

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

Introduction to Network Analysis

1. Description of networks

Vladimir Batagelj

IMFM Ljubljana, IAM UP Koper and NRU HSE Moscow

Master's programme

Applied Statistics with Social Network Analysis International Laboratory for Applied Network Research NRU HSE, Moscow 2018

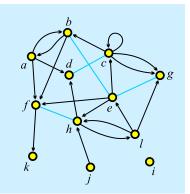
V. Batagelj

Rnet, intro

イロト イ理ト イヨト イヨト

3

DQC



Outline

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

- 1 Networks
- 2 Descriptions of networks
- 3 Properties
- 4 Types of networks
- 5 Temporal networks
- 6 Multi-relational networks
- 7 Two-mode networks
- 8 igraph in R
- 9 Pajek and R
- 10 netJSON and Graph

イロト イポト イヨト イヨト

nac

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si

Current version of slides (December 4, 2018 at 11:49): slides PDF

Networks

V. Batagelj

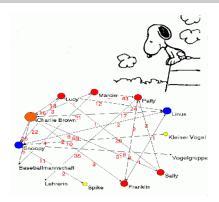
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

Alexandra Schuler/ Marion Laging-Glaser: Analyse von Snoopy Comics A *network* is based on two sets – set of *nodes* (vertices), that represent the selected *units*, and set of *links* (lines), that represent *ties* between units. They determine a *graph*. A link can be *directed* – an *arc*, or *undirected* – an *edge*.

Additional data about nodes or links can be known – their *properties* (attributes). For example: name/label, type, value, ...

San

Network = Graph + Data

The data can be measured or computed.

V. Batagelj

Networks / Formally

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

A network $\mathcal{N} = (\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W})$ consists of:

 a graph G = (V, L), where V is the set of nodes, A is the set of arcs, E is the set of edges, and L = E ∪ A is the set of links.

$$n=|\mathcal{V}|,\ m=|\mathcal{L}|$$

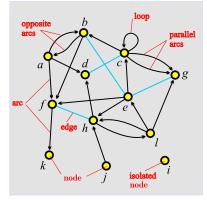
- \mathcal{P} node value functions / properties: $p: \mathcal{V} \rightarrow A$
- \mathcal{W} link value functions / weights: $w: \mathcal{L} \rightarrow B$

イロト イ理ト イヨト イヨト

-

Sar

Graph


Rnet, intro

V. Batagelj

Networks

Descriptions of networks

- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

unit, actor – node, vertex tie, line – link, edge, arc

arc = directed link, (*a*, *d*) *a* is the *initial* node, *d* is the *terminal* node.

edge = undirected link, (c: d) c and d are end nodes.

イロト イロト イヨト

Э

DQC

ESNA Pajek

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

Structural analysis in the social sciences 6 Exploratory Social Network Analysis

with Pajek

REVISED AND EXPANDED EDITION FOR UPDATED SOFTWARE

THIRD EDITION

Wouter de Nooy, Andrej Mrvar and Vladimir Batagelj An introduction to social network analysis with **Pajek** is available in the book ESNA 3 (de Nooy, Mrvar, Batagelj, CUP 2005, 2011, 2018).

ESNA in Japanese was published by Tokyo Denki University Press in 2010; and in Chinese by Beijing World Publishing in November 2012.

Pajek – program for analysis and visualization of large networks is freely available, for noncommercial use, at its web site.

http://mrvar.fdv.uni-lj.si/pajek/

igraph

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

Eric D. Kolaczyk Gábor Csárdi

Statistical Analysis of Network Data with R A book on Statistical Analysis of Network Data with R using the package igraph was written by Kolaczyk, Eric D. and Csárdi, Gábor (Springer 2014).

Another book on igraph is prepared by Gábor Csárdi, Tamás Nepusz and Edoardo M. Airoldi draft.

igraph can be installed from CRAN

https://cran.r-project.org/web/
packages/igraph/index.html

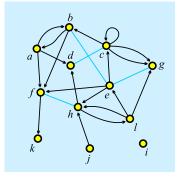
《日》《圖》《王》《王》

nac

V. Batagelj

D Springer

$Graph \ / \ Sets - \text{NET}$


Rnet, intro

V. Batagelj

Networks

Descriptions of networks

- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

$$\mathcal{V} = \{a, b, c, d, e, f, g, h, i, j, k, l\}$$

イロト イ理ト イヨト イヨト

3

500

$$egin{array}{rcl} \mathcal{G} &=& (\mathcal{V},\mathcal{A},\mathcal{E}) \ \mathcal{L} &=& \mathcal{A}\cup\mathcal{E} \end{array}$$

A = Ø - undirected graph; E = Ø - directed graph.
Pajek: local: GraphSet; TinaSet;
WWW: GraphSet / net; TinaSet / net, picture picture.

