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Configuration
model

Small worlds

Scale-free

Resources

Outline

1 Erdös-Rényi
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Approaches to network analysis can be classified in different
ways. One of them is:

• Analysis of a given network: general properties (size,
type, components, distributions, . . . ), important elements
(nodes or links) and subnetworks, position of selected
elements in a network, etc.

• Analysis of families of networks: derivation/explanation of
general properties of networks from a family, position of a
given network (unusual or anomalous property value) in the
family, role of an element/subnetwork with respect to the
family, etc. Creation/evolution of networks from the family.

Emergent properties in complex systems: Netlogo: Earth
Science/Fire – phase transition.
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Random network models

We want to have formal processes which can give rise to
networks with specific properties (degree distribution, transitivity,
diameter etc.). These models and their features can help us
understand how the properties of a network (network structure)
arise.

Intuitively we can think about a model in which pairs of nodes are
connected with some probability. That is, if we start with a
collection of n nodes and for each of the n(n–1)/2 possible links,
we connect a pair of nodes u, v with certain probability pu,v .
Then, if we consider a set of network parameters to be fixed and
allow the links to be created by a random process, we can create
models that permit us to understand the influence of these
parameters on the structure of networks.

V. Batagelj netR, basic models
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Random network models

Let G denote a graph and let p(G) be a probability distribution
over all such graphs. The typical or expected value of some
network measure x is then given by

E(x) =
∑

G

x(G) · p(G)

where x(G) is the value of the measure x on a particular graph G.
This equation has the usual form of an average, but is calculated
by summing over the combinatoric space of graphs. If some
observed value is very different from the value expected from the
model, then we may conclude that the true generating process for
the data is different (more interesting) than the simple random
process we assumed. This approach to classifying properties as
interesting or not treats the random graph as a null model, which
is a classic approach in the statistics.
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Random network models

For example, the diameter of class G, would be the diameter of a
graph G ∈ G, averaged over the class

diam =
∑
G∈G

diam(G)p(G)

This approach is in general convenient:

• Often allows analytical calculation

• We can see the typical properties of the network model we
consider

• The distribution of many network metrics, at the limit of large
n, is sharply peaked around the mean value. Hence in the
limit of large n we expect to see behaviors very close to the
mean of the class.

V. Batagelj netR, basic models
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Erdös–Rényi model

In this model, GER(n, p), we start with n isolated nodes. We then pick a
pair of nodes and with a fixed probability p we add a link between them.
For each pair of nodes we generate a random number, r , uniformly from
[0, 1] and if p > r we add a link between them. Consequently, if we select
p = 0 the network will remain fully disconnected forever and if p = 1 we
end up with a complete graph.

This model was proposed by Gilbert in 1959 [8]. Erdös and Rényi (1959)
[6] proposed a slightly different model, GER(n,m), in which a uniformly
distributed random graph with n nodes and exactly m links is obtained. It
turns out that graphs obtained on either way have almost the same
properties [4].

Pajek: Network/Create random network/Total no of arcs or
Network/Create random network/Bernoulli
R: sna: rgraph, rgnm
igraph::erdos.renyi.game
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Erdös–Rényi model

1 The expected number of edges is m = 1
2 n(n–1)p

2 The expected node degree is d = (n–1)p

3 The degrees follow a binomial distribution

p(d) =

(
n − 1

d

)
pd (1− p)n−1−d

approximated with Poisson distribution p(d) = 1
d!e
−d d

d
or normal

distribution N(mean(d), sd(d)). R

4 The probability of drawing at random a graph with m edges from the
G(n, p) is:

p(m) =

((n
2

)
m

)
pm(1− p)(n

2)−m

A formal derivation of 1: m =
∑(n

2)
i=1 m · p(m) .
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Erdös–Rényi model

5 In a random graph the probability that any two vertices are linked is
equal to p.

6 The average clustering coefficient is cl(G) = p. For constat d
therefore cl(G) = d

n−1 tends to 0 with growing n. Not true for most
real-life networks.

