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Where do cohesive subgroups come from and what do they do?

The first and most general behavioural hypothesis merely states that
similar people tend to interact more easily and people who interact tend
to become or perceive themselves as more similar provided that the
interaction is characterized as positive, friendly, and so on. In SNA, this
tendency is mainly known as homophily, a concept coined by Paul F.
Lazarsfeld and Robert K. Merton, but it is known under other names in
several scientific disciplines, e.g., the phenomenon of attribution and
affect control in social-psychology, assortative or selective mixing in
epidemiology and ecology, and assortative mating in genetics.

If we concentrate on the graph theoretical aspects of this behavioural
hypothesis, that is, the structure of ties, and take the (dis)similarities
among the actors for granted, we find several characteristics of local
structures that measure cohesive subgroup formation. At the level of a
pair of actors, reciprocity of ties in directed networks (arcs) signals
subgroup formation: both actors are hypothesized to choose each other
when they are similar.
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At the level of the triple, transitivity results from tendencies toward
cohesion. If actor u establishes a tie with actor v because they are
similar, and actor v establishes a tie to actor w for the same reason,
actors u and w are also similar, so actor u is expected to establish a tie
with w as well, creating a so-called transitive triad. Stated differently, the
path from u via v to w is closed by an arc from u to w . In general, the
closure of paths or semipaths both in directed and undirected networks
signals cohesive subgroup formation at the local level. Closure within an
ego-network may be calculated as the percentage of all possible ties
among a vertex’ neighbours that are present, which is one of the
definitions of the clustering coefficient. The concept of closure can be
extended beyond a vertex’ immediate neighbors.
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If we include measured attributes of the vertices in our indicators of
cohesive subgroup formation, we can calculate homophily quite simply
as the probability or ratio of ties between vertices that share a particular
characteristic to ties between vertices that do not. Extending this idea to
the ego-network, the homogeneity of actors involved in an ego-network
may be taken as a measure of tendencies toward homophily.

For qualitative attributes of the actors, Blau’s index of variability or
heterogeneity, B = 1−

∑
p2

i , can be used, where pi is the proportion of
group members in a particular category. It is conceptually related to the
Herfindahl-Hirschman Index in economics measuring the extent of
monopoly within an industry. It is interesting to note that Blau’s theory
hypothesizes that heterogeneity rather than homogeneity of actors within
a group enhances the operation and efficiency of the group. If improving
group efficiency is the aim of actors, we would have to use a behavioural
hypothesis that is quite the opposite of the homophily hypothesis.

WP: diversity
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In addition to homophily, there is a second behavioural hypothesis related
to cohesion in SNA. This hypothesis is based on the idea that social
action is embedded in networks. Named after the sociologist Georg
Simmel, Simmelian ties are ties that are embedded in other ties, e.g.,
business ties are embedded in family ties, or in complete triads and
cliques. Embedded ties are hypothesized to enforce group norms and
enhance trust, hence pressure people into the same behaviour because
there are parallel ties or because the two actors involved in a tie share
common neighbours who supervise their behaviour. In the Florentine
families example, we see that eight out of fifteen business ties are
backed up by marriage alliances.
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Three dyadic isomorphism classes for directed graphs:
• null dyads have no arcs
• asymmetric dyad has an arc between the two nodes going in one

direction or the other, but not both.
• mutual dyads have two arcs between the nodes, one going in one

direction, and the other going in the opposite direction.

reciprocity =
# mutual
# non-null

V. Batagelj netR, patterns
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Valued reciprocity

Traditional studies defined reciprocity in a very simple, but fundamentally
limited, way. A dyad was reciprocal if both partners nominated one
another as friends, or, in the tradition of “balance theory”, if it was found
that the relationship had the same valence (positive or negative) for both
participants. Dyads were viewed as nonreciprocal either when one
partner reported considering the other one a friend or a close associate
and the other did not, or if one partner displayed positive sentiments
towards a partner who felt negatively towards him or her. The
fundamental hypothesis of balance concerned a dynamic prediction: over
time ties that were imbalanced were expected either to become balanced
or to dissolve.
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This definition of “reciprocity” fit very well with the representation of social
networks in early graph theory as consisting of binary (1,0) edges
connecting two nodes. Analysts can then establish the level of reciprocity
in the network via the so-called dyadic census, otherwise known as the
UMAN classification. The phenomenon of dyadic reciprocity at the level
of the whole network has been studied by comparing the relative
distribution of asymmetric and mutual dyads in a graph. Non-reciprocity
is high if the proportion of asymmetric dyads is larger than would be
obtained by chance in a graph with similar topological properties (for
instance a graph with the same number of vertices and edges).

