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Semirings

Let K be a set and a, b, c elements from K. A semiring is an algebraic
structure (K,⊕,�, 0, 1) with two binary operations (addition ⊕ and
multiplication �) where:
• (K,⊕, 0) is an abelian monoid with the neutral element 0 (zero):

a⊕ b = b ⊕ a commutativity
(a⊕ b)⊕ c = a⊕ (b ⊕ c) associativity
a⊕ 0 = a existence of zero

• (K,�, 1) is a monoid with the neutral element 1 (unit):

(a� b)� c = a� (b � c) associativity
a� 1 = 1� a = a existence of a unit

• Multiplication � distributes over addition ⊕:

a� (b ⊕ c) = a� b ⊕ a� c
(b ⊕ c)� a = b � a⊕ c � a

In formulas we assume precedence of multiplication over addition.
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. . . Semirings

A semiring (K,⊕,�, 0, 1) is complete iff the addition is well defined for
countable sets of elements and the commutativity, associativity, and
distributivity hold in the case of countable sets.

These properties are generalized in this case; for example, the
distributivity takes the form(⊕

i

ai

)
�

⊕
j

bj

 =
⊕

i

⊕
j

(ai � bj )

 =
⊕

i,j

(ai � bj ).

The addition is idempotent iff a⊕ a = a for all a ∈ K. In this case the
semiring over a finite set K is complete.

The power an, n ∈ N of an element a ∈ K is defined by a0 = 1 and
an+1 = an � a for n ≥ 0.
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. . . Semirings

A semiring (K,⊕,�, 0, 1) is closed iff for the additional (unary) closure
operation ∗ it holds for all a ∈ K:

a∗ = 1⊕ a� a∗ = 1⊕ a∗ � a.

A strict closure is defined as ā = a� a∗.

Different closures over the same semiring can exist. A complete semiring
is always closed for the closure

a∗ =
⊕
k∈N

ak .

In a semiring (K,⊕,�, 0, 1) the absorption law holds iff for all a, b, c ∈ K:

a� b ⊕ a� c � b = a� b.

Because of the distributivity, it is sufficient for the absorption law to check
the property 1⊕ c = 1 for all c ∈ K.
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Examples of semirings

Combinatorial Semiring (N,+, ·, 0, 1)
This is the most commonly used semiring. Also some other sets are
used: R,R+

0 ,Q. For N = N ∪ {∞}, the semiring is closed for
a∗ =

∑
k∈N ak because it is a complete semiring. An example of a

closure for R = R ∪ {∞} is a∗ = 1/(1− a) for a 6= 1,∞ and 0∗ = 1,
1∗ =∞, and∞∗ =∞. It is commutative. It is not idempotent.

Reachability Semiring ({0, 1},∨,∧, 0, 1)
The logical (boolean, reachability) semiring is suitable for solving the
connectivity questions in networks. The multiplication is commutative and
the absorption law holds. It is closed for a∗ = 1 ∨ a ∧ a∗ = 1.

Shortest Paths Semiring (R+
0 ,min,+,∞, 0)

The semiring is commutative and closed for a∗ = min(0, a + a∗) = 0 (0 is
the smallest element in the set R+

0 ). Since min(0, a) = 0, the absorption
law also holds. For the set N, the semiring is called a tropical semiring.
Another set is R and in this case the semiring is isomorphic (x → −x) to
max-plus semiring (R ∪ {−∞},max,+,−∞, 0).
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. . . Examples of semirings

Pathfinder Semiring (R+
0 ,min, r ,∞, 0)

The multiplicative operation is the Minkowski operation
a r b = r

√
ar + br . This semiring is closed for a∗ = 0 and the absorption

law holds in it.

In Pathfinder algorithm the value r for the Minkowski operation is
selected according to a dissimilarity measure. For a value r = 1, the
semiring is the shortest path semiring, and for a value r =∞, the
semiring is the min-max semiring.

> r = 2
> ’%Pf+%’ <- function(a,b){return(min(a,b))}
> ’%Pf*%’ <- function(a,b){return((aˆr+bˆr)ˆ(1/r))}
> 3 %Pf+% 4
[1] 3
> 3 %Pf*% 4
[1] 5
> Pf0 <- Inf
> Pf1 <- 0
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Matrices over semirings

An m × n matrix A = [aij ] over a set K is a rectangular array of elements
from the set K that consists of m rows and n columns. The entry in the
i-th row and j-th column is denoted by aij . If m = n the matrix A is called
a square matrix. The matrix with all entry values equal to 0 is called the
zero matrix and is denoted by 0mn.