7 The average path length for large n is

l(G) =
ln n – γ

ln(pn)
+

1
2
≈ ln n

ln d

where γ ≈ 0.577 is the Euler–Mascheroni constant.

8 As p increases, most nodes tend to be clustered in one giant
component, while the rest of nodes are isolated in very small
components. Netlogo ER Phase transition!
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Erdös–Rényi model

9 The structure of GER(n, p) changes as a function of d = p · (n–1),
giving rise to the following three stages.

a Subcritical d < 1, where all components are simple and very
small. The size of the largest component is S = O(ln n).

b Critical d = 1, where the size of the largest component is
S = O(n2/3).

c Supercritical d > 1, where the probability that
(f –ε)n < S < (f + ε)n is 1 when n→∞, ε > 0, and where
f = f (d) is the positive solution of the equation f = 1–e–df .
The rest of the components are very small, with the second
largest having size about ln n. Small components are almost
acyclic – mostly trees.

V. Batagelj netR, basic models
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Erdös–Rényi model
emmergence of the giant component

S is the size of the largest component.

> n <- 100; p <- c(0.0075, 0.01, 0.025)
> (da <- p*(n-1))
[1] 0.7425 0.9900 2.4750

V. Batagelj netR, basic models



netR, basic
models

V. Batagelj

Erdös-Rényi
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Erdös–Rényi model

10 The largest eigenvalue of the adjacency matrix A in an ER network
grows proportionally to n so that

lim
n→∞

λ1(A)

n
= p

11 The second largest eigenvalue grows more slowly than λ1. In fact,

lim
n→∞

λ2(A)

nε
= 0

for every ε > 0.5

12 The most negative eigenvalue grows in a similar way to λ2(A).
Namely,

lim
n→∞

λn(A)

nε
= 0

for every ε > 0.5

V. Batagelj netR, basic models
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spectral density

13

The spectral density of
an ER random network
follows Wigner’s semicir-
cle law. That is, almost
all of the eigenvalues of
an ER random network
lie in the range [–2r , 2r ]
where r =

√
np(1–p)

and within this range the
density function is given
by

ρ(λ) =

√
4− λ2

2π

V. Batagelj netR, basic models
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Configuration model

Configuration model is a generalization of the Erdös–Rényi model
G(n,m). It defines a class of random graphs, G(n,d), with fixed
degree sequence d = (d1,d2,d3, . . . ,dn). Note that the number of
edges is also fixed m = 1

2

∑
di .

Not all sequences of non-negative integers are degree
sequences: Erdős–Gallai theorem
A sequence of non-negative integers (d1 ≥ · · · ≥ dn) can be
represented as the degree sequence of a finite simple
(undirected) graph on n nodes if and only if

∑
di is even and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(di , k)

holds for every k in 1 ≤ k ≤ n.

V. Batagelj netR, basic models
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Configuration model

For simple directed graphs the answer is given by
Fulkerson–Chen–Anstee theorem.

A sequence ((a1,b1), . . . , (an,bn)) of nonnegative integer pairs
with a1 ≥ · · · ≥ an is digraphic if and only if

∑n
i=1 ai =

∑n
i=1 bi and

the following inequality holds for k such that 1 ≤ k ≤ n:

k∑
i=1

ai ≤
k∑

i=1

min(bi , k − 1) +
n∑

i=k+1

min(bi , k)

When the degrees are determined from an example graph we
know that at least one such graph exists.

V. Batagelj netR, basic models
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Configuration model

The configuration model can serve as a null model for investigating the
structure of a real network H. That is, it allows us to quantitatively answer
the question of

How much of some observed pattern is driven by the degrees alone?

The configuration model defines a probability distribution over graphs
p(G|d) that has the same degrees as the original network H. Thus, if we
can compute a function f on H, we can compute the same function on a
graph drawn from this configuration model f (G). And, because G is a
random variable, we can compute the entire distribution p(f (G)|d). For
simple functions and simple specifications of the configuration model, we
can often compute these distributions analytically.