The idea here is that low status actors direct nominations towards
high-status actors with those nominations unlikely to be returned;
reciprocal nominations, on the other hand, should be more common
among actors of comparable rank. If one actor initiates all directed
communication attempts while the other actors initiates none, then
reciprocity is not defined (Ruv =∞), which is consistent with the intuition
that there can be no definition of reciprocity when there is no actual
two-way relationship to speak of.
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In spite of its utility, the binary classification of dyads into three types
misses one of the most important features of a dyadic relationship: the
relative frequency of contact between the two partners.

A more empirically accurate definition of reciprocity can only be obtained
in the context of a weighted graph [14] . Consistent with the notion of
reciprocity as balance, this index should have the following properties:

1 it should be at a minimum (indicating reciprocity) when the weight of
the directed arc going from vertex u to vertex v approaches the
weight of the directed arc going from vertex v to vertex u.

2 it should increase monotonically with the weight difference between
the two directed arcs.

3 it should normalize the weight difference to adjust for the fact that
some persons are simply more or less communicative than others
(they contact all of their partners more or less frequently).

4 the index should be the same irrespective of directionality
(Ruv = Rvu).

V. Batagelj netR, patterns
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One index that satisfies these conditions is:

Ruv = | ln puv − ln pvu|

With puv = wuv/wu+ where wuv is the weight corresponding to the arc
(u, v), and wu+ is the strength of the vertex u as given by
wu+ =

∑
v∈N(u) wuv .

A substantive interpretation of a reciprocity index based on the ratio of
normalized weights is that a dyad is reciprocal when two persons have
the same probability of communicating with one another.

Ruv = | ln wuv wv+

wvuwu+
|

The first idealized condition that we can consider is an equidispersion
regime. Under this condition, persons distribute their communicative
activity equally across partners – under this regime the expected directed
weights are given by: wuv = wu+/outdeg(u) or puv = 1/outdeg(u).
Finally, the reciprocity equation simplifies to:

Ruv = | ln outdeg(u)− ln outdeg(v)|.
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Triads

 

  

1 - 003

 

  

2 - 012

 

  

3 - 102

 

  

4 - 021D

 

  

5 - 021U

 

  

6 - 021C

 

  

7 - 111D

 

  

8 - 111U

 

  

9 - 030T

 

  

10 - 030C

 

  

11 - 201

 

  

12 - 120D

 

  

13 - 120U

 

  

14 - 120C

 

  

15 - 210

 

  

16 - 300

Let G = (V,R) be a simple
directed graph without loops.
A triad is a subgraph induced
by a given set of three nodes.
There are 16 nonisomorphic
(types of) triads. They can
be partitioned into three ba-
sic types:

• the null triad 003;

• dyadic triads 012 and
102; and

• connected triads:
111D, 201, 210, 300,
021D, 111U, 120D,
021U, 030T, 120U,
021C, 030C and
120C.

Network/Info/Triadic Census
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Triadic spectrum

Moody

Several properties of
a graph can be ex-
pressed in terms of its
triadic spectrum – dis-
tribution of all its tri-
ads. It also provides
ingredients for p∗ net-
work models.

A direct approach to
determine the triadic
spectrum is of order
O(n3); but in most
large graphs it can
be determined much
faster.
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Structural indices

Given a set of units (descriptions of objects) E and their structural
property P (e.g. size, connectivity, reciprocity, etc.) which is described by
an intuitive or empirical relation P

XPY ≡ unit X is less-P than unit Y

We say that the mapping i :
E → R is an index measuring
the property P if it satisfies the
condition

XPY ⇔ i(X ) < i(Y )

and possibly some other condi-
tions reflecting transformations
on units.

