Exploratory data analysis

Cleaning and exploring the data

Vladimir Batagelj

IMFM Ljubljana, IAM UP Koper, NRU HSE Moscow

$$
\begin{aligned}
& \text { Master's programme } \\
& \text { Applied Statistics with Social Network Analysis } \\
& \text { International Laboratory for Applied Network Research } \\
& \text { NRU HSE, Moscow } 2021
\end{aligned}
$$

B
 Outline

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

1 Cleaning
2 Exploring
3 Regression
4 Clustering
5 Solving the clustering problem

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si
Current version of slides (November 21, 2021 at 22 :31): slides PDF

B
 Cleaning the data

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

We collected the data in a CSV file. We can inspect them using a text editor or a spreadsheet program. We can also import them into R

```
> wdir <- "D:/vlado/EDA/data"
> setwd(wdir)
> booksF <- paste("https://raw.githubusercontent.com/bavla/",
    "HSE/master/EDA/newBooks.csv",sep="")
> T <- read.csv2(url(booksF),stringsAsFactors=FALSE)
> dim(T)
[1] 970 15
> nrow(T)
[1] }97
>ncol(T)
[1] 15
> head(T)
> tail(T)
> T[c(5,9,333),1:8]
    bID Amazon bind npag
```



```
9 9 1473952123 Paperback 248 SAGE 2017 English 6.7
333 332 1546640010 Paperback 74 CreateSpace 2017 English 6
```


Cleaning and exploring the data

EDA, clean and explore
V. Batagelj

Cleaning Exploring

Regression
Clustering

An informative view of a data frame is provided by the function str

$>\operatorname{str}(\mathrm{T})$		
'data.frame' :		
\$	bID	chr
\$	Amazon:	chr
\$	bind	chr
\$	npag	int
\$	pub	chr
\$	year	int
\$	lang	chr
\$	wid	chr
\$	thi	chr
\$	hei	chr
\$	duni	chr
\$	weig	chr
\$	wuni	chr
\$	pric	chr
	titl	chr

 970 obs. of 15 variables:
 "1" "2" "3" "4"
s strata.fr
0521840856" "0521387078" "1446247414" "0195379470"
"Hardcover" "Paperback" "Paperback" "Paperback"
$402857304264720 \quad 207 \quad 344744248 \quad 272$
"Cambridge University Press" "Cambridge University Press" "SAGE Publi
2004199420132011201020142005201020172011 ...
"English" "English" "English" "English" ...
"6" "6" "7.3" "9.2"
"1.1" "1.5" "0.7" "0.7"
"9"~"9" "9.1" "6.1"
"inches" "inches" "inches" "inches" ...
"1.4" "2.6" "1.4" "12.8"
"pounds" "pounds" "pounds" "ounces" . . .
"121.52" " 52.41 " "37.38" "20.75"
"Amazon. com: Generalized Blockmodeling (Structural Analysis in the Sc

The data obtained from our scraping program are "messy" - we need to clean them to be ready for analysis. This is true for most data obtained from different sources. After cleaning we explore the data to "get feeling" and ideas for analyses. Sometimes, if possible, we need to correct our scraping program and repeat the data collection. For larger data collections a test collection of a small sample is adwised.
It is useful to preserve a copy of original raw data. Many problems can be resolved by correcting the original data in its copy. From the corrected data we construct a data frame (or some other structure) for analyses.

Cleaning the data

EDA, clean and explore
V. Batagelj

Typical tasks in data cleaning

- correcting for unexpected values; consider extreme and influential units.
- normalization of values (dates in different formats; weights, money, lengths in different units; recategorization; unification: lower/upper case, nonASCII chars, \’ ; names (first, last)).
- factorization of ordinal and categorical variables.
- splitting variables (date \rightarrow year, month, day; name \rightarrow first, last).
- combining variables (year, month, day \rightarrow date).
- transforming variables (date \rightarrow day of week; Box-Cox (1, 2, 3)).
- combining, adding data from other sources (geographical coordinates).
- aggregating data.
- dealing with missing data.

Missing data

EDA, clean
and explore
V. Batagelj

There are different options to deal with missing data:

- do nothing, mark with NA.
- find the value and insert it.
- remove the unit (in creating clean data frame).
- impute a value (guess, mean value, random, nearest neighbor, interpolation)

Identity (entity resolution) problem

In dealing with data extracted from text sources we often encounter the identity problem. It has two parts:

- equivalence (different words/phrases representing the same term - synonyms); and
- ambiguity (same word/phrase representing different terms homonyms).

When dealing with names of people that include Chinese the "three Zhang, four Li" effect can make it to the surface.

The problem can be partially solved using dictionaries, considering context, using tools like stemming and lemmatization, etc.

For cleaning of Amazon data see the wiki page.