For more complicated functions or for a configuration model specified
with an empirical degree sequence, we can compute p(f (G)|d)
numerically, by drawing many graphs {G1,G2, . . .} from the model,
computing f on each, and tabulating the results. If the empirical value
f (H) is unusual relative to this distribution, we can conclude that it is a
property of H that is not well explained by the degrees alone.

V. Batagelj netR, basic models
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generating, Molloy-Reed method

Molloy-Reed method: Randomly (uniformly) link the semilinks in stubs:

Loops and parallel edges might appear. They distroy the uniformity of
graphs distribution. But, since their density tends to 0 with increasing n,
the variations in their probabilities are expected to be small.

1 (Expected) probability of an edge between nodes u and v :
There are deg(u) stubs at node u anddeg(v) at v . The probability
that one of the deg(u) stubs of node u connects with one of the
stubs of node v is deg(v)/(2m − 1). Since there are deg(u)
possible stubs for node u the overall probability is:

p(u, v) =
deg(u) deg(v)

2m − 1
≈ deg(u) deg(v)

2m

V. Batagelj netR, basic models
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Configuration model
generating, Chung-Lu method

If we do not insist on exact degree sequence but on expected degree
distribution (analogous to G(n, p)) we can use the Chung-Lu method:
Select each link (u, v) with a probability:
undirected network:

p(u, v) = deg(u)
deg(v)∑

t deg(t)
=

deg(u) · deg(v)

2m

directed network:

p(u, v) = outdeg(u)
indeg(v)∑

t indeg(t)
=

outdeg(u) · indeg(v)

m

R
igraph: degree.sequence.game

V. Batagelj netR, basic models
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Configuration model

2 Expected number of parallel edges in the network:
1
2

(
d2 − d

d
)2

3 Expected number of loops in the network:
d2 − d

2d
4 Expected number nuv of common neighbors between nodes u

and v :

nuv = puv
d2 − d

d

V. Batagelj netR, basic models
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Configuration model
The friendship paradox

5 Neighbor’s degree distribution: there is a d/(2m − 1) ≈ d/(2m)
probability the edge we follow to end to a specific node of degree d .
The total number of nodes with degree d is np(d). Hence the
probability that a neighbor of a node has degree d is:

d
2m

np(d) =
dp(d)

d
since 2m = nd

6 Average degree of a neighbor:

∑
d

d
dp(d)

d
=

d2

d

Therefore
d2

d
− d =

1
d

(d2 − d
2
) =

σ(d)2

d
≥ 0

Friendship paradox: Your friends have more friends than you!

V. Batagelj netR, basic models
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Configuration model

7 Expected value of clustering coefficient E(cl) =
1
n

(d2 − d)2

d
3

8 Average number of k -hop neighbors ck :

ck = ck−1
c2

c1
= (

c2

c1
)k−1c1, k = 1, 2, . . .

and c1 = d and c2 = d2 − d .
Giant component iff c2 > c1; or equivalently d2 > 2d .

V. Batagelj netR, basic models
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Configuration model

The configuration model is an improvement over the simple
random graph model in that it allows us to specify its degree
structure. As a null model, this property is often suficient for us to
use the model to decide whether some other property of a
network could be explained by its degree structure alone.
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Small worlds

F. Karinthy, probably inspired by Marconi, in the 1920s observed a
‘shrinking’ modern world due to increased human connectedness’
– strangers being linked by a short chain of acquaintances. He
proposed a challenge to find another person to whom he could
not be connected through at most five people.

In 1967 Milgram made a “ small-world” experiment. A friend is
someone known on a first-name basis. He sent 296 letters to
people in Wichita, KS and Omaha, NE. Letters indicated a
(unique) contact person in Boston, MA. He asked them to
forward the letter to the contact, following rules:
Rule 1: If contact is a friend then send her/him the letter; else
Rule 2: Relay to friend most-likely to be a contact’s friend.