V. Batagelj

$Graph \ / \ Sets - \text{NET}$

V. Batagelj

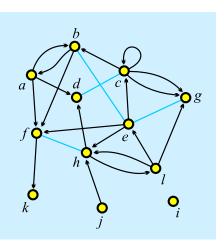
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

*Ver	rtices	12	
1	"a"	0.1020	0.3226
2	"b"	0.2860	0.0876
3	"c"	0.5322	0.2304
4	"d"	0.3259	0.3917
5	"e"	0.5543	0.4770
6	"f"	0.1552	0.6406
7	"g"	0.8293	0.3249
8	"h"	0.4479	0.6866
9	"i"	0.8204	0.8203
10	"j" "k"	0.4789	0.9055
11		0.1175	0.9032
12	"1"	0.7095	0.6475
*Arc			
1	2		
2 1 2 3 3 3 5 5	1		
1	4		
1	6		
2	6		
	2		
	2 3 7 7		
3	/		
3	2		
5	3		
5	8		
5	8		
8	4		
10	8		
12	5		
12	7		
12	12		
12	8		
*Edg			
	5		
3	4		
2 3 5	7		
6	8		

イロト イロト イヨト イヨト

 \exists

500

Graph / Neighbors – NET

V. Batagelj

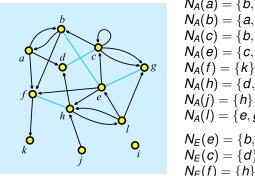
Networks

Descriptions of networks

Properties

Types of networks

networks


networks

Two-mode networks

igraph in R

Pajek and R

netJSON and

$$\begin{split} N_A(a) &= \{b, d, f\} \\ N_A(b) &= \{a, f\} \\ N_A(c) &= \{b, c, g, g\} \\ N_A(c) &= \{c, f, h\} \\ N_A(f) &= \{c, f, h\} \\ N_A(f) &= \{k\} \\ N_A(f) &= \{d, l\} \\ N_A(f) &= \{d, l\} \\ N_A(f) &= \{e, g, h\} \\ N_E(e) &= \{b, g\} \\ N_E(c) &= \{d\} \end{split}$$

DQC

Pajek: local: GraphList; TinaList; WWW: GraphList / net; TinaList / net.

 $N(v) = N_A(v) \cup N_F(v)$, also $N_{out}(v)$, $N_{in}(v)$

Star in v, S(v) is the set of all links with v as their initial node. V. Batagelj Rnet, intro

Graph / Neighbors - NET

V. Batagelj

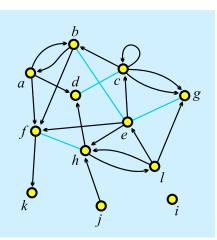
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

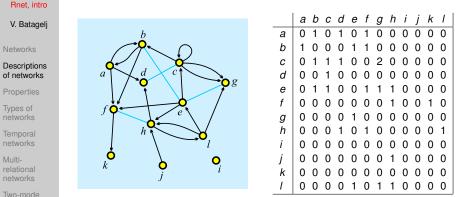
igraph in R

Pajek and R

netJSON and Graph

*Ver	tices	1	2		
1	"a"	Ο.	1020	0.	3226
2	"b"	0.	2860	0.	0876
3	"c"	0.	5322	0.	2304
4	"d"	Ο.	3259	Ο.	3917
5	"e"	Ο.	5543	Ο.	4770
6	"f"	0.	1552	0.	6406
7	"g"		8293		3249
8	"h		4479		6866
9	"i"		8204		8203
10			4789		9055
11	"ĸ		1175		9032
12	"1"		7095		6475
*Arc	slist				
1	2 4	6			
2	1 6				
3	2 3		7		
5	3 6				
6					
8	4 12				
10	8				
12	5 7	8			
	reslis				
2	5	<u> </u>			
3	4				
5	7				
6	8				
0	0				