B

Amazon: old books - May 2012

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

A larger Amazon data set (more than 150000 books) is available at Github.

```
help(read.csv)
> getwd()
[1] "C:/Users/Batagelj/test/python/2012/amazon"
> setwd("C:/Users/Batagelj/test/python/2012/amazon")
> dat <- read.csv2("booksT.csv",header=FALSE,stringsAsFactors=FALSE)
> dim(dat)
[1] 16804
> names(dat)
    [1] "V1" "V2" "V3" "V4" "V5" "V6" "V7" "V8" "V9" "V10" "V11" "V12" "V13" "V
[16] "V16" "V17" "V18" "V19" "V20" "V21" "V22" "V23"
dat[c(3,7),]
```



```
7 7 5 60 140123206X Scott Snyder, Jock, Francesco Francavilla Batman: The Black Mirl
3 Simon & Schuster; First Edition "1st Printing edition 2011 Hardcover 656 35.0 16.8
7 DC Comics 2011 Hardcover 304 29.99 16.
    V13
3 \text { Biography/Autobiography§1955-2011§Biography§Businessmen§Computer engineers§Jobs, St}
7 \text { Comic books, strips, etc§Graphic novels§Comics \& Graphic Novels§Comics \& Graphic No}
    3 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23
7
------------------------
\begin{tabular}{lllll} 
V2 & lenQ & V5 & authors & V8 \\
V3 & lenK & V6 & title & V9
\end{tabular}
year
binding
                                Mean 3rd Qu. 
                                Mean 3rd Qu.i Max.
1 7
> summary(year)
        Min. 1st Qu. Median
```

pages listPrice price

2013

V11
V12

```
NA'S
```

```
NA'S
```

V13 subject V14-V23 neighbo

```
                            neighbo
```

```
> year <- dat$V8
```

```
> year <- dat$V8
```

```
                    2008
```



```
price
```


Amazon: data cleaning and exploration

EDA, clean and explore
 V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

```
> year <- dat$V8; pages <- dat$V10; binding <- dat$V9; price <- dat$V12
> isNA <- which(is.na(year)|is.na(pages)|is.na(binding)|is.na(price))
> year <- year[-isNA]; pages <- pages[-isNA]; binding <- binding[-isNA]
> typeof(price)
[1] "character"
> price <- as.numeric(price[-isNA])
> OK <- (0<pages)&(pages<2050) & (1900<year)&(year<2013) & (0<price)&(price<2000)
> table(OK)
OK
FALSE TRUE
    175915028
> pages <- pages[OK]; binding <- binding[OK]; year <- year[OK]; price <- price[OK]
> bind <- rep(3,length(binding))
> B1 <- c("Paperback","Perfect Paperback", "Mass Market Paperback")
> B2 <- c("Hardcover", "Bonded Leather", "Leather Bound", "Hardcover-spiral")
> bind[binding %in% B1] <- 1
> bind[binding %in% B2] <- 2
> table(bind)
> plot(density(pages))
> plot(density(year))
> plot(density(price[(0<price)&(price<60)]))
> plot(pages,price,col=c("red","blue","green") [bind],pch=16,cex=0.1)
```


Exploring the data

Exploration phase of data analysis gives us an initial insight in the data - we get feeling about variables and their relations. It also provides hypotheses for further analyses.

We usually start the exploration by looking at each variable separately (univariate). Besides numerical characteristics we use also visualizations according to the type of variable.

Later we look to relations among variables (multivariate). The two main types of relations are association (regression) and grouping (clustering).

B

Basic data visualization in R

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

> help(plot)

```
\(\rightarrow\) help(plot)
\(>\) (c <- Orange \([29: 35,2]\) )
[1] \(118 \quad 484 \quad 6641004123113721582\)
> b <- c("red","blue","black","green","magenta")
> plot (Orange [, 2], Orange [, 3], col=b[Orange[,1]], xlab="age",ylab="circum",
+ pch=20,cex=1.5,main="Orange trees")
> plot (Orange[,2],Orange[,3],xlab="age",ylab="circum",main="Orange trees",type="n")
\(>\) for (k in 1:5) \{points (c, Orange[(7*k-6): (7*k), 3], col=b[k],pch=20,type="b")\}
\(>\) text (300,200, "Growth")
```

Orange: 5 orange trees in 7 time points (tree, age, circumference).