S. Milgram, The small-world problem,” Psychology Today, vol. 2,
pp. 60-67, 1967.

V. Batagelj netR, basic models
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Milgram’s experiment

64 of 296 letter reached the
destination, average path
length l = 6.2 –
six degrees of separation.
There was a large group in-
breeding, which resulted in
acquaintances of one indi-
vidual feeding a letter back
into his/her own circle, thus
usually eliminating new con-
tacts.

The six degrees of separation were popularized by a play of Guare in
1990.

V. Batagelj netR, basic models
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Small worlds

A small-world network is defined to be a network where the
typical distance L between two randomly chosen nodes grows
proportionally to the logarithm of the number of nodes n in the
network:

L ∝ log n

while the clustering coefficient is not small.

Examples of small world networks are: Internet, Wikipedia, gene
networks.

V. Batagelj netR, basic models
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Small worlds

Is the small-world model reasonable?

We have 100 friends, each of them has 100 other friends, . . . After 5
degrees we get 1010 friends > the Earth’s population (7.6 109 in 2018).
There should be many cross-links forming shortcuts.

V. Batagelj netR, basic models
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The Watts-Strogatz model

A regular circulant graph Gr on n nodes: each node is linked to its 2r
closest neighbors (r to each side).

Gr (structure) yields high clustering and high diameter:
cl(Gr ) = (3r − 3)/(4r − 2) and diam(Gr ) = n/(2r).

A random graph ER(n, p) with p = 2r/(n − 1) = O(1/n) (randomness)
yields low clustering and low diameter: cl(ER(n, p)) = O(1/n) and
diam(ER(n, p)) = O(log n).

V. Batagelj netR, basic models
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The Watts-Strogatz model

Watts-Strogatz small-world model: blend of structure with little
randomness:

Start with regular lattice that has desired clustering.
Introduce randomness to generate shortcuts in the graph – each edge is
randomly rewired (one of its end points moved to a new randomly chosen
node) with (small) probability p.

Netlogo Small world

V. Batagelj netR, basic models
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The Watts-Strogatz model

Simulation of Watts-Strogatz model with n = 1000 and r = 6:

Broad range of p ∈ [10−3, 10−1] yields small diam(G) and high cl(G).

V. Batagelj netR, basic models
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1 For large n it holds cl(G) ≈ cl(Gr )(1− p3).

2 degree distribution concentrated around 2r

3 The average path length decays very fast from that of a circulant
graph to approach that of a random network.

Is my network a small world network?

V. Batagelj netR, basic models
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Small worlds

Small worlds are a combination of two basic social-network ideas:
• Homophily: the principle that we connect to others who are like

ourselves, and hence creates many triangles.
• Weak ties: the links to acquaintances that connect us to parts of

the network that would otherwise be far away, and hence the kind of
widely branching structure that reaches many nodes in a few steps

Small-world graph models are particularly relevant to ‘communication’ in
a broad sense:
• spread of news, gossip, rumors;
• spread of natural diseases and epidemics;
• search of content in peer-to-peer networks.

V. Batagelj netR, basic models
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Generative models

The ER model generates networks with Poisson degree distributions.
However, it has been empirically observed that many networks in the
real-world have a fat-tailed degree distribution of some kind, which varies
greatly from the distribution observed for ER random networks.

In the static network models we have seen until now some parameters
are fixed (e.g., number of nodes, number of edges, degree distribution
etc.) and we study the properties of the graph (e.g., path lengths,
component sizes etc.) .

The generative network models model the mechanism that drive the
network formation. If the structures resemble real world structures, then
this mechanism might be at work in real networks.

V. Batagelj netR, basic models
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Price model

Price [1] proposed an elegant model of formation of citation networks.
His model was inspired by the work of Hebert Simon, an economist who
proposed an explanation for the wealth distribution: people who have
more money already, gain more at a rate proportional to how much they
already have. This can lead to power law distribution for the wealth
(Rich-get-richer, cumulative advantage, preferential attachment, Matthew
effect).
• Every new paper (node) cites on average c (outdegree) other

papers;

• This newly appearing paper cites previously published papers:
• with probability a a uniformly selected random paper, or

otherwise
• at random with probability proportional to the number of

citations those previous papers have.