V. Batagelj netR, patterns
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Each index induces a ”dimension” in the ”space” of units. From figure we
see that unit B is closer to A than to C with respect to the property P; but
in the ”space” the unit B is closer to C than to A.

With few exceptions the inverse way to define an index is usually used.
This leads to the interpretation problem: For a given index i what is the
meaning of the corresponding property P?

V. Batagelj netR, patterns
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Let E be a set of units. Quantitatively we describe the resemblance
(association, similarity) between units by a function (resemblance
measure)

r : (X ,Y ) 7→ R

Many examples of resemblances for different types of units can be found
in any book on data analysis and related topics [7].
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For r to be a resemblance, we require that it is symmetric:

P1. ∀X ,Y ∈ E : r(X ,Y ) = r(Y ,X )

and that it has either the property:

P2.a ∀X ,Y ∈ E : r(X ,X ) ≤ r(X ,Y ),

or the property:

P2.b ∀X ,Y ∈ E : r(X ,X ) ≥ r(X ,Y ).

A resemblance which satisfies condition P2.a is called forward (straight)
and denoted by d ; it is called backward (reverse) and denoted by s if it
satisfies condition P2.b.

V. Batagelj netR, patterns
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In the set of unordered pairs of units E2 = {[X ,Y ] : X ,Y ∈ E},
[X ,Y ] = [Y ,X ], a resemblance r induces the ordering�r as follows:

[X ,Y ]�r [U,V ] ≡ r(X ,Y ) < r(U,V )

The relation�r is a strict partial order. Resemblances r and s are
(order) equivalent, r ∼= s, iff: �r=�s or �r=�−1

s . ∼= is an equivalence
relation. Also:

Theorem: Let f : r(E × E)→ R be a strictly increasing/decreasing
function and r a resemblance. Then

s(X ,Y ) = f (r(X ,Y )) for all X ,Y ∈ E

is also a resemblance and s ∼= r .

An important consequence of this theorem is that every backward
resemblance measure s can always be transformed by
d(X ,Y ) = −s(X ,Y ) into an order equivalent forward resemblance
measure d . Therefore in the following we can limit our discussion to
forward resemblances.

V. Batagelj netR, patterns
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Forward resemblances usually have the property:

P3.a ∃ r∗ ∈ R ∀X ∈ E : r(X ,X ) = r∗.

In this case we can define a new resemblance d :

d(X ,Y ) = r(X ,Y )− r∗

which is order equivalent to r and has the properties:

R1. ∀X ,Y ∈ E : d(X ,Y ) ≥ 0;
R2. ∀X ∈ E : d(X ,X ) = 0;
R3. ∀X ,Y ∈ E : d(X ,Y ) = d(Y ,X ).

A resemblance d satisfying properties R1, R2 and R3 is called a
dissimilarity. Many data analysis algorithms deal with dissimilarities.

V. Batagelj netR, patterns
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Dissimilarities

For some dissimilarities, additional properties hold:

R4. evenness: d(X ,Y ) = 0 ⇒ ∀Z : d(X ,Z ) = d(Y ,Z );
R5. definiteness: d(X ,Y ) = 0 ⇒ X = Y ;
R6. triangle inequality : d(X ,Y ) ≤ d(X ,Z ) + d(Z ,Y );
R7. ultrametric inequality : d(X ,Y ) ≤ max(d(X ,Z ), d(Z ,Y ));
R8. Buneman’s inequality or four-points condition:

d(X ,Y ) + d(U,V ) ≤ max(d(X ,U) + d(Y ,V ), d(X ,V ) + d(Y ,U));
R9. translation invariance: Let (E ,+) be a group

d(X ,Y ) = d(X + Z ,Y + Z ).

These properties are related in the following way:
R7⇒ R6⇒ R4⇐ R5 and R8⇒ R6.

Dissimilarity d which has also the properties R5 and R6 is called a
distance. Monotone hierarchical clustering algorithms transform
dissimilarities into ultrametric dissimilarities. Dissimilarities satisfying
Buneman’s inequality are tree distances – distances between units are
the shortest path lengths in some tree.