Marks

EDA, clean and explore

V. Batagelj

Cleaning

Exploring
Regression
Clustering
Solving the clustering problem

Marks

	$9 \mapsto$	19 -	29
$\infty-$	8 *	18 *	28
	区	17 -	27
$\cdots-$		$16 \bullet$	26
	$5 \diamond$	15 ■	25∇
*	$4 \times$	$14 \square$	$24 \triangle$
	$3+$		
~	$2 \triangle$	12 \#	$22 \square$
	$1 \bigcirc$	11×8	
\bigcirc	$0 \square$		20 -
	,	1	-
	2	4	8

```
> plot (0:10, 0:10, type="n", main="Marks", xlab="",ylab="")
\(>\mathrm{k}<--1\)
\(>\) for(i in c(2,5,8))\{for(j in 0:9) \{
    \(\mathrm{k}<-\mathrm{k}+1\); text (i-0.75,j,k);points(i,j,pch=k, cex=2) \}\}
```


\mathfrak{B}

Colors

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

Spectral (divergent)

```
> colors()
    [1] "white" "aliceblue"
[655j] "yellow3"
> library(RColorBrewer)
> display.brewer.pal(11,'Spectral')
> help(rgb); help(palette); help(RColorBrewer)
> library(RColorBrewer)
> display.brewer.pal(11,'Spectral')
(palette); help(RColorBrewer)
```

"antiquewhite"
"yellowgreen"

Escaping RGBland

Categorical : numerical

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

> plot(Orange\$Tree, Orange\$circumference)

Categorical : numerical

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

$\begin{array}{cccccc}> & \text { table (mtcars } \\ 1 & 2 & 3 & 4 & 6 & 8 \\ 7 & 10 & 3 & 10 & 1 & 1\end{array}$
> barplot(table(mtcars\$carb))
> pie(table(mtcars\$carb))

Histogram of log(rivers)

> dotchart (table(mtcars\$carb))
> stripchart (mtcars\$carb,method="stack",pch=16)
> hist (log(rivers), prob=TRUE)
> lines(density(log(rivers)),col="red")
mtcars: 32 automobiles from the 1974 Motor Trend US magazine; carb - number of carburetors rivers: the lengths (in miles) of 141 "major" rivers in North America

Different displays

EDA, clean and explore

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

```
> attach(faithful)
> hist(waiting)
> summary(waiting)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    43.0 58.0 76.0 70.9 82.0 96.0
> bins <- seq(42,109,by=10)
> bins
[1] 42 52 62 72 82 92 102
> freqs <- table(cut(waiting,bins))
y <- c(0,freqs,0)
> x <- seq(37,107,by=10)
> plot(x,y,type="l")
> rug(waiting)
> hist(waiting,breaks="Scott",prob=TRUE,ylab="",main="Faithful")
> lines(density(waiting), col="blue",lwd=2)
> boxplot(rivers)
> plot(rev(rivers[order(rivers)]))
> boxplot(rivers)
> f <- fivenum(rivers)
> f
[1] 135 310 425 680 3710
> text(rep(1.3,5),f,labels=c("min","1/4","1/2","3/4","max"))
```

faithful: waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone: (eruptions, witing) .

B

Relations among variables

EDA, clean and explore

V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

Histogram of qsec

Histogram of mpg

> attach (mtcars)
$>$ pairs(mtcarsf,c(1, 3, 6, 7)])
> par (mfrow=c (1,2))
> hist (qsec, breaks="scott")
> hist (mpg, breaks="scott")
> par (mfrow=c $(1,1)$)
mtcars: mpg - miles/(US) gallon; disp - displacement (cu.in.); wt - weight (1000 lbs); qsec - $1 / 4$ mile time

Distribution using step function

EDA, clean and explore


```
> attach(faithful)
> n <- length(waiting)
> plot(sort(waiting),(1:n)/n,type="s",xlab="waiting",
+ ylab="F(waiting)",main="Distribution waiting")
> plot(ecdf(waiting)) # empirical cumulative distribution func.
```


Distributions in R

EDA, clean
V. Batagelj

Most of the standard distributions is available in R as functions. For a distribution dist are: ddist - density $g(x)$, pdist - cumulative $F(x)=\int_{-\infty}^{x} g(t) d t$, qdist - inverse quantille function $q=F^{-1}(p)$, rdist - random numbers distributed according to dist.

Examples of dist (use help): unif, beta, binom, cauchy, exp, chisq, f, gamma, geom, hyper, lnorm, logis, nbinom, norm, pois, signrank, t, weibull, wilcox. The function sample supports random sampling (replace=TRUE) from a given set.

B

Central limit theorem

EDA, clean and explore

V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem


```
> a <- sample(1:6,replace=TRUE,10000); b <- sample(1:6,replace=TRUE,10000)
> c <- sample(1:6,replace=TRUE,10000); s <- a+b+c
> hist(s,breaks=2.5:18.5,xlab="3 dices",ylab="freq",main="")
> d <- sample(1:6,replace=TRUE,10000); e <- sample(1:6,replace=TRUE,10000)
> s <- s+d+e; x <- seq(1,30,0.1)
> hist(s,breaks=4.5:30.5,xlab="5 dices",ylab="freq",main="")
> lines(x,dnorm(x,mean(s),sd(s))*10000,lwd=2,col="red")
```


Comparing distributions

EDA, clean and explore
V. Batagelj

Cleaning
Exploring Regression

Clustering
Solving the clustering problem

QQplot consists of points (x, y) over the domains of distributions F_{1} and F_{2}, such that $F_{1}(x)=F_{2}(y)$. For equal distributions they lie on the diagonal. In function QQnorm the distribution F_{1} is normal.