イロト イロト イヨト イヨト


 \exists

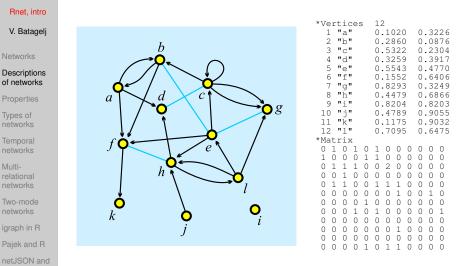
990

Graph / Matrix - MAT

networks

igraph in R

Pajek and R


netJSON and Graph

Pajek: local: GraphMat; TinaMat, picture picture; WWW: GraphMat / net; TinaMat / net, paj. Graph *G* is *simple* if in the corresponding matrix all entries are 0 or 1.

V. Batagelj

Graph / Matrix – MAT

イロト イポト イヨト イヨト

Э

DQC

Node Properties / CLU, VEC, PER

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

All three types of files have the same structure:

*vertices n	<i>n</i> is the number of nodes
<i>v</i> ₁	node 1 has value <i>v</i> 1
Vn	

CLUstering – partition of nodes – *nominal* or *ordinal* data about nodes

$v_i \in \mathbb{N}$: no	de i belongs to th	ne cluster/group v _i ;
---------------------------	--------------------	-----------------------------------

VECtor – *numeric* data about nodes

 $v_i \in \mathbb{R}$: the property has value v_i on node i;

PERmutation - ordering of nodes

 $v_i \in \mathbb{N}$: node *i* is at the v_i -th position.

When collecting the network data consider to provide as much properties as possible.

・ロト ・ 四 ト ・ 回 ト ・ 日 ト

Example: Wolfe Monkey Data

Rnet, intro

~ / /	Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

inter.net	inter.net	sex.clu	age.vec	rank.per
*Vertices 20 1 *m01* 2 *m02* 3 *m03* 4 *m04* 5 *m05* 6 *f06* 7 *f07* 8 *f08* 9 *f09* 10 *f10* 11 *f11* 12 *f12* 13 *f13* 14 *f14* 15 *f15* 16 *f16* 17 *f17* 18 *f18* 19 *f19* 20 *f29* *Edges 1 2 2 1 3 10 1 4 4 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*vertices 20 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	*vertices 20 15 10 10 8 7 15 5 11 8 9 16 10 14 5 7 11 7 5 15 4	*vertices 20 1 2 3 4 5 10 11 6 12 9 7 8 18 19 20 13 14 15 16 17

Important note: 0 is not allowed as node number.

V. Batagelj

Rnet, intro

э

500

Pajek's Project File / PAJ

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

All types of data can be combined into a single file – Pajek's *project* file *file*.paj.

The easiest way to do this is:

- read all data files in Pajek,
- compute some additional data,
- delete (dispose) some data,
- save all as a project file with File/Pajek Project File/Save.

Next time you can restore everything with a single File/Pajek Project File/Read.

Wolfe network as a Pajek's project file (PDF/paj).

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Special graphs – path, cycle, star, complete

Rnet, intro

V. Batagelj

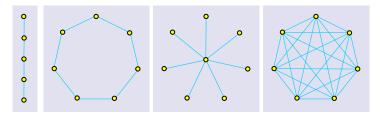
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

Graphs: path P_5 , cycle C_7 , star S_8 in complete graph K_7 .

イロト イ理ト イヨト イヨト

Э

500

Representations of properties

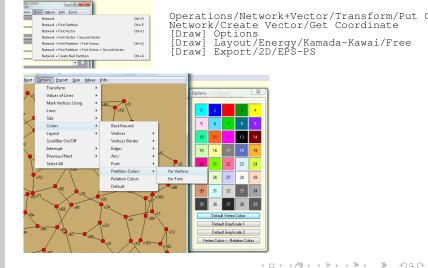
Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

Properties of nodes \mathcal{P} and links \mathcal{W} can be measured in different scales: numerical, ordinal and nominal. They can be *input* as data or *computed* from the network.

In **Pajek** numerical properties of nodes are represented by *vector*s, nominal properties by *partitions* or as *label*s of nodes. Numerical property can be displayed as *size* (width and height) of node (figure), as its *coordinate*; and a nominal property as *color* or *shape* of the figure, or as a node's *label* (content, size and color).

