}^{(k)}\right)=\mathbf{W}^{(k)}[u, v]=w_{u v}^{(k)}$.
For the combinatorial semiring and the network adjacency matrix \mathbf{W}, the entry $w_{u v}^{(k)}$ counts the number of different walks of length at most k from u to v.

... Matrices and sets of walks

NA2-2, matrices
V. Batagelj

Semirings

Networks and matrices

The matrix semiring over a complete semiring is also complete and therefore closed for $\mathbf{W}^{*}=\bigoplus_{k=0}^{\infty} \mathbf{W}^{k}$.

Theorem: For a value matrix \mathbf{W} over a complete semiring with closure \mathbf{W}^{*} and strict closure $\overline{\mathbf{W}}$ hold:

$$
\begin{aligned}
& w\left(\mathcal{S}_{u v}^{*}\right)=\mathbf{W}^{*}[u, v]=w_{u v}^{*} \quad \text { and } \\
& w\left(\mathcal{S}_{u v}\right)=\overline{\mathbf{W}}[u, v]=\overline{W_{u v}} .
\end{aligned}
$$

For the reachability semiring and the network adjacency matrix \mathbf{W}, the matrix $\overline{\mathbf{W}}$ is its transitive closure.

For the shortest paths semiring and the network value matrix \mathbf{W}, the entry $w_{u v}^{*}$ is the value of the shortest path from u to v.

Each walk contains path

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Real matrices
Markov chains
Resources

Let $(\mathbb{K}, \oplus, \odot, 0,1)$ be an absorptive semiring and σ be a nonsimple walk from a set $\mathcal{S}_{u v}^{*}$. Therefore at least one node v_{j} appears more than once in σ. The part of a walk between
 its first and last appearance is a closed walk C (see figure). The whole walk can be written as $\sigma=P \circ C \circ Q$ where P is the initial segment of σ from u to the first appearance of v_{j}, and Q is the terminal segment of σ from the last appearance of v_{j} to v. Note that $P \circ Q$ is also a walk. The value of both walks together is $w(\{P \circ Q, P \circ C \circ Q\})=w(P \circ Q)$. We see that the walks that are not paths do not contribute to the value of walks. Therefore $w\left(\mathcal{S}_{u v}^{*}\right)=w\left(\mathcal{E}_{u v}\right)$. This equality holds also for $\mathcal{S}_{u v}^{*}=\emptyset$.
Since the node set \mathcal{V} is finite, also the set $\mathcal{E}_{u v}$ is finite which allows us to compute the value $w\left(\mathcal{S}_{u v}^{*}\right)$. We already know that $\mathbf{W}^{*}=\mathbf{W}^{(k)}=(\mathbf{1} \oplus \mathbf{W})^{k}$ for k large enough.

Fletcher's algorithm

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

To compute the closure matrix \mathbf{W}^{*} of a given matrix \mathbf{W} over a complete semiring ($\mathbb{K}, \oplus, \odot, 0,1$), we can use the Fletcher's algorithm [8]:

```
\(\mathbf{C}_{0}=\mathbf{W}\)
for \(k=1, \ldots, n\) do
    for \(i=1, \ldots, n\) do
        for \(j=1, \ldots, n\) do
        \(c_{k}[i, j]=c_{k-1}[i, j] \oplus c_{k-1}[i, k] \odot\left(c_{k-1}[k, k]\right)^{*} \odot c_{k-1}[k, j]\)
    \(c_{k}[k, k]=1 \oplus c_{k}[k, k]\)
\(\mathbf{W}^{*}=\mathbf{C}_{n}\)
```

If we delete the statement $c_{k}[k, k]=1 \oplus c_{k}[k, k]$, we obtain the algorithm for computing the strict closure \mathbf{W}. If the addition \oplus is idempotent, we can compute the closure matrix in place - we omit the subscripts in matrices \mathbf{C}_{k}. If the absorption law holds we have further $a^{\star}=1$. In general case we need two matrices.

The Fletcher's algorithm is a generalization of a sequence of algorithms (Kleene, Warshall, Floyd, Roy) for computing closures on specific semirings.