QQplot

QQnorm

> attach (mtcars)
> qqplot(qsec,wt,main="QQplot")
> qqnorm(qsec, ylab="qsec", main="QQnorm")

Models

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

With an expression $y \sim f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ we describe a model- relation between dependent variable and independent variables. There exist some functions that on the basis of data determine (parameters of) the function f optimizing some fit criterion: lm, gam, loess, lowess, ... The values of the model function in selected points are obtained using the function predict. The simplest model is the regression line:


```
> attach(mtcars) disp)
> res[[1]]
(Intercept) 0.007010325
> plot(wt ~ disp)
> abline(res,col="red",lwd=2)
> predict (res,list (disp=c(410,200)))
    4.474048 3.001880
```


Fitting the data

EDA, clean and explore
V. Batagelj

Cleaning

From the selected class of functions \mathcal{F} we would like to select one that fits the best our data $\left(x_{k}, y_{k}\right), k \in I$. Let's denote it with $f(x, a)$. a are parameters. The error in a point $\left(x_{k}, y_{k}\right)$ is equal to

$$
y_{k}=f\left(x_{k}, a\right)+\varepsilon_{k}
$$

These errors can be combined into a total error $E(f)$ in different ways

$$
\begin{aligned}
& E_{1}(f)=\sum_{k}\left|\varepsilon_{k}\right| \\
& E_{2}(f)=\sum_{k} \varepsilon_{k}^{2} \\
& E_{3}(f)=\max _{k}\left|\varepsilon_{k}\right| \\
& E_{4}(f)=\operatorname{lik}(f)=\prod_{k} f\left(x_{k}, a\right), \quad f \text { is a distribution }
\end{aligned}
$$

First three min; E_{4} max.

Fitting

EDA, clean

Instead with ε_{k} we can measure the point error also using some other quantities - ortogonal error ϱ_{k}.
For fitting distributions the maximum likelihood $\left(E_{4}\right)$ is usually used..

For general functions the least squares method $\left(E_{2}\right)$ is used. In many cases it allows to get the solution analitically. Its main weakness is that it is very sensitive to outliers. Using computers also other, more robust methods became an option.

Weighted fitting

EDA, clean and explore V. Batagelj

Cleaning
Exploring

$$
E(a)=\sum_{i} w_{i} \varepsilon_{i}^{2}=\sum_{i=1}^{n} w_{i}\left(f\left(x_{i}, a\right)-y_{i}\right)^{2}
$$

Measurements with precision $y_{i} \pm \sigma_{i}$; then $\varepsilon_{i}^{\prime}=\frac{\varepsilon_{i}}{\sigma_{i}}$

$$
E^{\prime}(a)=\sum_{i}\left(\varepsilon_{i}^{\prime}\right)^{2}=\sum_{i}\left(\frac{\varepsilon_{i}}{\sigma_{i}}\right)^{2}=\sum_{i} \frac{1}{\sigma_{i}^{2}} \varepsilon_{i}^{2}
$$

Therefore $\boldsymbol{w}_{i}=\frac{1}{\sigma_{i}^{2}}$.
Relative error: $y_{i}=f\left(x_{i}\right)\left(1+\delta_{i}\right)$

$$
\delta_{i}=\frac{y_{i}-f\left(x_{i}\right)}{f\left(x_{i}\right)} \approx \frac{y_{i}-f\left(x_{i}\right)}{y_{i}} \Rightarrow w_{i}=\frac{1}{y_{i}^{2}}
$$

Is there a functional relation between given variables?

EDA, clean and explore
V. Batagelj

Cleaning
Exploring

Let $p(X)=\left(p\left(x_{i}\right)\right)_{i=1}^{n}$ be a discrete pobability distribution. Its entropy is defined as

$$
H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \lg p\left(x_{i}\right)
$$

where $\lg \equiv \log _{2}$ and $p=0 \Rightarrow p \lg p=0$.
It holds $0 \leq H(X) \leq \lg n$. For $p\left(x_{k}\right)=1 ; p\left(x_{i}\right)=0, i \neq k$ we have $H=0$; and for $p\left(x_{i}\right)=\frac{1}{n}, i=1, \ldots, n$ we get $H=\lg n$. The normalized entropy $h(X)=\frac{H(X)}{\lg n}$ has values in [0, 1].
For discrete variables X and Y with distributions $p(X)$ and $p(Y)$ and joint probability distribution $p(X Y)$ their information is

$$
I(X, Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right) \lg \frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right) p\left(y_{j}\right)}
$$