We can assign in **Pajek** numerical values to links. They can be displayed as *value*, *thickness* or *grey level*. Nominal vales can be assigned as *label*, *color* or *line pattern* (see Pajek manual, section **4.3**).


・ロト ・ 同ト ・ ヨト ・ ヨト

Some related operations

- V. Batagelj
- Networks
- of networks
- Properties
- Types of networks
- networks
- relational networks
- Two-mode networks
- igraph in R
- Paiek and R
- netJSON and

V. Batagelj

Rnet, intro

Э

Sac

Display of properties - school (Moody)

Rnet, intro

V. Batagelj

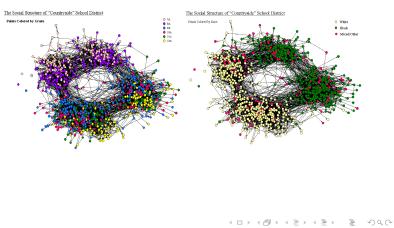
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

V. Batagelj

Types of networks

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties

Types of networks

- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

- Besides ordinary (directed, undirected, mixed) networks some extended types of networks are also used:
 - *2-mode networks*, bipartite (valued) graphs networks between two disjoint sets of nodes.
 - multi-relational networks.
 - *temporal networks*, dynamic graphs networks changing over time.
 - specialized networks: representation of genealogies as *p-graphs*; *Petri's nets*, ...

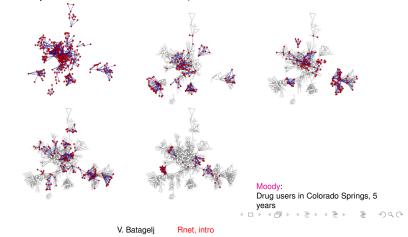
The network (input) file formats should provide means to express all these types of networks. All interesting data should be recorded (respecting privacy).

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sar

Temporal networks


Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks

Temporal networks

- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

In a *temporal network* the presence/activity of node/link can change through time. **Pajek** supports two types of descriptions of temporal networks based on *presence* and on *events*.

Temporal network

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks

Temporal networks

- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

Temporal network

$$\mathcal{N}_T = (\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W}, T)$$

is obtained if the *time* T is attached to an ordinary network. T is a set of *time points* $t \in T$.

In temporal network nodes $v \in \mathcal{V}$ and links $l \in \mathcal{L}$ are not necessarily present or active in all time points. If a link l(u, v) is active in time point *t* then also its endnodes *u* and *v* should be active in time *t*.

We will denote the network consisting of links and nodes active in time $t \in T$ by $\mathcal{N}(t)$ and call it a *time slice* in time point *t*. To get time slices in **Pajek** use

```
Network/Temporal Network/Generate in time
```

V. Batagelj R

Rnet, intro

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sar

Temporal networks – presence

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

Time.net.

Node *a* is present in time points 5, 6, 7, 8, 9, 10 and 12, 13, 14.

Edge (1:3) is present in time points 6, 7, 8.

* means 'infinity'.

A link is present, if both its endnodes are present.

イロト イ理ト イヨト イヨト

э

DQC

Temporal networks – events

Rnet, intro

Rnet, intro			*Vertices 3
V. Batagelj	Event TI t	Explanation initial events – following events happen when	*Events TI 1
Networks	te <i>t</i> av <i>v n s</i>	time point <i>t</i> starts end events – following events happen when time point <i>t</i> is finished add vertex <i>v</i> with label <i>n</i> and properties <i>s</i>	AV 2 "b" TE 3 HV 2
Descriptions of networks	HV V SV V DV V AA U V S	hide node v show node v delete node v add arc (u, v) with properties s	TI 4 AV 3 "e" TI 5
Properties	HA U V SA U V DA U V	hide arc (u, v) show arc (u, v) delete arc (u, v)	AV 1 "a" TI 6
Types of networks	AE U V S HE U V SE U V DE U V	add edge $(u : v)$ with properties <i>s</i> hide edge $(u : v)$ show edge $(u : v)$ delete edge $(u : v)$	AE 1 3 1 TI 7
Temporal networks	CV V S CA U V S CE U V S CT U V	change property of arc (u, v) to s change property of arc (u, v) to s change property of edge $(u : v)$ to s change (un)directedness of link (u, v)	SV 2 AE 1 2 1 TE 7
Multi- relational	CD UV CD UV PE UV S AP UV S	change direction of arc (u, v) replace pair of arcs (u, v) and (v, u) by single edge $(u : v)$ with properties s	DE 1 2 DV 2 TE 8
networks Two-mode networks	DP UV S EP UV S	add pair of arcs (u, v) and (v, u) with properties s delete pair of arcs (u, v) and (v, u) replace edge $(u : v)$ by pair of arcs (u, v) and (v, u) with properties s	DE 1 3 TE 10 HV 1
igraph in R			TI 12 SV 1 TE 14
Pajek and R netJSON and	Time.ti	m.Friends.tim.	DV 1