Betweenness

NA2-2,
matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Important are also the nodes that can control the information flow in the network. If we assume that this flow uses only the shortest paths (geodesics) we get a measure of betweenness (Anthonisse 1971, Freeman 1977)

$$
b(v)=\frac{1}{(n-1)(n-2)} \sum_{\substack{u, t \in v: g_{u, t}>0 \\ u \neq v, t \neq v, u \neq t}} \frac{g_{u, t}(v)}{g_{u, t}}
$$

where $g_{u, t}$ is the number of geodesics from u to t; and $g_{u, t}(v)$ is the number of those among them that pass through node v.

For computation of geodesic matrix see Brandes.
Network/Create Vector/Centrality/Betweenness

Geodesic semiring

NA2-2, matrices

In the set $A=\left(\mathbb{R}_{0}^{+} \cup\{\infty\}\right) \times(\mathbb{N} \cup\{\infty\})$ we define operations: addition:

$$
(a, i) \oplus(b, j)=\left(\min (a, b),\left\{\begin{array}{ll}
i & a<b \\
i+j & a=b \\
j & a>b
\end{array}\right)\right.
$$

and multiplication: $(a, i) \odot(b, j)=(a+b, i \cdot j)$.
The obtained structure is a complete and closed semiring.

$$
(a, i)^{\star}= \begin{cases}(0, \infty) & a=0, i \neq 0 \\ (0,1) & \text { otherwise }\end{cases}
$$

Betweenness and geodesic semiring

NA2-2,
matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

From matrices of shortest distances [$d_{u, v}$] and number of geodesics $\left[g_{u, v}\right]$ we can get also values $g_{u, v}(t)$ as follows:

$$
g_{u, v}(t)= \begin{cases}g_{u, t} \cdot g_{t, v} & d_{u, t}+d_{t, v}=d_{u, v} \\ 0 & \text { otherwise }\end{cases}
$$

For a simultaneous computation of both matrices $\left[\left(d_{u, v}, g_{u, v}\right)\right]$ we can use the Fletcher's algorithm over the geodesic semiring applied on a coupled matrix:

$$
(d, n)_{u, v}= \begin{cases}(1,1) & (u, v) \in \mathcal{A} \\ (\infty, 0) & (u, v) \notin \mathcal{A}\end{cases}
$$

Betweenness in R

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Real matrices Markov chains Resources

```
mat.geodesics <- function(m)
{ n <- nrow(m)
    md <- m; md[m==0] <- Inf; mc <- m; mc[m>0] <- 1
    for(k in 1:n) { for(u in 1:n){ for(v in 1:n){
        dst <- md[u,k] + md[k,v]
        if(md[u,v] >= dst)
        cnt <- mc[u,k]*mc[k,v];
                if (md[u,v] == dst) {mc[u,v] <- mc[u,v] + cnt }
                else{ md[u,v] <- dst; mc[u,v] <- cnt }
    } } } }
    return(list(dis=md,cnt=mc))
}
vec.Closeness <- function(dis)
{ n <- nrow(dis); return((n-1)/rowSums(dis)) }
vec.Betweenness <- function(dis, cnt) {
    n <- nrow(dis); bw <- rep (0,n)
    for (v in 1:n) {
        b}<-
```



```
                {b <- (dis[u,v] + dis[v,w]) == dis[u,w]))
            } }
        bw[v] <- b/((n-1)*(n-2))
    }
    return(bw)
}
vec.betweenness <- function(m)
{mt <- mat.geodesics(m); return(vec.Betweenness(mt$dis,m$tcnt))
```


Medieval Russia trade network

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Real matrices
Markov chains

Pitts network

```
> setwd("C:/Users/batagelj/Documents/papers/2018/moskva/NetR/net
> pitts <- read.paj("PittsGeo.net")
> list.vertex.attributes(pitts)
> R <- as.matrix(pitts); nam <- rownames(R)
> x<- pitts %v% "x"; y<- pitts %v% "y"
> Geo <- mat.geodesics(R)
> Gcl <- vec.Closeness(Geo$dis); names(Gcl) <- nam
> Gbw <- vec.Betweenness(Geo$dis,Geo$cnt); names(Gbw) <- nam
> q <- order(Gbw, decreasing=TRUE)
> cbind(bw=Gbw[q],cl=Gcl[q])
    Kolomna 0.351141367 0.3584906
    Moskva 0.341112917 0.3486239
    Ksnyatin 0.296721534 0.3166667
    Kozelsk 0.214065569 0.3220339
    Dorogobuzh 0.189087584 0.3089431
    Tver
    0.159225767 0.2923077
    Vladimir 0.157159791 0.2814815
    Vyazma 0.141979950 0.3304348
    Bryansk 0.116639572 0.2878788
> plot(Gbw,Gcl,pch=16,col="red",xlim=c(-0.02,0.35),
+ main="Pitts - binary")
> text(Gbw,Gcl,nam, cex=0.5)
```

For the binary network Kolomna has larger betweenness than Moskva.