Considering $\sum_{j=1}^{m} p\left(x_{i}, y_{j}\right)=p\left(x_{i}\right)$ and $\sum_{i=1}^{n} p\left(x_{i}, y_{j}\right)=p\left(y_{j}\right)$ we get

$$
I(X, Y)=H(X)+H(Y)-H(X Y)
$$

Raiski's coefficient

Information $I(X, Y)$ has value 0 iff we have for all pairs $p\left(x_{i}, y_{j}\right)=p\left(x_{i}\right) p\left(y_{j}\right)-X$ and Y are independent.
The other extreme is attained iff X and Y are functionally related - in each row and each column of the distribution there is at most one nonempty cell, $H(X)=H(Y)=H(X Y)=I(X, Y)$.
In 1964 Raiski introduced a coefficient

$$
R(X \leftrightarrow Y)=\frac{I(X, Y)}{H(X Y)} \quad \text { or in directed version } \quad R(X \rightarrow Y)=\frac{I(X, Y)}{H(Y)}
$$

Both take values in $[0,1]$ and have value 0 when X and Y are independent
$R(X \rightarrow Y)=1$, when Y is a function of $X ; R(X \leftrightarrow Y)=1$, when the variables are linked one-to-one.

The Raiski's coefficient is defined for all types of scales.

B

Power law (Zipf, Lotka, Pareto)

EDA, clean and explore
V. Batagelj

Cleaning
Exploring Regression

Clustering

The model function is selected in different ways: availability of a tool, simplification, guess - similarity to a curve on the picture, on theoretical basis (laws in the field), etc.

In double-logarithmic scale a power law curve is a line. Therefore we can determine its coefficients (little cheating) using the regression line:

Power law

```
> plot(rev(sort(rivers)))
> plot(rev(sort(rivers)),log="xy")
> x <- log(1:length(rivers))
> y<- log(rev(sort(rivers)))
> plot(y x)
> rp<- lm(y ~ x)
> (a <- rp[{1]])
(Intercept)
    8.6233680 -0.6160568
> abline(rp,col="red",1wd=2)
> plot(rev(sort(rivers)),ylab="rivers",
+ pch=16,main="Power law")
> pow <- function(x) {exp(a[1])*x^a[2]}
> x <- 1:length(rivers)
> y <- pow(x)
> points(x,y,pch=20,col="red")
```


B

Nonparametric smoothing / Boston

EDA, clean and explore

```
> library(MASS); attach(Boston)
> pairs(Boston)
> plot(dis,nox); s <- order(dis)
> plot(dis,nox,col="blue")
> lines(dis[s],nox[s])
> par(mfrow=c (2,2), cex=0.5)
> plot(dis,nox,col="blue")
> text(11,0.8,"lowess",pos=2)
> lines(lowess(dis,nox))
plot(dis,nox,col="blue")
> text(11,0.8,"loess",pos=2)
> model <- loess(nox ~ dis)
> x <- seq(1,12.2,0.05)
> y <- predict(model, data.frame(dis=x))
lines(x,y)
> plot (dis, nox,col="blue")
> text(11,0.8,"gam",pos=2)
> library(mgcv)
> model <- gam(nox ~ s(dis))
> y <- predict(model,list(dis=x))
> lines(x,y)
> plot(dis,nox,col="blue")
> text(11,0.8,"pol\underset{~}{ynomial",pos=2)}
> model <- lm(nox ~ dis+I (dis^2) +I(dis^3)
y <- predict(model,list(dis=x))
lines(x,y)
par (mfrow=c (1,1), cex=1)
```


Boston: data frame has 506 rows (suburbs) and 14 columns; dis - weighted mean of distances to five Boston employment centres; nox - nitrogen oxides concentration (parts per 10 million).

B

Fitting OECD data pcinc ~ agr

EDA, clean and explore

V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

OECD data

```
> oecd <- read.table("OECD.dat",header=TRUE)
> pairs(oecd); attach(oecd)
> plot(agr,pcinc,pch="+")
> # linear regression
> lin <- lm(pcinc ~ agr)
> abline(lin,col="green")
> lp <- lin$coef[2]*agr + lin$coef[1]
> sum((lp - pcinc)^2)
> # exponential with linear regr~~
> pi <- log(pcinc); m <- lm(pi ~ agr )
> b}<-\operatorname{exp(m$coef[1]); a <- exp(m$coef[2])
> pl <- function(x) {b*a^x}
> points(agr,pl(agr),col="red",pch=16)
> # least squares
> f <- function(t,p){a <- p[1]; b <- p[2]; b*a^t}
> E <- function(p){d <- f(agr,p) - pcinc; sum(d^2)}
> p0 <- c (a,b); best <- optim(p0,E)
> E(p0)
> best
> pr <- function(x){f(x,best$par)}
> points(agr,pr(agr),col="blue",pch=16)
> d <- seq(0,84,2); lines(spline(d,pr(d)),col="blue")
```