File/Network/Read Time Events

V. Batagelj

Rnet, intro

Temporal networks / September 11

Rnet, intro

V. Batagelj

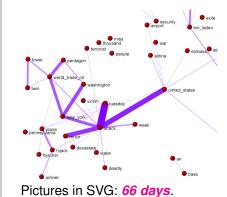
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

Steve Corman with collaborators from Arizona State University transformed, using his Centering Resonance Analysis (*CRA*), daily Reuters news (66 days) about September 11th into a temporal network of words coappearance.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Multi-relational networks

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks

Multirelational networks

- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

A *multi-relational network* is denoted by

$$\mathcal{N} = (\mathcal{V}, (\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_k), \mathcal{P}, \mathcal{W})$$

and contains different relations \mathcal{L}_i (sets of links) over the same set of nodes. Also the weights from \mathcal{W} are defined on different relations or their union.

Examples of such networks are: Transportation system in a city (stations, lines); WordNet (words, semantic relations: synonymy, antonymy, hyponymy, meronymy,...), KEDS networks (states, relations between states: Visit, Ask information, Warn, Expel person, ...), ...

イロト イ理ト イヨト イヨト

Sar

... Multi-relational networks

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

The relation can be assigned to a link as follows:

• add to a keyword for description of links (*arcs, *edges, *arcslist, *edgeslist, *matrix) the number of relation followed by its name:

*arcslist :3 "sent a letter to"

All links controlled by this keyword belong to the specified relation. (Sampson, SampsonL)

• Any link controlled by *arcs or *edges can be assigned to selected relation by starting its description by the number of this relation.

3: 47 14 5

Link with endnodes 47 and 14 and weight 5 belongs to relation 3.

V. Batagelj

Rnet, intro

nac

Computer-assisted text analysis

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

An often used way to obtain networks is the *computer-assisted text analysis* (CaTA).

Terms considered in TA are collected in a *dictionary* (it can be fixed in advance, or built dynamically). The main two problems with terms are *equivalence* (different words representing the same term) and *ambiguity* (same word representing different terms). Because of these the *coding* – transformation of raw text data into formal *description* – is done often manually or semiautomaticly. As units of TA we usually consider clauses, statements, paragraphs, news, messages, Till now the thematic and semantic TA mainly used statistical methods for analysis of the coded data. In thematic TA the units are coded as rectangular matrix *Text units* \times *Concepts* which can be considered as a two-mode network.

Examples: M.M. Miller: VBPro, H. Klein: Text Analysis/ TextQuest.

```
Rnet, intro
```


... approaches to CaTA

Rnet, intro

V. Batagelj

Networks

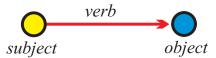
Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks


Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

In semantic TA the units (often clauses) are encoded according to the S-V-O (*Subject-Verb-Object*) model or its improvements.

Examples: Roberto Franzosi; *KEDS*, *Tabari*, KEDS / Gulf. This coding can be directly considered as network with *Subjects* \cup *Objects* as nodes and links (arcs) labeled with *Verbs*.

See also RDF triples in semantic web, SPARQL.