V. Batagelj netR, patterns
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Dissimilarities usually take values in the interval [0, 1] or in the interval
[0,∞]. They can be transformed one into the other by mappings:

d
1− d

: [0, 1]→ [0,∞] and
d

1 + d
: [0,∞]→ [0, 1],

or in the case dmax <∞ by

d
dmax

: [0, dmax ]→ [0, 1].

To transform distance into distance we often use the mappings:

log(1 + d), min(1, d) and d r , 0 < r < 1.
Not

all resemblances are dissimilarities. For example, the correlation
coefficient has the interval [1,−1] as its range. We can transform it to the
interval [0, 1] by mappings:

1
2 (1− d),

√
1− d2, 1− |d |, . . .

V. Batagelj netR, patterns
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When applying these transformations to a measure d we wish that the
nice properties of d were preserved. In this respect the following
theorems should be mentioned:

Theorem: Let d be a dissimilarity on E and let a mapping
f : d(E × E)→ R+

0 has the property f (0) = 0, then d ′(X ,Y ) = f (d(X ,Y ))
is also a dissimilarity.

Theorem: Let d be a distance on E and let the mapping
f : d(E × E)→ R has the properties:

(a) f (x) = 0⇔ x = 0,
(b) x < y ⇒ f (x) < f (y),
(c) f (x + y) ≤ f (x) + f (y),

then d ′(X ,Y ) = f (d(X ,Y )) is also a distance and d ′ ∼= d .

All concave functions have also the sub-additivity property (c).
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The following concave functions satisfy the last theorem:

(a) f (x) = αx , α > 0, (b) f (x) = log(1 + x), x ≥ 0,
(c) f (x) = x

1+x , x ≥ 0, (d) f (x) = min(1, x),
(e) f (x) = xα, 0 < α ≤ 1, (f) f (x) = arcsin x , 0 ≤ x ≤ 1.

Theorem: Let d : E × E → R has the property Ri , i = 1, ..., 7, then f (d),
f ∈ (a)-(f) also has this property.

Some operations preserve properties Ri , i = 1, ..., 7:

Theorem: Let d1 : E1 × E1 → R and d2 : E2 × E2 → R have property Ri ,
then (d1 +p d2)((X1,X2), (Y1,Y2)) =

p
√

a · d1(X1,Y1)p + b · d2(X2,Y2)p,
a, b > 0 also has property Ri , i = 1, . . . , 5, 7 for p > 0; and also has
property R6 for p ≥ 1 over E1 × E2.

The theorem holds also in the case when E1 = E2 and X1 = X2, Y1 = Y2.

V. Batagelj netR, patterns
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How to define dissimilarities between structured objects?

Given an index i , we can always define a dissimilarity

di(X ,Y ) = |i(X )− i(Y )|

It has also the property R6.

The main drawback of so defined dissimilarity is its unidimensionality – it
compares units only with respect to selected property measured by the
index i . This deficiency can be overcome by combining dissimilarities
based on different indices using the previous theorem. Coefficients a and
b can be used to “tune” the influence of each property.
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To a structured object X we assign its description – a vector consisting of
values of selected structural indices. The dissimilarity between objects is
then defined as some (standard) dissimilarity between their descriptions.
The selection of this dissimilarity depends on our problem and types of
scales in which the properties are measured. In the case of different
types of scales Gower’s dissimilarity is often used gower.dist.

The main problems in this approach are:
• completness: do we consider all (for our purposes) important

properties of units?
• ”correlations”: are there some relations among the selected

properties/indices?
• weighting: is the right level of importance given to all indices

combined in the dissimilarity?

V. Batagelj netR, patterns
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If a selected pattern or fregment determined by a given graph
does not occur frequently in a sparse network the straightforward
backtracking algorithm applied for pattern searching finds all
appearences of the pattern very fast even in the case of very
large networks. Pattern searching was successfully applied to
searching for patterns of atoms in molecula (carbon rings) and
searching for relinking marriages in genealogies.