OECD: 20 countries: pcinc - per capita income; agr - percentage of agrarian

B
 Fitting OECD

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

V. Batagelj EDA, clean and explore

Clustering

EDA, clean

Given a set of units \mathcal{U} the clustering is a process of organizing units into groups - clusters of similar units. In real life clustering problems we have to deal with different theirs characteristics:

- description of units: vectors (types of measurement scales, number of variables, missing values, ...) or structured units;
- size of the set of units;
- structure of units "space" (density, shapes of clusters).

A recent book on clustering in R is the "Practical Guide to Cluster Analysis in R" by Alboukadel Kassambara (2017).

Clustering and optimization

EDA, clean and explore
V. Batagelj

We approach the clustering problem as an optimization problem over the set of feasible clusterings Φ_{k} - partitions of units into k clusters. A cluster is a nonempty subset of the set of unit \mathcal{U}. The criterion function has the following form

$$
P(\mathbf{C})=\sum_{C \in \mathbf{C}} p(C)
$$

The total error $P(\mathbf{C})$ of the clustering $\mathbf{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ is a sum of cluster errors $p(C)$.
There are many possibilities how to express the cluster error $p(C)$. Here we shall assume a model in which the error of a cluster is a sum of differences of its units from the cluster's representative T

$$
p(C, T)=\sum_{X \in C} d(X, T)
$$

Note that in general the representative needs not to be from the same "space" (set) as units.

Representatives, dissimilarities

EDA, clean and explore V. Batagelj

The best representative is called a leader

$$
T_{C}=\underset{T}{\operatorname{argmin}} p(C, T)
$$

Then we define

$$
p(C)=p\left(C, T_{C}\right)=\min _{T} \sum_{X \in C} d(X, T)
$$

In most cases we express the cluster error in terms of a dissimilarity between units $d(X, Y) ; d(X, X)=0$ and $d(X, Y)=d(Y, X)$.
Another example of cluster error is a diameter

$$
p(C)=\operatorname{diam}(C)=\max _{X, Y \in C} d(X, Y)
$$

Dissimilarities on \mathbb{R}^{m} / examples 1

EDA, clean and explore V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

n	measure	definition	range	note
1	Euclidean	$\sqrt{\sum_{i=1}^{m}\left(x_{i}-y_{i}\right)^{2}}$	$[0, \infty)$	$M(2)$
2	Sq. Euclidean	$\sum_{i=1}^{m}\left(x_{i}-y_{i}\right)^{2}$	$[0, \infty)$	$M(2)^{2}$
3	Manhattan	$\sum_{\substack{i=1 \\ m}}\left\|x_{i}-y_{i}\right\|$	$[0, \infty)$	$M(1)$
4	rook	$\sum_{\substack{m a x \\ i=1}}\left\|x_{i}-y_{i}\right\|$	$[0, \infty)$	$M(\infty)$
5	Minkowski	$\sqrt[p]{\sum_{i=1}^{m}\left(x_{i}-y_{i}\right)^{p}}$	$[0, \infty)$	$M(p)$

Dissimilarities on \mathbb{R}^{m} / examples 2

EDA, clean and explore V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

n	measure	definition	range	note
6	Canberra	$\sum_{i=1}^{m} \frac{\left\|x_{i}-y_{i}\right\|}{\left\|x_{i}+y_{i}\right\|}$	$[0, \infty)$	
7	Heincke	$\sqrt{\sum_{i=1}^{m}\left(\frac{\left\|x_{i}-y_{i}\right\|}{\left\|x_{i}+y_{i}\right\|}\right)^{2}}$	$[0, \infty)$	
8	Self-balanced	$\sum_{i=1}^{m} \frac{\left\|x_{i}-y_{i}\right\|}{\max \left(x_{i}, y_{i}\right)}$	$[0, \infty)$	
9	Lance-Williams	$\frac{\sum_{i=1}^{m} x_{i}-y_{i} \mid}{\sum_{i=1}^{m} x_{i}+y_{i}}$	$[0, \infty)$	
10	Correlation c.	$\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}$	$[1,-1]$	