The transpose of a matrix A is a matrix AT in which the rows of A are
written as the columns of AT : aT

ij = aji . A square matrix A is symmetric if
A = AT .

A diagonal matrix is a square matrix A such that only diagonal elements
are nonzero: aij = 0, for i 6= j . If aii = 1, i = 1, . . . , n, a diagonal matrix is
called the identity matrix In of order n. A square matrix A is upper
triangular if aij = 0, i > j , and its transpose is a lower triangular matrix.
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. . . Matrices over semirings

LetMmn(K) be a set of matrices of order m × n over the semiring
(K,⊕,�, 0, 1) in which we additionally require

∀a ∈ K : a� 0 = 0� a = 0,

and letM(K) be a set of all matrices over the K.

The operations ⊕ and � can be extended to theM(K):

A,B ∈Mmn(K) : A⊕ B = [auv ⊕ buv ] ∈Mmn(K)

A ∈Mmk (K),B ∈Mkn(K) : A� B = [
⊕k

t=1 aut � btv ] ∈Mmn(K).

Then:
• (Mmn(K),⊕, 0mn) is an abelian monoid.
• (Mn2 (K),�, In) is a monoid.
• (Mn2 (K),⊕,�, 0n, In) is a semiring.

For matrices A and B, it holds

(A� B)T = BT � AT .
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Networks and matrices

Let N = ((I,J ),A,w) be a simple two-mode network, where I and J
are (sub)sets of nodes, V = I ∪ J . We assume that the set of nodes is
finite V = {v1, v2, . . . , vn}. A ⊆ I × J is a set of arcs (directed links)
linking I and J , and the mapping w : A → K is the arcs value function
also called a weight. We can assign to a network its value matrix
W = [wij ] with elements

wij =

{
w((i , j)) (i , j) ∈ A

0 otherwise.

The problem with value matrices in computer applications is their size.
The value matrices of large networks are sparse. There is no need to
store the zero values in a matrix, and different data structures can be
used for saving and working with value matrices: special dictionaries and
lists.
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Network multiplication

Let NA = ((I,K),AA,wA) and NB = ((K,J ),AB,wB) be a pair of
networks with corresponding matrices AI×K and BK×J , respectively.
Assume also that wA : AA → K,wB : AB → K, and (K,⊕,�, 0, 1) is a
semiring. We say that such networks/matrices are compatible.

The product NA ?NB of networks NA and NB is a network
NC = ((I,J ),AC,wC) for AC = {(i , j); i ∈ I, j ∈ J , cij 6= 0} and
wC((i , j)) = cij for (i , j) ∈ AC, where C = [cij ] = A� B.

If all three sets of nodes are the same (I = K = J ), we are dealing with
ordinary one-mode networks (square matrices).
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Network multiplication

When do we get an arc in the product network?

cij =
⊕
k∈K

aik � bkj .

There is an arc (i , j) ∈ AC iff cij is nonzero. Therefore at least one term
aik � bkj is nonzero, but this means that both aik and bkj should be
nonzero, and thus (i , k) ∈ AA and (k , j) ∈ AB (see figure):

cij =
⊕

k∈NA(i)∩N−B (j)

aik � bkj ,

where NA(i) are the successors of node i in the network NA and N−B (j)
are the predecessors of node j in the network NB. The value of the entry
cij equals to the value of all paths (of length 2) from i ∈ I to j ∈ J
passing through some node k ∈ K.

Multiplication is about “traveling” on network.
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Network multiplication

!
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#
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A B

ai,k

bk,j
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Network multiplication

The standard procedure to compute the product of matrices AI×K and
BK×J has the complexity O(|I| · |K| · |J |) and is therefore too slow to be
used for large networks. Since the matrices of large networks are usually
sparse, we can compute the product of two networks much faster
considering only nonzero entries:

for k ∈ K do
for i ∈ N−A (k) do

for j ∈ NB(k) do
i f ∃cij then

cij = cij ⊕ aik � bkj

else
cij = aik � bkj

In general the multiplication of large sparse networks is a “dangerous”
operation since the result can “explode” – it is not sparse. In many cases
also the result is sparse [3].
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The Algebraic Path Problem

The use of a special semiring and a multiplication of networks can lead
us to the essence of the shortest path problem [1]. Many other network
problems can be solved by replacing the usual addition and multiplication
with the corresponding operations from an appropriate semiring.