V. Batagelj netR, basic models
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Price model

1 Price model creates acyclic graphs.

2 expected number of nodes with in-degree q
Let pq(n) be the fraction of vertices that have in-degree q in a
network with n nodes (after n steps). It satisfies the master equation

(n + 1)pq(n + 1) = npq(n) +
c(q − 1 + a)

c + a
pq−1(n)− c(q + a)

c + a
pq(n)

with a special case, for q = 0

(n + 1)p0(n + 1) = np0(n) + 1− ca
c + a

p0(n)

V. Batagelj netR, basic models
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Price model

3 For asymptotic behavior of the degree distribution we use the
shorthand pq = pq(∞). From the master equation we get the
solution

pq =
B(q + a, 2 + a/c)

B(a, 1 + a/c)

where B(x , y) is the Euler’s beta function.
Since for large x , B(x , y) ≈ x−y Γ(y); for large values of in-degree
q: pq ≈ (q + a)−α or simply pq ≈ q−α, where α = 2 + a/c.

4 the probability that an outgoing arc attaches to vertex u is:
qu + a

n(c + a)

V. Batagelj netR, basic models



netR, basic
models

V. Batagelj

Erdös-Rényi
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Barabási–Albert model
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Barabási–Albert model

A simple model to generate networks in which the probability of finding a
node of degree d decays as a power law of the degree was put forward
by Barabási and Albert in 1999. We initialize with a small network with
m0 nodes. At each step we add a new node u to the network and
connect it to m ≤ m0 of the existing nodes v ∈ V . The probability of
attaching node u to node v is proportional to the degree of v . That is, we
are more likely to attach new nodes to existing nodes with high degree.
This process is known as preferential attachment.

Netlogo: Barabási-Albert

V. Batagelj netR, basic models
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Barabási–Albert model

1 The BA model is a special case of Price model with a = c.

2 The probability that a node has degree d ≥ d0 is given by

p(d) =
2d0(d0–1)

d(d + 1)(d + 2)
≈ d–3

That is, the distribution is close to a power law as illustrated in
figure (left and middle).

3 The cumulative degree distribution is P(d) ≈ d–2, illustrated on a
log–log scale in figure (right)

4 The expected value for the clustering coefficient, cl , approximates

d–1
8

log2 n
n

as n→∞
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5 The average path length is given
by

l̄ =
ln n − ln(d/2) − 1− γ

ln ln n + ln(d/2)
+

3
2

where again γ is the Euler-
Mascheroni constant.
For the same number of nodes
and average degree, BA networks
have smaller average path length
than their ER analogues. The
figure shows the change in the
average path length of random
networks created with the BA and
ER models as the number of
nodes increases.
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6 The density of eigenvalues
follows a triangle distribution

ρ(λ) =

 (λ+ 2)/4 –2 ≤ λ/r ≤ 0
(2 – λ)/4 0 ≤ λ/r ≤ 2
0 otherwise

See figure.

7 these networks are resilient
against random vertex or edge
removals (random attacks), but
quickly become disconnected
when large degree nodes
(Achilles’ heel) are removed
(targeted attacks).
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Scale-free networks

The BA model can be generalized to fit general power-law distributions
where the probability of finding a node with degree d decays as a
negative power of the degree: p(d) ≈ d–γ .

Because for these networks their degree distribution has no natural scale
they were named scale free networks.

p(ax1)

p(ax2)
=

p(x1)

p(x2)

For a discussion about the notion of scale-free network see Li et al.
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. . . Scale-free networks

In real-life networks vertices often also form groups – clustering.

Several improvements and alternative models were proposed that also
produce scale-free networks with some additional properties
characteristic for real-life networks: copying (Kleinberg 1999), combining
random and preferential attachment (Pennock et al. 2002), R-mat
(Chakrabarti et al. 2004), forest fire (Leskovec et al. 2005), aging, fitness,
nonlinear preferences, . . .
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. . . Scale-free networks – exponent

Problems: large variability at the end, line only on an interval, nonuniform
data density, . . .