(Dis)similarities on \mathbb{B}^{m} / examples

EDA, clean and explore
V. Batagelj

Cleaning
Let $\mathbb{B}=\{0,1\}$. For $X, Y \in \mathbb{B}^{m}$ we define $a=X Y, b=X \bar{Y}$, $c=\bar{X} Y, d=\overline{X Y}$. It holds $a+b+c+d=m$. The counters a, b, c, d are used to define several (dis)similarity measures on binary vectors.
In some cases the definition can yield an indefinite expression $\frac{0}{0}$. In such cases we can restrict the use of the measure, or define the values also for indefinite cases. For example, we extend the values of Jaccard coefficient such that $s_{4}(X, X)=1$. And for Kulczynski coefficient, we preserve the relation $T=\frac{1}{s_{4}}-1$ by
$s_{4}=\left\{\begin{array}{ll}1 & d=m \\ \frac{a}{a+b+c} & \text { otherwise }\end{array} \quad s_{3}^{-1}=T= \begin{cases}0 & a=0, d=m \\ \infty & a=0, d<m \\ \frac{b+c}{a} & \text { otherwise }\end{cases}\right.$
We transform a similarity s from [1, 0] into dissimilarity d on $[0,1]$ by $d=1-s$. For details see Batagelj, Bren (1995).
(Dis)similarities on $\mathbb{B}^{m} /$ examples 1

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

n	measure	definition	range
1	Russel and Rao (1940)	$\frac{a}{m}$	$[1,0]$
2	Kendall, Sokal-Michener (1958)	$\frac{a+d}{m}$	$[1,0]$
3	Kulczynski (1927), T^{-1}	$\frac{a}{b+c}$	$[\infty, 0]$
4	Jaccard (1908)	$\frac{a}{a+b+c}$	$[1,0]$
5	Kulczynski	$\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)$	$[1,0]$
6	Sokal \& Sneath (1963), un 4	$\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{d}{d+b}+\frac{d}{d+c}\right)$	$[1,0]$
7	Driver \& Kroeber (1932)	$\frac{a}{\sqrt{(a+b)(a+c)}}$	$[1,0]$
8	Sokal \& Sneath (1963), un5	$\frac{a d}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$	$[1,0]$

(Dis)similarities on $\mathbb{B}^{m} /$ examples 2

EDA, clean and explore V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

n	measure	definition	range
9	Q_{0}	$\frac{b c}{a d}$	$[0, \infty]$
10	Yule (1927), Q	$\frac{a d-b c}{a d+b c}$	$[1,-1]$
11	Pearson, ϕ	$\frac{a d-b c}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$	$[1,-1]$
12	$-b c-$	$\frac{4 b c}{m^{2}}$	$[0,1]$
13	Baroni-Urbani, Buser (1976), $S^{* *}$	$\frac{a+\sqrt{a d}}{a+b+c+\sqrt{a d}}$	$[1,0]$
14	Braun-Blanquet (1932)	$\frac{a}{\max (a+b, a+c)}$	$[1,0]$
15	Simpson (1943)	$\frac{a}{\min (a+b, a+c)}$	$[1,0]$
16	Michael (1920)	$\frac{4(a d-b c)}{(a+d)^{2}+(b+c)^{2}}$	$[1,-1]$

Dissimilarities between sets

EDA, clean and explore
V. Batagelj

Cleaning

Let \mathcal{F} be a finite family of subsets of the finite set $U ; A, B \in \mathcal{F}$ and let $A \oplus B=(A \backslash B) \cup(B \backslash A)$ denotes the symmetric difference between A and B.
The 'standard' dissimilarity between sets is the Hamming distance:

$$
d_{H}(A, B):=\operatorname{card}(A \oplus B)
$$

Usually we normalize it $d_{h}(A, B)=\frac{1}{M} \operatorname{card}(A \oplus B)$. One normalization is $M=\operatorname{card}(U)$; the other $M=m_{1}+m_{2}$, where m_{1} and m_{2} are the first and the second largest value in $\{\operatorname{card}(X): X \in \mathcal{F}\}$.
Other dissimilarities

$$
\begin{gathered}
d_{s}(A, B)=\frac{\operatorname{card}(A \oplus B)}{\operatorname{card}(A)+\operatorname{card}(B)} \quad d_{u}(A, B)=\frac{\operatorname{card}(A \oplus B)}{\operatorname{card}(A \cup B)} \\
d_{m}(A, B)=\frac{\max (\operatorname{card}(A \backslash B), \operatorname{card}(B \backslash A))}{\max (\operatorname{card}(A), \operatorname{card}(B))}
\end{gathered}
$$

For all these dissimilarities $d(A, B)=0$ if $A=B=\emptyset$.

Problems with dissimilarities

EDA, clean

Functions in R: dist, cluster/daisy
What to do in the case of mixed units (with variables measured in different types of scales)?

- conversion to a common scale
- compute the dissimilarities on homogeneous parts and combine them (Gower's dissimilarity)

Fairness of dissimilarity - all variables contribute equally.
Approaches: use of normalized variables, analysis of dependencies among variables.