Let N = (V,A,w) be a network where w : A → K is the value (weight)
of arcs such that (K,⊕,�, 0, 1) is a semiring. We denote the number of
nodes as n = |V| and the number of arcs as m = |A|.

A finite sequence of nodes σ = (u0, u1, u2, . . . , up−1, up) is a walk of
length p on N iff every pair of neighboring nodes is linked: (ui−1, ui ) ∈ A,
i = 1, . . . , p. A finite sequence σ is a semiwalk or chain on N iff every
pair of neighboring nodes is linked neglecting the direction of an arc:
(ui−1, ui ) ∈ A ∨ (ui , ui−1) ∈ A, i = 1, . . . , p. A (semi)walk is closed iff its
end nodes coincide: u0 = up. A walk is simple or a path iff no node
repeats in it. A closed walk with different nodes, except first and last, is
called a cycle.
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Semiring operations and values of walks

u v u v

u v u vt

w(σ1)⊕w(σ2)

w(σ1)⊙w(σ2)w(σ1) w(σ2)

w(σ2)

w(σ1)
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Extending the weight

We can extend the weight w to walks and sets of walks on N by the
following rules (see figure):
• Let σv = (v) be a null walk in the node v ∈ V; then w(σv ) = 1.
• Let σ = (u0, u1, u2, . . . , up−1, up) be a walk of length p ≥ 1 on N ;

then

w(σ) =
k⊙

i=1

w(ui−1, ui ).

• For empty set of walks ∅ it holds w(∅) = 0.
• Let S = {σ1, σ2, . . .} be a set of walks in N ; then

w(S) =
⊕
σ∈S

w(σ).
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Concatenation

Let σ1 and σ2 be compatible walks on N : the end node of the walk σ1 is
equal to the start node of the walk σ2. Such walks can be concatenated
in a new walk σ1 ◦ σ2 for which holds

w(σ1 ◦ σ2) =

{
w(σ1)� w(σ2) σ1 andσ2 are compatible
0 otherwise.

Let S1 and S2 be finite sets of walks; then

w(S1 ∪ S2)⊕ w(S1 ∩ S2) = w(S1)⊕ w(S2).

In the special case when S1 ∩ S2 = ∅, it holds
w(S1 ∪ S2) = w(S1)⊕ w(S2). Also the concatenation of walks can be
generalized to sets of walks:

S1 ◦ S2 = {σ1 ◦ σ2 : σ1 ∈ S1, σ2 ∈ S2, σ1 andσ2 are compatible}.

It also holds S ◦ ∅ = ∅ ◦ S = ∅.
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Sets of walks

We denote by:
• Sk

uv the set of all walks of length k from node u to node v
• S(k)

uv the set of all walks of length at most k from node u to node v
• S∗uv the set of all walks from node u to node v
• Suv the set of all nontrivial walks from node u to node v
• Euv the set of all simple walks (paths) from node u to node v

The following relations hold among these sets:

Sk
uv ⊆ S

(k)
uv ⊆ S∗uv

k 6= l ⇔ Sk
uv ∩ S l

uv = ∅

S(k)
uv =

k⋃
i=0

S i
uv , S∗uv =

∞⋃
k=0

Sk
uv

k ≥ n − 1 : Euv ⊆ S(k)
uv

w(S(k)
uv ) =

k∑
i=0

w(S i
uv ).
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Unique factorization

A set of walks S is uniquely factorizable to sets of walks S1 and S2 iff
S = S1 ◦ S2, and for all walks σ1, σ

′
1 ∈ S1, σ2, σ

′
2 ∈ S2, σ1 6= σ′1, σ2 6= σ′2, it

holds σ1 ◦ σ2 6= σ′1 ◦ σ′2.

For example, for s, 0 < s < k , a nonempty set Sk
uv is uniquely

factorizable to sets Ss
u• and Sk−s

•v , where Ss
u• =

⋃
t∈V S

s
ut , etc.

Theorem: Let the finite set S be uniquely factorizable to S1 and S2 or a
semiring is idempotent. Then it holds

w(S1 ◦ S2) = w(S1)� w(S2).

2

The k -th power Wk of a square matrix W over K is unique because of
associativity.
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The k -th power of value matrix

Theorem: The entry wk
uv of k -th power Wk of a value matrix W is equal to

the value of all walks of length k from node u to node v :

w(Sk
uv ) = Wk [u, v ] = wk

uv .