・ロト ・ 同 ト ・ 三 ト ・ 三 ト

Sar

Multi-relational temporal network – KEDS/WEIS

Rnet, intro	
V. Batagelj	

-

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

<pre>% Recoded by WEISmonths, Sun Nov % from http://www.ku.edu/~keds/da vvertices 325 1 "AFG" [1-*] 2 "AFG" [1-*] 3 "ALB" [1-*] 5 "ALG" [1-*]</pre>						
318 "YUGGOV" [1-*] 319 "YUGMEC" [1-*] 320 "YUGMED" [1-*] 321 "YUGSER" [1-*] 322 "YUGSER" [1-*] 323 "ZAI" [1-*] 324 "ZAM" [1-*] 325 "ZIM" [1-*] *arcs :0 "*** ABANDONED" *arcs :10 "YIELD" *arcs :11 "SURRENDER" *arcs :12 "RETREAT"						
*arcs :223 "MIL ENGAGEMENT" *arcs :224 "RIOT" *arcs :225 "ASSASSINATE TORTURE"						
*arcs 224: 314 153 1 [4] 212: 314 83 1 [4] 224: 3 83 1 [4] 123: 83 153 1 [4]	890402 890404 890407	YUG YUG ALB	KSV ETHALB ETHALB	224 212 224	(RIOT) RIOT-TO (ARREST PERSON) (RIOT) RIOTS	ALB ET
123: 83 153 1 [4]	890408	ETHALB	KSV	123	(INVESTIGATE)	PROBIN
42: 105 63 1 [175] 212: 295 35 1 [175]	030731 030731	GER UNWCT	CYP BOSSER	042 212	(ENDORSE) (ARREST PERSON)	
42: 105 63 1 [175] 212: 295 35 1 [175] 43: 306 87 1 [175] 13: 295 35 1 [175] 12: 295 22 1 [175] 122: 246 295 1 [175] 122: 246 295 1 [175]	030731 030731 030731 030731 030731 030731	VAT UNWCT UNWCT SER BOSSER	EUR BOSSER BAL UNWCT UNWCT	043 013 121 122 121	(RALLY) RALLIED (RETRACT) (CRITICIZE) (DENIGRATE) (CRITICIZE)	CLEARE CHARGE TESTIF ACCUSE
121. JJ 2JJ I [1/J]	030731	DODDER	OTANCI	121	(CIVIIICIZE)	ACCUSE

Rnet, intro

Kansas Event Data System KEDS

V. Batagelj

Two-mode networks

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

In a *two-mode* network $\mathcal{N} = ((\mathcal{U}, \mathcal{V}), \mathcal{L}, \mathcal{P}, \mathcal{W})$ the set of nodes consists of two disjoint sets of nodes \mathcal{U} and \mathcal{V} , and all the links from \mathcal{L} have one endnode in \mathcal{U} and the other in \mathcal{V} . Often also a *weight* $w : \mathcal{L} \to \mathbb{R} \in \mathcal{W}$ is given; if not, we assume w(u, v) = 1 for all $(u, v) \in \mathcal{L}$.

A two-mode network can also be described by a rectangular matrix $\mathbf{A} = [a_{uv}]_{U \times V}$.

$$a_{uv} = egin{cases} w_{uv} & (u,v) \in \mathcal{L} \ 0 & ext{otherwise} \end{cases}$$

Examples: (persons, societies, years of membership), (buyers/consumers, goods, quantity), (parlamentarians, problems, positive vote), (persons, journals, reading). A two-mode network is announced by *vertices $n n_{\mathcal{U}}$. Authors and works.

Deep South

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks

Two-mode networks

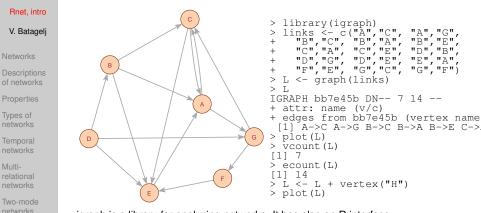
- igraph in R
- Pajek and R
- netJSON and Graph

Classical example of two-mode network are the Southern women (Davis 1941).

Davis.paj. Freeman's overview.