Also the complementary cummulative distribution function is power law∫ ∞
x

Cx−τ = C
x1−τ

1− τ
Newman’s estimate

τ = 1 + n(
n∑

i=1

ln
xi

xmin
)−1

M. E. J. Newman: Power laws, Pareto distributions and Zipf’s law and
Power-law distributions in empirical data. Packages in R: igraph.
power, Pareto
Clauset: Toolkit for fitting, testing, and comparing power-law distributions
in empirical data; Power-law distributions in empirical data; Scale-free
networks are rare
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http://arxiv.org/PS_cache/cond-mat/pdf/0412/0412004v3.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0706/0706.1062v2.pdf
http://igraph.sourceforge.net/doc/R/power.law.fit.html
http://arxiv.org/abs/cond-mat/0412004
http://en.wikipedia.org/wiki/Pareto_distribution
http://tuvalu.santafe.edu/~aaronc/powerlaws
http://tuvalu.santafe.edu/~aaronc/powerlaws
https://arxiv.org/pdf/0706.1062.pdf
http://tuvalu.santafe.edu/~aaronc/slides/Broido_Clauset_2017_ScaleFreeNetsAreRare_NetSci.pdf
http://tuvalu.santafe.edu/~aaronc/slides/Broido_Clauset_2017_ScaleFreeNetsAreRare_NetSci.pdf
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See also

Matthew Effect: Wikipedia, When Do Matthew Effects Occur?
Epidemies: Barthélemy, Barrat, Pastor-Sattoras, Vespignani,
Complex Networks Collaboratory.
Searching: Adamic et al.
General: Center for Complex Network Research, Newman,
Borner, Sanyal, Vespignani.
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http://en.wikipedia.org/wiki/Matthew_effect
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1646328
http://arxiv.org/PS_cache/cond-mat/pdf/0410/0410330v1.pdf
http://cxnets.googlepages.com/
http://www.hpl.hp.com/shl/papers/review/reviewchap.pdf
http://www.nd.edu/~networks/
http://aps.arxiv.org/PS_cache/cond-mat/pdf/0303/0303516.pdf
http://nwb.slis.indiana.edu/papers/borner-2006-netsci.pdf
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Resources I

Allison, PD, de Solla Price, D, Belver C, Griffith MJ, Moravcsik JA
(May 1976): Lotka’s Law: A Problem in Its Interpretation and
Application. Social Studies of Science, Vol. 6, No. 2, pp. 269-276

Barabási, A.-L. and Albert, R., Emergence of scaling in random
networks, Science 286:509–512, 1999.

Batagelj, V, Brandes, U: Efficient generation of large random
networks. PHYS REV E 71 (3): - Part 2, 036113, 2005

Bollobás, B., Random Graphs, Cambridge University Press, 2001.

Clauset, Aaron (2017): CSCI 5352: Network Analysis and Modeling
WWW

Erdõs, P, Rényi A (1959): Publ. Math. Debrecen, 6, 290 .

Estrada, Ernesto and Knight, Philip A.: A First Course in Network
Theory. Oxford University Press, 2015.
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Resources II

Gilbert, E. N. (1959): Ann. Math. Stat. 30, 1141.

Goldenberg, Anna, Zheng, Alice X., Fienberg, Stephen E., Airoldi,
Edoardo M. (2009): A Survey of Statistical Network Models. ArXiV.

Mateos, Gonzalo (2018): Course ECE442 – Network Science
Analytics. University of Rochester. WWW

Murphy, Phil: rPubs. WWW

Pelechrinis, Konstantinos (2015): 2125: Network Science and
Analysis. WWW

Watts, D.J., Strogatz, S.H., Collective dynamics of ‘small-world’
networks, Nature 393:440–442, 1998.
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http://www2.ece.rochester.edu/~gmateosb/ECE442.html
https://rpubs.com/pjmurphy/
http://www.pitt.edu/~kpele/tele2125_spring15.html
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