2
Attention, wk

ij is not the k -th power of wij !!!
Proof by induction. It holds for k = 0 and k = 1.
Induction step: k ⇒ k + 1. Let K denote the set of indices of nodes that can be
reached from the node vi by a walk of length k and an arc leads from them to the
node vj . If K = ∅ then also Sk+1

ij = ∅ and therefore wk+1
ij = 0. In the other case

K 6= ∅. Because each walk of length k + 1 is uniquely factorizable to a walk of
length k and walk of length 1 we have:

w(Sk+1
ij ) =

∑
t∈K

w(Sk+1
i(t)j ) =

∑
t∈K

w(Sk
it ◦ S

1
tj ) =

=
∑
t∈K

w(Sk
it ) · w(S1

tj ) =
∑
t∈K

wk
it · wtj =

n∑
t=1

wk
it · wtj = wk+1

ij

2
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Matrices and sets of walks

Therefore if a network N is acyclic, then it holds for a value matrix W:

∃k0 : ∀k > k0 : Wk = 0,

k0 is the length of the longest walk in the network.

If W is the network adjacency matrix over the combinatorial semiring, the
entry wk

uv counts the number of different walks of length k from u to v .

Let us denote

W(k) =
k⊕

i=0

Wi .

In an idempotent semiring, it holds W(k) = (1⊕W)k .

Theorem: w(S(k)
uv ) = W(k)[u, v ] = w (k)

uv . 2

For the combinatorial semiring and the network adjacency matrix W, the
entry w (k)

uv counts the number of different walks of length at most k from u
to v .
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. . . Matrices and sets of walks

The matrix semiring over a complete semiring is also complete and
therefore closed for W∗ =

⊕∞
k=0 Wk .

Theorem: For a value matrix W over a complete semiring with closure
W∗ and strict closure W hold:

w(S∗uv ) = W∗[u, v ] = w∗uv and
w(Suv ) = W[u, v ] = wuv .

2

For the reachability semiring and the network adjacency matrix W, the
matrix W is its transitive closure.

For the shortest paths semiring and the network value matrix W, the
entry w∗uv is the value of the shortest path from u to v .
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Each walk contains path

Let (K,⊕,�, 0, 1) be an absorptive semiring
and σ be a nonsimple walk from a set S∗uv .
Therefore at least one node vj appears more
than once in σ. The part of a walk between
its first and last appearance is a closed walk
C (see figure). The whole walk can be writ-
ten as σ = P◦C◦Q where P is the initial seg-
ment of σ from u to the first appearance of vj ,
and Q is the terminal segment of σ from the
last appearance of vj to v . Note that P ◦Q is
also a walk. The value of both walks together
is w({P ◦ Q,P ◦ C ◦ Q}) = w(P ◦ Q). We
see that the walks that are not paths do not
contribute to the value of walks. Therefore
w(S∗uv ) = w(Euv ). This equality holds also
for S∗uv = ∅.

Since the node set V is finite, also the set Euv is finite which allows us to
compute the value w(S∗uv ). We already know that W∗ = W(k) = (1⊕W)k

for k large enough.
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Fletcher’s algorithm

To compute the closure matrix W∗ of a given matrix W over a complete
semiring (K,⊕,�, 0, 1), we can use the Fletcher’s algorithm [8]:

C0 = W
for k = 1, . . . , n do

for i = 1, . . . , n do
for j = 1, . . . , n do

ck [i , j] = ck−1[i , j]⊕ ck−1[i , k ]� (ck−1[k , k ])∗ � ck−1[k , j]
ck [k , k ] = 1⊕ ck [k , k ]

W∗ = Cn

If we delete the statement ck [k , k ] = 1⊕ ck [k , k ], we obtain the algorithm
for computing the strict closure W. If the addition ⊕ is idempotent, we
can compute the closure matrix in place – we omit the subscripts in
matrices Ck . If the absorption law holds we have further a? = 1. In
general case we need two matrices.

The Fletcher’s algorithm is a generalization of a sequence of algorithms
(Kleene, Warshall, Floyd, Roy) for computing closures on specific
semirings.
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Betweenness

Important are also the nodes that can control the information flow
in the network. If we assume that this flow uses only the shortest
paths (geodesics) we get a measure of betweenness (Anthonisse
1971, Freeman 1977)

b(v) =
1

(n − 1)(n − 2)

∑
u,t∈V:gu,t>0
u 6=v,t 6=v,u 6=t

gu,t (v)

gu,t

where gu,t is the number of geodesics from u to t ; and gu,t (v) is
the number of those among them that pass through node v .

For computation of geodesic matrix see Brandes.