Damianus/Georgio/
Legnussa/Babalio/

Marin/Gondola/
Magdalena/Grede/

Nicolinus/Gondola/
Franussa/Bona/

Marinus/Bona/
Phylippa/Mence/

Sarachin/Bona/
Nicoletta/Gondola/

Marinus/Zrieva/
Maria/Ragnina/

Lorenzo/Ragnina/
Slavussa/Mence/

Junius/Zrieva/
Margarita/Bona/

Junius/Georgio/
Anucla/Zrieva/

Michael/Zrieva/
Francischa/Georgio/

Nicola/Ragnina/
Nicoleta/Zrieva/

Three connected relinking mar-
riages in the genealogy (repre-
sented as a p-graph) of ragusan
noble families. A solid arc indi-
cates the is a son of relation,
and a dotted arc indicates the
is a daughter of relation. In
all three patterns a brother and a
sister from one family found their
partners in the same other fam-
ily.

V. Batagelj netR, patterns
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Patterns

The basic question is what is considered as an appearance of a
pattern in a network. Is this an induced subnetwork isomorphic to
a given pattern; or the induced subnetwork has to contain a given
pattern as a subnetwork?

Additionally, three specific concepts of sub-graph appearance
have been proposed.

• A: considers all matches of a graph in original network;

• B: is searching for the maximum number of link-disjoint
instances of a given graph in original network;

• C: considers matches with disjoint links and nodes.

V. Batagelj netR, patterns
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. . . Pattern searching

To speed up the search or to consider some additional properties
of the pattern, a user can set some additional options:

• nodes in network should match with nodes in pattern in
some nominal, ordinal or numerical property (for example,
type of atom in molecula);

• values of edges must match (for example, edges
representing male/female links in the case of p-graphs);

• the first node in the pattern can be selected only from a
given subset of nodes in the network.

Networks/Fragment (First in Second)

V. Batagelj netR, patterns
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Relinking patterns in p-graphs

A3

A4.1
B4 A4.2

A5.1
A5.2

B5

A6.1
A6.2

A6.3

C6

B6.1 B6.2 B6.3

B6.4

A2

frag16.paj

All possible relinking marriages
in p-graphs with 2 to 6 nodes.
Patterns are labeled as follows:
• first character – number of

first nodes: A – single, B –
two, C – three.

• second character: number
of nodes in pattern (2, 3, 4,
5, or 6).

• last character: identifier (if
the two first characters are
identical).

Patterns denoted by A are ex-
actly the blood marriages. In ev-
ery pattern the number of first
nodes is equal to the number of
last nodes.

V. Batagelj netR, patterns
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Frequencies normalized with number of
couples in p-graph × 1000

pattern Loka Silba Ragusa Turcs Royal
A2 0.07 0.00 0.00 0.00 0.00
A3 0.07 0.00 0.00 0.00 2.64
A4.1 0.85 2.26 1.50 159.71 18.45
B4 3.82 11.28 10.49 98.28 6.15
A4.2 0.00 0.00 0.00 0.00 0.00
A5.1 0.64 3.16 2.00 36.86 11.42
A5.2 0.00 0.00 0.00 0.00 0.00
B5 1.34 4.96 23.48 46.68 7.03
A6.1 1.98 12.63 1.00 169.53 11.42
A6.2 0.00 0.90 0.00 0.00 0.88
A6.3 0.00 0.00 0.00 0.00 0.00
C6 0.71 5.41 9.49 36.86 4.39
B6.1 0.00 0.45 1.00 0.00 0.00
B6.2 1.91 17.59 31.47 130.22 10.54
B6.3 3.32 13.53 40.96 113.02 11.42
B6.4 0.00 0.00 2.50 7.37 0.00
Sum 14.70 72.17 123.88 798.53 84.36

Most of the relinking marriages happened in the genealogy of Turkish
nomads; the second is Ragusa while in other genealogies they are much
less frequent.
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http://vlado.fmf.uni-lj.si/pub/networks/data/esna/ragusa.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/GED/P-Tur.GED
http://vlado.fmf.uni-lj.si/pub/networks/pajek/GED/royal/Royal92.zip
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Bipartite p-graphs: Marriage among
half-cousins
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Pattern counting using matrices

In the book [8] a long list of formulae for counting small subgraphs is
given.