... Medieval Russia trade network

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Real matrices
Markov chains
Resources

Let's try to compute the betweenness considering geographical

 distances among places:```
> mat.dist <- function(R,x,y) {
+ n <- nrow(R); D <- R
+ for(i in in l: i:n) { for(j if in 1:n) {
 } }
 return(D)
 }
 Deo <- mat.geodesics(mat.dist(R,x,y))
 > Dcl <- vec.Closeness(Deo$dis); names(Dcl) <- nam
 > Dbw <- vec.Betweenness(Deodis,Deocnt); names(Dbw) <- nam
 > p <- order(Dbw,decreasing=TRUE)
 > cbind(bw=Dbw[p],cl=Dcl[p])
 Moskva 0.238975818 0.21250622
 Ksnyatin 0.217638691 0.19895479
 Kolomna 0.207681366 0.20971455
 Dorogobuzh 0.170697013 0.18185725
 Kozelsk 0.159317212 0.19084617
 Mozhaysk 0.145092461 0.20713976
 Dedoslavl 0.133712660 0.19798117
 Tver 0.132290185 0.19174094
 Vyazma 0.129445235 0.19372181
 Bryansk 0.109530583 0.17079453
> plot(Dbw,Dcl,pch=16,col="red",xlim=c (-0.02,0.24),
+ main="Pitts - distance")
> text(Dbw,Dcl,nam, cex=0.5)
```


## Multiplication of Matrix and Vector

NA2-2, matrices

Let $e_{i}$ be a unit vector of length $n$ - the only nonzero element is at the $i$-th position and it is equal to 1 . It is essentially a $1 \times n$ matrix. The product of a unit vector and a value matrix of a network can be used to calculate the values of walks from a node $i$ to all the other nodes.

Let us denote $q_{1}^{T}=e_{i}^{T} \odot \mathbf{W}$. The values of elements of the vector $q_{1}$ are equal to the values of walks of the length 1 from a node $i$ to all other nodes: $q_{1}[j]=w\left(\mathcal{S}_{i j}^{1}\right)$. We can calculate iteratively the values of all walks of the length $s, s=2,3, \ldots, k$ that start in the node $i: q_{s}^{T}=q_{s-1}^{T} \odot \mathbf{W}$ or $q_{s}^{T}=e_{i}^{T} \odot \mathbf{W}^{s}$ and $q_{s}[j]=w\left(\mathcal{S}_{i j}^{s}\right)$.

Similarly we get $q^{(k)^{T}}=e_{i}^{T} \odot \mathbf{W}^{(k)}, q^{(k)}[j]=w\left(\mathcal{S}_{i j}^{(k)}\right)$ and $q^{* T}=e_{i}^{T} \odot \mathbf{W}^{*}, q^{*}[j]=w\left(\mathcal{S}_{i j}^{*}\right)$.

This can be generalized as follows. Let $\mathcal{I} \subseteq \mathcal{V}$ and $e_{\mathcal{I}}$ is the characteristic vector of the set $\mathcal{I}$ - it has value 1 for elements of $\mathcal{I}$ and is 0 elsewhere. Then, for example, for $q_{k}^{T}=e_{\mathcal{I}}^{T} \odot \mathbf{W}^{k}$, it holds $q_{k}[j]=w\left(\bigcup_{i \in \mathcal{I}} \mathcal{S}_{i j}^{k}\right)$. How to in Pajek? Temporal networks, TQ

## Permutation matrices

NA2-2, matrices
V. Batagelj

A permutation matrix is a matrix in which every row and column contains precisely a single 1 with 0 s everywhere else. A permutation matrix of permutation $\pi$ is

$$
p_{i j}= \begin{cases}1 & \pi(i)=j \\ 0 & \text { otherwise }\end{cases}
$$

Matrices $\mathbf{A}$ and $\mathbf{B}$ are permutation-similar, $\mathbf{A} \equiv \mathbf{B}$, iff there exists a permutation matrix $\mathbf{P}$ such that $\mathbf{B}=\mathbf{P} \cdot \mathbf{A} \cdot \mathbf{P}^{T}$.
Permutation-similarity of matrices is an equivalence relation.
Matrices of isomorphic graphs are permutation-similar.

## Inverse matrix

A square matrix $\mathbf{A}$ is called singular iff $\operatorname{det} \mathbf{A}=0$.
For a nonsingular matrix $\mathbf{A}$ there always exists a unique matrix $\mathbf{B}$ such that $\mathbf{A B}=\mathbf{1}$. It is called the inverse matrix of matrix $\mathbf{A}$ and is denoted by $\mathbf{A}^{-1}$. It holds

$$
\begin{aligned}
& \mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{1} \\
& (\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}
\end{aligned}
$$

In $R$ we can get the inverse matrix of $\mathbf{A}$ using the function solve (A).

## Eigenvalues and eigenvectors

NA2-2, matrices
V. Batagelj

Semirings

Let for a square matrix $\mathbf{A}$ exist a number $\lambda$ and a vector $\mathbf{x} \neq \mathbf{0}$ such that

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

then $\lambda$ is called an (right, column) eigenvalue and $\mathbf{x}$ an eigenvector of matrix $\mathbf{A}$.