Network/Create Vector/Centrality/Betweenness
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Geodesic semiring

In the set A = (R+
0 ∪ {∞})× (N ∪ {∞}) we define operations:

addition:

(a, i)⊕ (b, j) = (min(a,b),

 i a < b
i + j a = b
j a > b

)

and multiplication: (a, i)� (b, j) = (a + b, i · j) .

The obtained structure is a complete and closed semiring.

(a, i)? =

{
(0,∞) a = 0, i 6= 0
(0,1) otherwise
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Betweenness and geodesic semiring

From matrices of shortest distances [du,v ] and number of
geodesics [gu,v ] we can get also values gu,v (t) as follows:

gu,v (t) =

{
gu,t · gt,v du,t + dt,v = du,v
0 otherwise

For a simultaneous computation of both matrices [(du,v ,gu,v )] we
can use the Fletcher’s algorithm over the geodesic semiring
applied on a coupled matrix:

(d ,n)u,v =

{
(1,1) (u, v) ∈ A
(∞,0) (u, v) /∈ A

V. Batagelj netR, matrices



netR, matrices

V. Batagelj

Semirings

Matrices over
semirings

Networks and
matrices

Real matrices

Markov chains

Resources

Betweenness in R

mat.geodesics <- function(m)
{ n <- nrow(m)

md <- m; md[m==0] <- Inf; mc <- m; mc[m>0] <- 1
for(k in 1:n) { for(u in 1:n){ for(v in 1:n){

dst <- md[u,k] + md[k,v]
if(md[u,v] >= dst) {

cnt <- mc[u,k]*mc[k,v];
if (md[u,v] == dst) {mc[u,v] <- mc[u,v] + cnt }
else{ md[u,v] <- dst; mc[u,v] <- cnt }

}}}}
return(list(dis=md,cnt=mc))

}
vec.Closeness <- function(dis)
{ n <- nrow(dis); return((n-1)/rowSums(dis)) }
vec.Betweenness <- function(dis,cnt){
n <- nrow(dis); bw <- rep(0,n)
for (v in 1:n) {

b <- 0
for(u in 1:n) { for(w in 1:n) {

if((cnt[u,w] > 0) && (u != w) && (u != v) && (v != w) &&
((dis[u,v] + dis[v,w]) == dis[u,w]))

{b <- b + cnt[u,v]*cnt[v,w] / cnt[u,w]}
}}
bw[v] <- b/((n-1)*(n-2))

}
return(bw)

}
vec.betweenness <- function(m)
{mt <- mat.geodesics(m); return(vec.Betweenness(mt$dis,m$tcnt))}
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Medieval Russia trade network

Pitts network

> setwd("C:/Users/batagelj/Documents/papers/2018/moskva/NetR/nets/rivers")
> pitts <- read.paj("PittsGeo.net")
> list.vertex.attributes(pitts)
> R <- as.matrix(pitts); nam <- rownames(R)
> x <- pitts %v% "x"; y <- pitts %v% "y"
> Geo <- mat.geodesics(R)
> Gcl <- vec.Closeness(Geo$dis); names(Gcl) <- nam
> Gbw <- vec.Betweenness(Geo$dis,Geo$cnt); names(Gbw) <- nam
> q <- order(Gbw,decreasing=TRUE)
> cbind(bw=Gbw[q],cl=Gcl[q])

bw cl
Kolomna 0.351141367 0.3584906
Moskva 0.341112917 0.3486239
Ksnyatin 0.296721534 0.3166667
Kozelsk 0.214065569 0.3220339
Dorogobuzh 0.189087584 0.3089431
Tver 0.159225767 0.2923077
Vladimir 0.157159791 0.2814815
Vyazma 0.141979950 0.3304348
Bryansk 0.116639572 0.2878788
> plot(Gbw,Gcl,pch=16,col="red",xlim=c(-0.02,0.35),
+ main="Pitts - binary")
> text(Gbw,Gcl,nam,cex=0.5)

For the binary network Kolomna has larger betweenness than Moskva.
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. . . Medieval Russia trade network

Let’s try to compute the betweenness considering geographical
distances among places:

> mat.dist <- function(R,x,y){
+ n <- nrow(R); D <- R
+ for(i in 1:n) { for(j in 1:n) {
+ if(R[i,j]>0) D[i,j] <- sqrt((x[i]-x[j])ˆ2+(y[i]-y[j])ˆ2)