- E - F

Sac


NAMES OF PARTICIPARTS OF GROUP I		CODE NUMBERS AND DATES OF SOCIAL EVENTS REPORTED IN Old City Herald													
		(1) 6/2	3/2	(3) 4/12	(4) 9/25	(5) 2/25	(6) 5/19	3/25	(8) 9/16	(9) 4/8	(10) 6/10	盟	(12)	(13) 11/21	(14) 8/3
1. M	rs. Evelyn Jefferson	×	××	X	×	X	X		×	x					
2. M	ss Laura Mandeville	IX.	X	X		X	X	X							
3. M	iss Theresa Anderson	l	X	X	××	X	X	X	X						
4. M	iss Brenda Rogers	X		X	X	X	X	X	X						
5. M	iss Charlotte McDowd			X	X	X		X							
6. M	iss Frances Anderson			X		X I	X		X						
7. M	iss Eleanor Nye					I X	X	X	X						
8. M	iss Pearl Oglethorpe.						X	L	X	X	·				
9. M	iss Ruth DeSand					X		X	X	X					
10. M	iss Verne Sanderson							X	x	x			×		
11. M	iss Myra Liddell							L	X	X	X		X		
12. M	iss Katherine Rogers								X	x	X		X	××	××
13. M	rs. Svlvia Avondale						l	X	X	X	X		X	X	X
14. M	rs. Nora Fayette						X	X		X	X	××	X	X	X
15. M	rs. Helen Lloyd							1 X	X		1 ×	X	X		
16. M	rs. Dorothy Murchison								X	X					
17. M	ns. Olivia Carleton									X		X			
	ns. Flora Price											X			

ī

V. Batagelj

igraph Example

igraph in R

Pajek and R

netJSON and Graph

igraph is a library for analyzing networks. It has also an R interface. For other R libraries for solving network analysis problems see: Ian McCulloh, Alexander Perrone: R Packages for Social Network Analysis. ESNAM. Springer 2018.

See also: sna, network, statnet, ggnet

V. Batagelj R

Rnet, intro

・ロト ・ 同ト ・ ヨト ・ ヨト

nac

igraph object display

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

- D/U 'D' directed / 'U' undireted.
- N/- 'N' named (labeled). A dash means that the network is not named.
- W/- 'W' weighted (has values on links). Unweighted networks have a dash in this position.
- B/- 'B' bipartite (two-mode). A dash means that the network is one-mode.

イロト 不得 トイヨト イヨト 二臣

DQC

igraph attributes

```
Rnet, intro
             > V(I_{i})
             + 8/8 vertices, named, from 84e744b:
 V. Batagelj
             11 ACGBEDFH
             > Ē(L)
              14/14 edges from 84e744b (vertex names):
              [1] A->C A->G B->C B->A B->E C->A C->E D->B D->G D->E E->A F->F
             > V(L)Sname
             [1] '"Á" "C" "G" "B" "E" "D" "F" "H"
of networks
             > V(L)$name[5] <- "John"
             > V(L)$color <- sample(c("yellow", "cyan"), vcount(L), rep=TRUE)</p>
             > plot(L)
             > ve <- V(L)[color=="vellow"]; cv <- V(L)[color=="cvan"]</pre>
networks
              É(L)[ye %--% cy]$color <- "red"
             >
             > E(L) [ve %--% ve]$color <- "blue"
             > E(L)[cy %--% cy]$color <- "blue"
networks
             > L$name <- "Example"
             > E(L)$weight <- sample(1:10,ecount(L),rep=TRUE)</p>
Multi-
             > graph attr names(L)
             [1] "name"
networks
             > graph_attr(L)
             $name
Two-mode
             [1] "Example"
networks
             > vertex attr names(L)
             [1] "name" "color"
igraph in R
             > edge_attr_names(L)
             [1] "color" "weight"
             > w <- E(L) Sweight; plot(L,edge.width=w)</p>
             > write.graph(L, "Links.net", format="pajek")
netJSON and
                                                      ・ロト ・ 同ト ・ ヨト ・ ヨト
                                                                              nac
```

```
Rnet, intro
```


Description of networks using a spreadsheet

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

How to describe a network \mathcal{N} ? In principle the answer is simple – we list its components \mathcal{V} , \mathcal{L} , \mathcal{P} , and \mathcal{W} .

The simplest way is to describe a network \mathcal{N} by providing $(\mathcal{V}, \mathcal{P})$ and $(\mathcal{L}, \mathcal{W})$ in a form of two tables.

As an example, let us describe a part of network determined by the following works:

Generalized blockmodeling, Clustering with relational constraint, Partitioning signed social networks, The Strength of Weak Ties

There are nodes of different types (modes): persons, papers, books, series, journals, publishers; and different relations among them: author_of, editor_of, contained_in, cites, published_by.

Both tables are often maintained in Excel. They can be exported as text in CSV (Comma Separated Values) format.

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sar

bibNodes.csv

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

bibNodes.csv

In large networks, to avoid the empty cells, we split a network to some subnetworks – a collection.