An eigenvector is determined up to positive scaling.Usually the factor is selected so that $\|\mathbf{x}\|=\sqrt{\mathbf{x}^{\top} \mathbf{x}}=1$.

All eigenvalues are solutions of the equation $\operatorname{det}(\mathbf{A}-\lambda \mathbf{1})=0$. In general case they can be also complex numbers.
Let $\mathbf{T}$ be a nonsingular square matrix and $\mathbf{B}=\mathbf{T}^{-1} \mathbf{A}$. Then matrices $\mathbf{A}$ and $B$ have the same eigenvalues.
In $R$ we get eigenvalues and eigenvectors using the function eigen (A), or eigen ( $A$, only.values=TRUE) if we need only eigenvales.

## ... Eigenvalues and eigenvectors

NA2-2,
matrices
V. Batagelj

Let $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}\right)$ and $\mathbf{V}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{n}\right]$ be a matrix composed of corresponding eigenvectors. Then it holds

$$
\mathbf{A} \mathbf{V}=\mathbf{V} \wedge
$$

If all eigenvalues are different the corresponding eigenvectors are independent and therefore the matrix $\mathbf{V}$ is nonsingular. We get

$$
\mathbf{V}^{-1} \mathbf{A} \mathbf{V}=\Lambda \quad \text { or } \quad \mathbf{A}=\mathbf{V} \wedge \mathbf{V}^{-1}
$$

Let $\mathbf{T}^{-1} \mathbf{A} \mathbf{T}=\Lambda$. Then also $\mathbf{T}^{-1} \mathbf{A}^{k} \mathbf{T}=\Lambda^{k}=\operatorname{diag}\left(\lambda_{i}^{k}\right)$. Therefore matrices $\mathbf{A}$ and $\mathbf{A}^{k}$ have the same eigenvectors.

The relation $\mathbf{A}^{k}=\mathbf{T} \wedge^{k} \mathbf{T}^{-1}$ can be used for efficient computation of powers of matrix $\mathbf{A}^{k}$.

## ... Eigenvalues and eigenvectors

NA2-2, matrices V. Batagelj

Consider now $\mathbf{A}^{\star}=\sum_{k=0}^{\infty} \mathbf{A}^{k}$

$$
\mathbf{T}^{-1} \mathbf{A}^{\star} \mathbf{T}=\sum_{k=0}^{\infty} \Lambda^{k}=\operatorname{diag}\left(\sum_{k=0}^{\infty} \lambda_{i}^{k}\right)
$$

If for all $\left|\lambda_{i}\right|<1$ we get

$$
\mathbf{T}^{-1} \mathbf{A}^{\star} \mathbf{T}=\operatorname{diag}\left(\frac{1}{1-\lambda_{i}}\right) \quad \text { or } \quad \mathbf{A}^{\star}=(\mathbf{1}-\mathbf{A})^{-1}
$$

Left (or row) eigeinvectors satisfy the equation $\mathbf{y A}=\lambda \mathbf{y}$. We collect left eigenvectors in a matrix $\mathbf{U}$. We have

$$
\mathbf{U A}=\Lambda \mathbf{U} \quad \text { or } \quad \mathbf{U A U} \mathbf{U}^{-1}=\Lambda
$$

Therefore, selecting appropriate multipliers, we get

$$
\mathbf{U}=\mathbf{V}^{-1} \quad \text { or } \quad \mathbf{U V}=\mathbf{1}
$$

## Eigenvalues of symmetric matrices

NA2-2, matrices
V. Batagelj

All eigenvalues of symmetric matrix are real numbers.
The corresponding eigenvectors are orthogonal - for every pair of eigenvectors $\mathbf{x} \neq c \mathbf{y}$ it holds $\mathbf{x}^{T} \mathbf{y}=0$.
A matrix $\mathbf{T}$ is called orthogonal iff $\mathbf{T}^{T}=\mathbf{T}^{-1}$.
For a symmetric matrix $\mathbf{A}$ we have $\mathbf{V}^{-1} \mathbf{A V}=\Lambda$ where $\mathbf{V}$ is an orthogonal matrix and $\Lambda$ a real matrix.

## Non-negative matrices

NA2-2, matrices<br>V. Batagelj

## Semirings

Matrices over semirings

Networks and matrices

Real matrices
Markov chains
Resources
We say that a real matrix $\mathbf{A}=\left[a_{i j}\right]$ is

- positive, if $\forall i, j: a_{i j}>0$
- non-negative, if $\forall i, j: a_{i j} \geq 0$

A non-negative matrix is irreducible if its graph is strongly connected, and is primitive if it is also aperiodic.

## Perron Frobenius theorem

Let $\mathbf{A}$ be a non-negative matrix. It has the (Perron Frobenius) eigenvalue $\lambda^{*}$ and the associated eigenvector $\mathbf{x}^{*}$ such that:
a. $\lambda^{*}$ is a non-negative real number;
b. for any other eigenvalue $\lambda$ we have $|\lambda| \leq \lambda^{*}$;
c. the eigenvector $\mathbf{x}^{*}$ is non-negative

If $\mathbf{A}$ is irreducible then also
d. if $\mathbf{y} \geq \mathbf{0}, \mathbf{y} \neq \mathbf{0}$ is a vector and $\mu$ is a number such that $\mathbf{A} \mathbf{y} \leq \mu \mathbf{y}$ then $\mathbf{y}>\mathbf{0}$ and $\mu \geq \lambda^{*}$ with $\mu=\lambda^{*}$ iff $\mathbf{y}$ is a multiple of $\mathbf{x}$.