}}
+ return(D)
+ }
> Deo <- mat.geodesics(mat.dist(R,x,y))
> Dcl <- vec.Closeness(Deo$dis); names(Dcl) <- nam
> Dbw <- vec.Betweenness(Deo$dis,Deo$cnt); names(Dbw) <- nam
> p <- order(Dbw,decreasing=TRUE)
> cbind(bw=Dbw[p],cl=Dcl[p])

bw cl
Moskva 0.238975818 0.21250622
Ksnyatin 0.217638691 0.19895479
Kolomna 0.207681366 0.20971455
Dorogobuzh 0.170697013 0.18185725
Kozelsk 0.159317212 0.19084617
Mozhaysk 0.145092461 0.20713976
Dedoslavl 0.133712660 0.19798117
Tver 0.132290185 0.19174094
Vyazma 0.129445235 0.19372181
Bryansk 0.109530583 0.17079453
> plot(Dbw,Dcl,pch=16,col="red",xlim=c(-0.02,0.24),
+ main="Pitts - distance")
> text(Dbw,Dcl,nam,cex=0.5)
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Multiplication of Matrix and Vector

Let ei be a unit vector of length n – the only nonzero element is at the i-th
position and it is equal to 1. It is essentially a 1× n matrix. The product
of a unit vector and a value matrix of a network can be used to calculate
the values of walks from a node i to all the other nodes.

Let us denote qT
1 = eT

i �W. The values of elements of the vector q1 are
equal to the values of walks of the length 1 from a node i to all other
nodes: q1[j] = w(S1

ij ). We can calculate iteratively the values of all walks
of the length s, s = 2, 3, . . . , k that start in the node i : qT

s = qT
s−1 �W or

qT
s = eT

i �Ws and qs[j] = w(Ss
ij ).

Similarly we get q(k)T
= eT

i �W(k), q(k)[j] = w(S(k)
ij ) and

q∗T = eT
i �W∗, q∗[j] = w(S∗ij ).

This can be generalized as follows. Let I ⊆ V and eI is the characteristic
vector of the set I – it has value 1 for elements of I and is 0 elsewhere.
Then, for example, for qT

k = eT
I �Wk , it holds qk [j] = w(

⋃
i∈I S

k
ij ).

How to in Pajek? Temporal networks, TQ

V. Batagelj netR, matrices

http://vladowiki.fmf.uni-lj.si/doku.php?id=tq


netR, matrices

V. Batagelj

Semirings

Matrices over
semirings

Networks and
matrices

Real matrices

Markov chains

Resources

Permutation matrices

A permutation matrix is a matrix in which every row and column
contains precisely a single 1 with 0s everywhere else. A
permutation matrix of permutation π is

pij =

{
1 π(i) = j
0 otherwise

Matrices A and B are permutation-similar, A ≡ B, iff there exists a
permutation matrix P such that B = P · A · PT .

Permutation-similarity of matrices is an equivalence relation.

Matrices of isomorphic graphs are permutation-similar.
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Inverse matrix

A square matrix A is called singular iff det A = 0.
For a nonsingular matrix A there always exists a unique matrix B
such that AB = 1. It is called the inverse matrix of matrix A and is
denoted by A−1. It holds

AA−1 = A−1A = 1

(AB)−1 = B−1A−1

In R we can get the inverse matrix of A using the function
solve(A).
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Eigenvalues and eigenvectors

Let for a square matrix A exist a number λ and a vector x 6= 0 such that

Ax = λx

then λ is called an (right, column) eigenvalue and x an eigenvector of
matrix A.

An eigenvector is determined up to positive scaling.Usually the factor is
selected so that ||x|| =

√
xT x = 1.

All eigenvalues are solutions of the equation det(A− λ1) = 0. In general
case they can be also complex numbers.

Let T be a nonsingular square matrix and B = T−1AT. Then matrices A
and B have the same eigenvalues.

In R we get eigenvalues and eigenvectors using the function eigen(A),
or eigen(A,only.values=TRUE) if we need only eigenvales.
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. . . Eigenvalues and eigenvectors

Let Λ = diag(λ1, λ2, λ3, . . . , λn) and V = [x1,x2,x3, . . . ,xn] be a
matrix composed of corresponding eigenvectors. Then it holds

AV = VΛ

If all eigenvalues are different the corresponding eigenvectors are
independent and therefore the matrix V is nonsingular. We get

V−1AV = Λ or A = VΛV−1

Let T−1AT = Λ. Then also T−1Ak T = Λk = diag(λk
i ). Therefore

matrices A and Ak have the same eigenvectors.