In physics they denote degrees by k .
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Pattern counting using matrices
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Motifs

Network motifs are sub-graphs that repeat themselves in a
specific network or even among various networks. Each of these
sub-graphs, defined by a particular pattern of interactions
between vertices, may reflect a framework in which particular
functions are achieved efficiently. Indeed, motifs are of notable
importance largely because they may reflect functional properties.
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When H ⊆ G and there exists an isomorphism between the
sub-graph H and a graph F , this mapping represents an
appearance of F in G. The number of appearances of graph F in
G is called the frequency of F in G. It is denoted by fG(H).

A graph F is called recurrent (or frequent) in G, when its
frequency fG(F ) is above a predefined threshold or cut-off value.
There is a class Ω(G) of random graphs corresponding to the
null-model associated to G. We should choose N random graphs
uniformly from Ω(G) and calculate the frequency for a particular
frequent sub-graph F in G. If the frequency of F in G is higher
than its arithmetic mean frequency in N random graphs Ri , where
1 ≤ i ≤ N, we call this recurrent pattern significant and hence
treat F as a network motif for G.
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Motifs

For a small graph F , the network G and a set of randomized
networks R(G) ⊆ Ω(G), where |R(G)| = N, the Z -Score that has
been defined by the following formula:

Z (F ) =
fG(F )− µR(F )

σR(F )

where µR(F ) and σR(F ) stand for mean and standard deviation
frequency in set R(G), respectively. The larger the Z (F ), the
more significant is the sub-graph F as a motif.

V. Batagelj netR, patterns



netR, patterns

V. Batagelj

Subgroups

Dyads

Triads

Indices and
dissimilarities

Patterns

Motifs

Graphlets

Other

Resources

Motifs

Alternatively, another measurement in statistical hypothesis
testing that can be considered in motif detection is the p-value,
given as the probability of fR(F ) ≥ fG(F ) (as its null-hypothesis),
where fR(F ) indicates the frequency of F in a randomized
network. A sub-graph with p-value less than a threshold
(commonly 0.01 or 0.05) will be treated as a significant pattern.
The p-value is defined as

P(F ) =
1
N

N∑
i=1

δ(c(i)) with c(i) ≡ f i
R(F ) ≥ fG(F )

Where N indicates number of randomized networks, i is defined
over a class of randomized networks and the Kronecker delta
function δ(c(i)) is one if the condition c(i) holds.
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The concentration of a particular n-size sub-graph F in network G
refers to the ratio of the sub-graph appearance in the network to
the total n-size non-isomorphic sub-graphs’ frequencies, which is
formulated by

CG(F ) =
fG(F )∑
i fG(Gi )

where index i is defined over the set of all non-isomorphic n-size
graphs.

Another statistical measurement is defined for evaluating network
motifs, but it is rarely used in known algorithms. This
measurement is introduced by Picard et al. in 2008 and used the
Poisson distribution, rather than the Gaussian normal distribution
that is implicitly being used above.
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Motifs

Many studies/applications in biology.
No attention yet to “forbiden” motifs (see triads).
R: igraph::motifs
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Graphlets

Graphlets are small connected non-isomorphic induced
subgraphs of a large network. Graphlets differ from network
motifs, since they must be induced subgraphs, whereas motifs
are partial subgraphs. An induced subgraph must contain all
edges between its nodes that are present in the large network,
while a partial subgraph may contain only some of these edges.

Graphlets were first introduced by Nataša Pržulj.
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Graphlets with 2–5 nodes
and automorphism orbits

Nodes of the same color belong to the same orbit within that graphlet.
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Relative graphlet frequency distance

RGF-distance compares the frequencies of the appearance of all
3-5-node graphlets in two networks.
Let Ni(G) be the number of graphlets of type i ∈ {0, . . . , 29} in network
G, and let T (G) =

∑29
i=0 Ni(G) be the total number of graphlets of G. The

”similarity” between two graphs should be independent of the total
number of nodes or edges, and should depend only upon the differences
between relative frequencies of graphlets. Thus, relative graphlet
frequency distance D(G,H) between two graphs G and H is defined as:

D(G,H) =
29∑

i=0

|Fi(G)− Fi(H)|

where Fi(G) = − log(Ni(G)/T (G)). The logarithm of the graphlet
frequency is used because frequencies of different graphlets can differ by
several orders of magnitude and the distance measure should not be
entirely dominated by the most frequent graphlets.
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Graphlet degree distribution agreement

The degree distribution measures the number of nodes of degree k in
graph G, i.e., the number of nodes ”touching” k edges, for each value of
k . Note that an edge is the only graphlet with two nodes. GDDs
generalize the degree distribution to other graphlets: they measure for
each 2-5-node graphlet Gi , i = 0, 1, ..., 29, such as a triangle or a square,
the number of nodes ”touching” k graphlets Gi at a particular node. A
node at which a graphlet is ”touched” is topologically relevant, since it
allows us to distinguish between nodes ”touching”, for example, a three
node path at an end node or at the middle node. This is summarized by
automorphism orbits (or just orbits, for brevity): by taking into account the
”symmetries” between nodes of a graphlet, there are 73 different orbits
across all 2-5-node graphlets.
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Graphlet degree distribution agreement

For each orbit j , one needs to measure the j th GDD, dGj(k), i.e., the
distribution of the number of nodes in G ”touching” the corresponding
graphlet at orbit j k times. Clearly, the degree distribution is the 0th GDD.

dGj(k) is scaled as S j
G(k) =

d j
G(k)
k to decrease the contribution of larger

degrees in a GDD and then normalized with respect to its total area
T j

G =
∑∞

k=1 S j
G(k) giving the ”normalized distribution”

N j
G(k) =

S j
G(k)

T j
G

.
The j th GDD-agreement compares the j th GDDs of two networks. For
two networks G and H and a particular orbit j , the ”distance” Dj(G,H)
between their normalized j th GDDs is:

Dj(G,H) =
1√
2
(
∞∑

k=1

[N j
G(k)− N j

H(k)]
2)

1
2

.
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Graphlet degree distribution agreement

The distance is between 0 and 1, where 0 means that G and H have
identical j th GDDs, and 1 means that their j th GDDs are far away. Next,
Dj(G,H) is reversed to obtain the j th GDD-agreement:

Aj(G,H) = 1− Dj(G,H),

for j ∈ {0, 1, . . . , 72}.
The total GDD-agreement between two networks G and H is the
arithmetic or the geometric average of the jth GDD-agreements over all j ,
i.e.,

Aarith(G,H) =
1

73

72∑
j=0

Aj(G,H),

and

Ageo(G,H) =

 72∏
j=0

Aj(G,H)

 1
73

,

respectively. GDD-agreement is scaled to always be between 0 and 1,
where 1 means that two networks are identical with respect to this
property.
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Graphlet degree vectors (signatures) and
signature similarities

The signature similarity is computed as follows. For a node u in graph G,
ui denotes the i th coordinate of its signature vector, i.e., ui is the number
of times node u is touched by an orbit i in G. The distance Di(u, v)
between the i th orbits of nodes u and v is defined as:

Di(u, v) = wi ×
|log(ui + 1)− log(vi + 1)|

log(max{ui , vi}+ 2)
,

where wi is the weight of orbit i that accounts for dependencies between
orbits. The total distance D(u, v) between nodes u and v is defined as:

D(u, v) =
∑72

i=0 Di∑72
i=0 wi

.

The distance D(u, v) is in [0, 1), where distance 0 means that signatures
of nodes u and v are identical. Finally, the signature similarity, S(u, v),
between nodes u and v is:

S(u, v) = 1− D(u, v).

Clearly, a higher signature similarity between two nodes corresponds to a
higher topological similarity between their extended neighborhoods (out
to distance 4).
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Graphlets

The notion of graphlets can be extended to directed networks but their
number increases considerably paper1, paper2, paper3.
Orca / R
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https://www.nature.com/articles/srep35098
https://www.nature.com/articles/srep37057
http://www.dcc.fc.up.pt/~pribeiro/pubs/pdf/aparicio-tcbb2016.pdf
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Inductive definitions

[5] [10]
Jason Vallet: Where Social Networks, Graph Rewriting and
Visualisation Meet : Application to Network Generation and
Information Diffusion page
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Transformations

Preserve degrees in nodes.