a'. the eigenvalue $\lambda^{*}$ is positive with multiplicity 1 ;
c'. eigenvector $\mathbf{x}^{*}$ is positive;
e. eigenvector $\mathbf{x}^{*}$ is the only non-negative eigenvector;
f. let $s=\min _{i} \sum_{j} a_{i j}$ and $S=\max _{i} \sum_{j} a_{i j}$. Then either $s<\lambda^{*}<S$ or $\lambda^{*}=\boldsymbol{s}=S$. Similarly for columns.

## Markov chains

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

A square matrix $\mathbf{P}$ is stochastic iff it is nonegative and its rows sum to 1 . A product of stochastic matrices is again a stochastic matrix. A power of stochastic matrix is a stochastic matrix.

A (discrete time, finite) Markov chain (MC) has for its transition matrix a stohastic matrix. It can be represented by the corresponding transition network (graph). Nodes of MC are ususlly called states. A strong component of transition network is said to be terminal if no arc is leaving it. The states of MC can be partitioned into:

- transient - not in terminal strong component;
- recurrent (or persistent) - belongs to a terminal strong component. They can be further partitioned to aperiodic ( $p=1$ ) and periodic ( $p>1$ ).
There is always at least one recurrent state.
Entry $p_{i j}^{k}$ of the $k$-th power of transition matrix $\mathbf{P}^{k}$ is equal to the probability that the process starting in state $v_{i}$ is after $k$ steps in state $v_{j}$. Let $\mathbf{p}(k)=\mathbf{p}(0) \mathbf{P}^{k}$. Then $\mathbf{p}(k)_{i}$ is equal to the probability that after $k$ steps the process is in state $v_{i}$ if the selection of starting state is based on distribution $\mathbf{p}(0)$.


## Regular Markov chains

NA2-2,

A MC with a single strong component is called ergodic (irreducible). An ergodic MC is regular iff all its states are aperiodic.

In a regular MC the power matrix $\mathbf{P}^{k}$ tends with increasing $k$ to the matrix $\mathbf{W}$ that has all its rows equal to the stochastic vector $\mathbf{w}$ satisfying the equation $\mathbf{w} \mathbf{P}=\mathbf{w}$. The vector $\mathbf{w}$ is positive. It holds $\mathbf{P W}=\mathbf{W P}=\mathbf{W}$. For an arbitrary initial stochastic vector $\mathbf{p}(0)$ vectors $\mathbf{p}(k)=\mathbf{p}(0) \mathbf{P}^{k}$ tend to the vector $\mathbf{w}$ - a stationary distribution.

To compute the vector $\mathbf{w}$ we rewrite the equation $\mathbf{w} \mathbf{P}=\mathbf{w}$ as $\mathbf{P}^{T} \mathbf{w}^{T}=\mathbf{w}^{T}$ or $\left(\mathbf{P}^{T}-\mathbf{1}\right) \mathbf{w}^{T}=\mathbf{0}$. These equations are not independent, but we have an additional relation $\sum w_{i}=1$ to complete the system. To get the vector $\mathbf{w}$ we solve the system.

## Ergodic MCs

NA2-2, matrices
V. Batagelj

Semirings

Networks and matrices

A sequence of matrices $\mathbf{A}_{i}$ is Cesaro-summable to a matrix $\mathbf{A}$ iff

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{i=1}^{k} \mathbf{A}_{i}=\mathbf{A}
$$

For ergodic MCs hold in Cesaro sense the same properties as for regular MCs.

The fundamental matrix of an ergodic MC is

$$
\mathbf{Z}=(\mathbf{1}-(\mathbf{P}-\mathbf{W}))^{-1}
$$

The matrix $\mathbf{Z}$ always exists and it holds (for periodic)

$$
\mathbf{Z}=\mathbf{1}+\sum_{i=1}^{\infty}\left(\mathbf{P}^{i}-\mathbf{W}\right)
$$

## An application of the fundamental matrix

NA2-2, matrices
V. Batagelj

Let $\mathbf{E}=\left[e_{i j}\right]$ be a matrix with:

- $e_{i j}, i \neq j$ expected number of steps to reach the first time the state $v_{j}$ starting in state $v_{i}$;
- $e_{i i}$ expected number of steps to return the first time to the starting state $v_{i}$;

It is called the mean first passage time matrix. It holds

$$
\mathbf{E}=(\mathbf{1}-\mathbf{Z}+\mathbf{J} \cdot \operatorname{diag}(\mathbf{Z})) \cdot \operatorname{diag}\left(\frac{1}{w_{i}}\right)
$$

where $\mathbf{J}$ is a square matrix with all entries 1 . For diagonal entries we have $e_{i i}=\frac{1}{w_{i}}$.

## An application of the fundamental matrix in $R$

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Real matrices Markov chains Resources