The relation Ak = TΛk T−1 can be used for efficient computation of
powers of matrix Ak .
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. . . Eigenvalues and eigenvectors

Consider now A? =
∑∞

k=0 Ak

T−1A?T =
∞∑

k=0

Λk = diag(
∞∑

k=0

λk
i )

If for all |λi | < 1 we get

T−1A?T = diag(
1

1− λi
) or A? = (1− A)−1

Left (or row) eigeinvectors satisfy the equation yA = λy. We
collect left eigenvectors in a matrix U. We have

UA = ΛU or UAU−1 = Λ

Therefore, selecting appropriate multipliers, we get

U = V−1 or UV = 1
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Eigenvalues of symmetric matrices

All eigenvalues of symmetric matrix are real numbers.

The corresponding eigenvectors are orthogonal – for every pair of
eigenvectors x 6= cy it holds xT y = 0.

A matrix T is called orthogonal iff TT = T−1.

For a symmetric matrix A we have V−1AV = Λ where V is an
orthogonal matrix and Λ a real matrix.
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Non-negative matrices

We say that a real matrix A = [aij ] is

• positive, if ∀i , j : aij > 0

• non-negative, if ∀i , j : aij ≥ 0

A non-negative matrix is irreducible if its graph is strongly
connected, and is primitive if it is also aperiodic.
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Perron Frobenius theorem

Let A be a non-negative matrix. It has the (Perron Frobenius)
eigenvalue λ∗ and the associated eigenvector x∗ such that:
a. λ∗ is a non-negative real number;
b. for any other eigenvalue λ we have |λ| ≤ λ∗;
c. the eigenvector x∗ is non-negative
If A is irreducible then also
d. if y ≥ 0, y 6= 0 is a vector and µ is a number such that Ay ≤ µy
then y > 0 and µ ≥ λ∗ with µ = λ∗ iff y is a multiple of x.
a’. the eigenvalue λ∗ is positive with multiplicity 1;
c’. eigenvector x∗ is positive;
e. eigenvector x∗ is the only non-negative eigenvector;
f. let s = mini

∑
j aij and S = maxi

∑
j aij . Then either s < λ∗ < S

or λ∗ = s = S. Similarly for columns.
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Markov chains

A square matrix P is stochastic iff it is nonegative and its rows sum to 1.
A product of stochastic matrices is again a stochastic matrix. A power of
stochastic matrix is a stochastic matrix.

A (discrete time, finite) Markov chain (MC) has for its transition matrix a
stohastic matrix. It can be represented by the corresponding transition
network (graph). Nodes of MC are ususlly called states. A strong
component of transition network is said to be terminal if no arc is leaving
it. The states of MC can be partitioned into:
• transient – not in terminal strong component;
• recurrent (or persistent) – belongs to a terminal strong component.

They can be further partitioned to aperiodic (p = 1) and periodic
(p > 1).

There is always at least one recurrent state.

Entry pk
ij of the k -th power of transition matrix Pk is equal to the

probability that the process starting in state vi is after k steps in state vj .
Let p(k) = p(0)Pk . Then p(k)i is equal to the probability that after k
steps the process is in state vi if the selection of starting state is based
on distribution p(0).
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Regular Markov chains

A MC with a single strong component is called ergodic
(irreducible). An ergodic MC is regular iff all its states are
aperiodic.

In a regular MC the power matrix Pk tends with increasing k to
the matrix W that has all its rows equal to the stochastic vector w
satisfying the equation wP = w. The vector w is positive. It holds
PW = WP = W. For an arbitrary initial stochastic vector p(0)
vectors p(k) = p(0)Pk tend to the vector w – a stationary
distribution.

To compute the vector w we rewrite the equation wP = w as
PT wT = wT or (PT − 1)wT = 0. These equations are not
independent, but we have an additional relation

∑
wi = 1 to

complete the system. To get the vector w we solve the system.
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Ergodic MCs

A sequence of matrices Ai is Cesaro-summable to a matrix A iff

lim
k→∞

1
k

k∑
i=1

Ai = A

For ergodic MCs hold in Cesaro sense the same properties as for regular
MCs.