A dissimilarity between two networks can be defined also as a shortest
(weighted) transformations path leading from first to the second.
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Resources I

Batagelj, Vladimir : Similarity measures between structured objects.
A. Graovac (ed.): Proceedings of MATH/CHEM/COMP 1988.
Studies in Physical and Theoretical Chemistry, vol. 63. Amsterdam:
Elsevier, 25-40 1989. paper

Batagelj, V, Bren, M: Comparing similarity measures. J Classif 12
(1): 73-90 1995 paper

Batagelj, V: Dissimilarities between structured objects – fragments.
1991. preprint

Batagelj, V., Mrvar, A. (2001). A subquadratic triad census algorithm
for large sparse networks with small maximum degree. Social
Networks, 23, 237-243.

Batagelj, V: Inductive classes of cubic graphs. Proceedings of the
6th Hungarian Colloquium on Combinatorics: Finite and infinite sets,
Eger, Hungary, p. 89-101. paper
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http://vlado.fmf.uni-lj.si/vlado/papers/SimStrOb.pdf
http://vlado.fmf.uni-lj.si/vlado/papers/Compare.pdf
http://vlado.fmf.uni-lj.si/doc/vb/fragmentsPr.pdf
[[http://vlado.fmf.uni-lj.si/vlado/papers/cubicEger.pdf
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Resources II

Bressan, Marco, Chierichetti, Flavio, Kumar, Ravi, Leucci, Stefano,
Panconesi, Alessandro: Counting Graphlets: Space vs Time.
WSDM ’17 Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining Cambridge, United Kingdom —
February 06 - 10, 2017, Pages 557-566

Deza, Michel Marie, Deza, Elena: Encyclopedia of Distances.
Springer 2009.

Estrada, Ernesto, Knight, Philip A.: A First Course in Network
Theory. Oxford UP, 2015.

Hočevar, Tomaž, Demšar, Janez: A combinatorial approach to
graphlet counting. Bioinformatics, Volume 30, Issue 4, 15 February
2014, Pages 559–565, https://doi.org/10.1093/bioinformatics/btt717

Kejžar, N., Nikoloski, Z., Batagelj, V.: Probabilistic Inductive Classes
of Graphs. Journal of Mathematical Sociology 32: 85-109, 2008.
paper
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Resources III

Keržič, D, Jerman Blažič, B, Batagelj, V: Comparison of three
different approaches to the property prediction problem. J. Chem.
Inf. Comput. Sci., 1994, 34 (2), pp 391–394. paper

Milo, R, Shen-Orr, S, Itzkovitz, S, Kashtan, N, Chklovskii, D, Alon, U:
Network Motifs: Simple Building Blocks of Complex Networks.
Science, 298, October 2002, p. 824-827.

Pržulj, Nataša: Biological network comparison using graphlet
degree distribution. Bioinformatics, Volume 23, Issue 2, 15 January
2007, Pages e177–e183,
https://doi.org/10.1093/bioinformatics/btl301

Wang, Cheng; Lizardo, Omar; Hachen, David; Strathman, Anthony;
Toroczkai, Zoltan; Chawla, Nitesh V.: A dyadic reciprocity index for
repeated interaction networks. Network Science, Vol 1, Issue 1 April
2013 , pp. 31-48.

Pajek: http://mrvar.fdv.uni-lj.si/pajek/
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https://pubs.acs.org/doi/pdf/10.1021/ci00018a026
http://mrvar.fdv.uni-lj.si/pajek/
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Resources IV

Pajek history June 15, 1997: Reduction of flow graphs, searching
fragments (in moleculae or graphs)

Wikipedia: Motifs

Wikipedia: /Graphlets
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http://mrvar.fdv.uni-lj.si/pajek/history.htm
https://en.wikipedia.org/wiki/Network_motif
https://en.wikipedia.org/wiki/Graphlets
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