Gower's dissimilarity

EDA, clean and explore
V. Batagelj
the Gower dissimilarity coefficient for a mix of variables
$d_{i j}=\sum_{v=1}^{m} \frac{\delta_{i j} d_{i v}}{\sum_{i=1}^{m} \delta_{i j v}}$
where $\delta_{i j}$ is a binary indicator equal to one whenever both observations i and j are nonmissing for variable v, and zero otherwise. Observations with missing values are not included.
For binary and nominal variables $v, d_{j i v}=0$ if $x_{i v}=x_{j v}$; and $d_{j i v}=1$ otherwise.
Ordinal variables v are considered as categorical ordinal variables and the values are substituted with the corresponding position index, $r_{i v}$ in the factor levels. These position indexes are transformed in the following manner $z_{i v}=\frac{r_{i v}-1}{\max _{k} r_{k v}-1}$ These new values, $z_{i v}$, are treated as observations of an interval scaled variable.
For continuous variables v,
$d_{i j v}=\frac{\left|x_{i v}-x_{j i}\right|}{\max _{k}\left(x_{k v}\right)-\min _{k}\left(x_{k v}\right)}$
$d_{i j v}$ is set to 0 if $\max _{k}\left(x_{k v}\right)=\min _{k}\left(x_{k v}\right)$.
Functions cluster/daisy and StatMatch/gower.dist.

Solving the clustering problem

EDA, clean and explore
V. Batagelj

Cleaning
Exploring Regression

Clustering
Solving the clustering problem

Finite - solution always exists, but in most cases algorithmically hard problem \rightarrow heuristics.

- hierarchical
- agglomerative methods (hclust, cluster/agnes, amap/hcluster, amap/hclusterpar)
- divisive methods (cluster/diana, cluster/mona)
- adding methods
- local optimization (leaders method) (kmeans,
cluster/pam, cluster/clara, cluster/fanny)
- linear algebra methods
- graph theory methods
- other methods (mclust/Mclust, fpc/dbscan, dbscan/dbscan, factoextra/hkmeans)

Acronyms

EDA, clean
and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

Agnes - Agglomerative Nesting
Diana - Divisive Analysis
PAM - Partitioning around medoids
CLARA - Clustering Large Applications hkmeans - Hierarchical K-means
FANNY - Fuzzy analysis clustering
Mclust - Model based clustering
DBSCAN - Density-Based Clustering

Leaders method

EDA, clean
and explore
V. Batagelj

Leaders method is a generalization of a popular nonhierarchical clustering k-means method.
The idea is to get "optimal" clustering into a pre-specified number of clusters with the following iterative procedure:
determine an initial clustering
repeat
determine leaders of the clusters in the current clustering; assign each unit to the nearest new leader - producing a new clustering
until the leaders stabilize.

Hierarchical agglomerative clustering

EDA, clean and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

The hierarchical agglomerative clustering procedure is based on a step-by-step merging of the two closest clusters.
each unit forms a cluster: $\mathbf{C}_{n}=\{\{X\}: X \in \mathcal{U}\} ;$ they are at level 0 : $h(\{X\})=0, X \in \mathcal{U}$; for $k=n-1$ to 1 do
determine the closest pair of clusters
$(u, v)=\operatorname{argmin}_{i, j: i \neq j}\left\{D\left(C_{i}, C_{j}\right): C_{i}, C_{j} \in \mathbf{C}_{k+1}\right\} ;$ join the closest pair of clusters $C_{(u v)}=C_{u} \cup C_{v}$
$\mathbf{C}_{k}=\left(\mathbf{C}_{k+1} \backslash\left\{C_{u}, C_{v}\right\}\right) \cup\left\{C_{(u v)}\right\} ;$
$h\left(C_{(u v)}\right)=D\left(C_{u}, C_{v}\right)$
determine the dissimilarities $D\left(C_{(u v)}, C_{s}\right), C_{s} \in \mathbf{C}_{k}$ endfor
\mathbf{C}_{k} is a partition of the finite set of units \mathcal{U} into k clusters. The level $h(C)$ of the cluster $C_{(u v)}=C_{u} \cup C_{v}$.

Methods

EDA, clean
and explore
V. Batagelj

Cleaning
Exploring
Regression
Clustering
Solving the clustering problem

Hierarchical methods differ in selection of a between cluster dissimilarity D :

- single linkage: $D\left(C_{p}, C_{q}\right)=\min _{X \in C_{p}, Y \in C_{q}} d(X, Y)$
- complete linkage: $D\left(C_{p}, C_{q}\right)=\max _{X \in C_{p}, Y \in C_{q}} d(X, Y)$
- Ward: $D\left(C_{p}, C_{q}\right)=\frac{n_{p} \cdot n_{q}}{n_{p}+n_{q}} d\left(T_{p}, T_{q}\right)$
- see help and paper