The fundamental matrix of an ergodic MC is

Z = (1− (P−W))−1

The matrix Z always exists and it holds (for periodic)

Z = 1 +
∞∑
i=1

(Pi −W)
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An application of the fundamental matrix

Let E = [eij ] be a matrix with:

• eij , i 6= j expected number of steps to reach the first time the
state vj starting in state vi ;

• eii expected number of steps to return the first time to the
starting state vi ;

It is called the mean first passage time matrix. It holds

E = (1− Z + J · diag(Z)) · diag(
1
wi

)

where J is a square matrix with all entries 1. For diagonal entries
we have eii = 1

wi
.
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An application of the fundamental matrix in R

# summer weather
# F.S. Roberts: Discrete mathematical models, p.267
S <- c( 1/3, 1/2, 1/6,

1/2, 1/3, 1/6,
1/3, 1/3, 1/3 )

n <- c(’hot’,’moderate’,’cool’)
S <- matrix(nrow=3,byrow=T,dimnames=list(n,n),data=S)

n <- nrow(S)
A <- t(S)-diag(n); A[n,] <- rep(1,n)
b <- rep(0,n); b[n] <- 1
w <- solve(A,b)
W <- matrix(nrow=n,ncol=n,byrow=T,w,dimnames=dimnames(S))
Z <- solve(diag(n) - (S - W))
E <- (diag(n) - Z + matrix(nrow=n,ncol=n,byrow=T,diag(Z)))

%*% diag(1/w)
dimnames(E) <- dimnames(S)
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MCs with transient states

Terminal strong components in a MC are absorbing — when it is entered
it can not be leaved anymore. If we shrink strong components and
reorder the so obtained reduced transition matrix P by listing first all
absorbing states we get:

P =

[
1 0
R Q

]
For its powers we have:

Pk =

[
1 0

Rk Qk

]
The sequence Qk → 0 for k →∞. It always exists a matrix
N =

∑∞
i=0 Qi = (1−Q)−1. Its entry nij is equal to the expected time of

staying in state vj if starting in state vi .

The entry bij of the matrix B = NR is equal to the probability that the
process starting in a transient state vi will be absorbed by the absorbing
state vj ,
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MCs with transient states in R

# gambler’s ruin
# F.S. Roberts: Discrete mathematical models, p.268
p <- 1/3
G <- c( 1 , 0 , 0 , 0, 0,

1-p, 0 , p , 0, 0,
0 ,1-p, 0 , p, 0,
0 , 0 ,1-p, 0, p,
0 , 0 , 0 , 0, 1 )

n <- c(’$0’,’$1’,’$2’,’$3’,’$4’)
G <- matrix(nrow=5,byrow=T,dimnames=list(n,n),data=G)

n <- 5; m <- 2
G <- mat.perm(G,c(1,5,2,3,4))
Q <- G[(m+1):n,(m+1):n]
N <- solve(diag(n-m)-Q)
R <- G[(m+1):n,1:m]
B <- N %*% R
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Applications

Modeling sequences of events.
Population slides
Google slides
Zweig, page 104 - Generating networks
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Resources I

Baras JS, Theodorakopoulos G (2010) Path problems in networks.
Morgan & Claypool, Berkeley

Batagelj, V.: Semirings for Social Networks Analysis. Journal of
Mathematical Sociology, 19(1994)1, 53-68.

Batagelj V, Cerinšek M (2013) On bibliographic networks.
Scientometrics 96(3):845–864

Batagelj V, Praprotnik S (2016) An algebraic approach to temporal
network analysis based on temporal quantities. Social Network
Analysis and Mining 6(1): 1-22

Carré B (1979) Graphs and networks. Clarendon, Oxford

Cerinšek M, Batagelj V (2018) Semirings and Matrix Analysis of
Networks. in Reda Alhajj and Jon Rokne, Encyclopedia of Social
Network Analysis and Mining. Springer.
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Resources II

Grinstead CM and Snell JL (2003): Introduction to Probability.
(Chapter 11: Merkov chains). AMS. WWW

Fletcher JG (1980) A more general algorithm for computing closed
semiring costs between vertices of a directed graph. Commun ACM
23(6): 350–351 MathSciNet

Gondran M, Minoux M (2008) Graphs, dioids and semirings: new
models and algorithms. Springer, New York

Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, New
Jersey, 1960. Amazon.

Kemeny, J.G., Snell, J.L., Thompson, G.L.: Introduction to Finite
Mathematics. WWW.

Kepner J, Gilbert J (2011) Graph algorithms in the language of
linear algebra. SIAM, Philadelphia

Lancaster, K.: Mathematical Economics. Dover, 2011
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Resources III

Roberts, F.S.: Discrete Mathematical Models. Prentice-Hall, New
Jersey, 1976. Amazon.
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foundations of Pathfinder networks. Comput Math Appl
15(4):337–345. MathSciNet
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