```
summer weather
F.S. Roberts: Discrete mathematical models, p.267
S <- c(1/3, 1/2, 1/6,
 1/2, 1/3, 1/6,
 1/3, 1/3, 1/3)
n <- c('hot','moderate','cool')
S <- matrix(nrow=3, byrow=T, dimnames=list(n, n), data=S)
n <- nrow (S)
A <- t(S)-diag(n); A[n,] <- rep (1,n)
b <- rep (0,n); b[n] <- 1
w <- solve(A,b)
W <- matrix(nrow=n, ncol=n,byrow=T,w, dimnames=dimnames (S)
Z <- solve(diag(n) - (S - W))
E <- (diag(n) - Z Z + matrix(nrow=n, ncol=n,byrow=T, diag(Z)
dimnames(E) <- dimnames(S)
```


## MCs with transient states

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Terminal strong components in a MC are absorbing - when it is entered it can not be leaved anymore. If we shrink strong components and reorder the so obtained reduced transition matrix $\mathbf{P}$ by listing first all absorbing states we get:

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{1} & \mathbf{0} \\
\mathbf{R} & \mathbf{Q}
\end{array}\right]
$$

For its powers we have:

$$
\mathbf{P}^{k}=\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{R}_{k} & \mathbf{Q}^{k}
\end{array}\right]
$$

The sequence $\mathbf{Q}^{k} \rightarrow \mathbf{0}$ for $k \rightarrow \infty$. It always exists a matrix $\mathbf{N}=\sum_{i=0}^{\infty} \mathbf{Q}^{i}=(\mathbf{1}-\mathbf{Q})^{-1}$. Its entry $n_{i j}$ is equal to the expected time of staying in state $v_{j}$ if starting in state $v_{i}$.

The entry $b_{i j}$ of the matrix $\mathbf{B}=\mathbf{N R}$ is equal to the probability that the process starting in a transient state $v_{i}$ will be absorbed by the absorbing state $v_{j}$,

## MCs with transient states in R

```
 NA2-2,
 matrices
V. Batagelj
Semirings
Matrices over
semirings
Networks and
matrices
Real matrices
Markov chains
Resources
```

```
gambler's ruin
```


# gambler's ruin

# F.S. Roberts: Discrete mathematical models, p.268

# F.S. Roberts: Discrete mathematical models, p.268

P
P
G<- c(1 1 , 0, 0, 0, 0,
G<- c(1 1 , 0, 0, 0, 0,
0, , 0-p, p 0, 0, 0, 0,
0, , 0-p, p 0, 0, 0, 0,
0, 0, 1-p, 0, p,
0, 0, 1-p, 0, p,
n <- c('\$0'\prime,'\$1',''\$2'',
n <- c('\$0'\prime,'\$1',''\$2'',
G <- matrix(nrow=5,byrow=T,dimnames=list(n,n), data=G)
G <- matrix(nrow=5,byrow=T,dimnames=list(n,n), data=G)
n <- 5; m <- 2
n <- 5; m <- 2
G <- mat.perm(G,c (1, 5, 2, 3, 4))
G <- mat.perm(G,c (1, 5, 2, 3, 4))
Q <- G[(m+1):n,(m+1):n]
Q <- G[(m+1):n,(m+1):n]
N <- solve(diag(n-m)-Q)
N <- solve(diag(n-m)-Q)
R <- G[(m+1):n,1:m]
R <- G[(m+1):n,1:m]
B<-N%*% R

```
B<-N%*% R
```


## Applications

NA2-2, matrices
V. Batagelj

Semirings
Matrices over semirings

Networks and matrices

Real matrices
Markov chains Resources

Modeling sequences of events.
Population slides
Google slides
Zweig, page 104-Generating networks

## Resources I

NA2－2， matrices
－Baras JS，Theodorakopoulos G（2010）Path problems in networks． Morgan \＆Claypool，Berkeley

曷
Batagelj，V．：Semirings for Social Networks Analysis．Journal of Mathematical Sociology，19（1994）1，53－68．

曷
Batagelj V，Cerinšek M（2013）On bibliographic networks． Scientometrics 96（3）：845－864

固 Batagelj V，Praprotnik S（2016）An algebraic approach to temporal network analysis based on temporal quantities．Social Network Analysis and Mining 6（1）：1－22

Carré B（1979）Graphs and networks．Clarendon，Oxford
冨 Cerinšek M，Batagelj V（2018）Semirings and Matrix Analysis of Networks．in Reda Alhajj and Jon Rokne，Encyclopedia of Social Network Analysis and Mining．Springer．

## Resources II

NA2－2， matrices

V．Batagelj

Grinstead CM and Snell JL（2003）：Introduction to Probability． （Chapter 11：Merkov chains）．AMS．WWW

Fletcher JG（1980）A more general algorithm for computing closed semiring costs between vertices of a directed graph．Commun ACM 23（6）：350－351 MathSciNet

曷Gondran M，Minoux M（2008）Graphs，dioids and semirings：new models and algorithms．Springer，New York

雷 Kemeny，J．G．，Snell，J．L．：Finite Markov Chains．Van Nostrand，New Jersey，1960．Amazon．

国 Kemeny，J．G．，Snell，J．L．，Thompson，G．L．：Introduction to Finite Mathematics．WWW．
Kepner J，Gilbert $J$（2011）Graph algorithms in the language of linear algebra．SIAM，Philadelphia

易
Lancaster，K．：Mathematical Economics．Dover， 2011

## Resources III

NA2-2, matrices
V. Batagelj

## Semirings

Roberts, F.S.: Discrete Mathematical Models. Prentice-Hall, New Jersey, 1976. Amazon.

每 Schvaneveldt RW, Dearholt DW, Durso FT (1988) Graph theoretic foundations of Pathfinder networks. Comput Math Appl 15(4):337-345. MathSciNet