Rnet, intro

イロト イ理ト イヨト イヨト

 \exists

500

bibLinks.csv

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

from; relation; to "Batagelj, Vladimir";authorOf;"Generalized Blockmodeling" "Doreian, Patrick";authorOf;"Generalized Blockmodeling" "Ferligoj, Anuška"; authorOf; "Generalized Blockmodeling" "Batagelj, Vladimir";authorOf;"Clustering with relational constr "Ferligoj, Anuška"; authorOf; "Clustering with relational constra: "Granovetter, Mark";authorOf; "The Strength of Weak Ties" "Granovetter, Mark";editorOf; "Structural Analysis in the Social "Doreian, Patrick";authorOf; "Partitioning signed social networks "Mrvar, Andrej"; authorOf; "Partitioning signed social networks" "Moustaki, Irini";editorOf; "Psychometrika" "Doreian, Patrick"; editorOf; "Social Networks" "Generalized Blockmodeling"; containedIn; "Structural Analysis in "Clustering with relational constraint";containedIn;"Psychometr: "The Strength of Weak Ties";containedIn;"The American Journal of "Partitioning signed social networks"; containedIn; "Social Networks"; containedIn; co "Partitioning signed social networks"; cites; "Generalized Blockmo "Generalized Blockmodeling"; cites; "Clustering with relational co "Structural Analysis in the Social Sciences"; publishedBy; "Cambr: "Psychometrika"; publishedBy; "Springer"

bibLinks.csv

Factorization and description of large networks

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R

Pajek and R

netJSON and Graph

To save space and improve the computing efficiency we often replace values of categorical variables with integers. In R this encoding is called a *factorization*.

We enumerate all possible values of a given categorical variable (coding table) and afterwards replace each its value by the corresponding index in the coding table.

This approach is used in most programs dealing with large networks. Unfortunately the coding table is often a kind of meta-data.

・ロト ・ 同ト ・ ヨト ・ ヨト

CSV2Pajek.R

Rnet, intro

```
V. Batagelj
                  # transforming CSV file to Pajek files
                  # by Vladimir Batagelj, June 2016
                  # setwd("C:/Users/batagelj/work/Python/graph/SVG/EUSN")
                  # colC <- c(rep("character",4), rep("numeric",7)); nas=c("","NA","NaN")</pre>
                  colC <- c(rep("character", 4), rep("numeric", 5)); nas=c("", "NA", "NAN")
                  nodes <- read.csv2("bibNodes.csv",encoding='UTF-8',colClasses=colC,na.strings=nas)
                  n <- nrow(nodes): M <- factor(nodes$mode): S <- factor(nodes$sex)</pre>
of networks
                  mod <- levels(M); sx <- levels(S); S <- as.numeric(S); S[is.na(S)] <- 0</pre>
                  links <- read.csv2("bibLinks.csv",encoding='UTF-8',colClasses="character")
                  F <- factor(links$from,levels=nodes$name,ordered=TRUE)</p>
                  T <- factor(links$to,levels=nodes$name,ordered=TRUE)
                  R <- factor(links?relation); rel <- levels(R)
net <- file("bib.net","w"); cat('*vertices ',n, \n',file=net)
clu <- file("bibMode.clu","w"); sex <- file("bibSex.clu","w")
cat('%',file=clu); cat('%',file=sex)
networks
                  for(i in 1:length(mod)) cat(' ', i, mod[i], file=clu)
                  cat('\n*vertices ',n,'\n',file=clu)
networks
                  for(i in 1:length(sx)) cat(' ',i,sx[i],file=sex)
                  cat('\n*vertices ',n,'\n',file=sex)
                  for(v in 1:n)
                    cat(v,' "',nodes$name[v],'"\n',sep='',file=net);
relational
                    cat(M[v],'\n',file=clu); cat(S[v],'\n',file=sex)
networks
                  for(r in 1:length(rel)) cat('*arcs :',r,' "',rel[r],'"\n',sep='',file=net)
Two-mode
                  cat('*arcs\n',file=net)
                  for(a in 1:nrow(links))
networks
                    cat(R[a],': ',F[a],' ',T[a],' 1 l "',rel[R[a]],' "\n',sep='',file=net)
                  close(net); close(clu); close(sex)
igraph in R
```

Pajek and R

netJSON and Graph

CSV2Pajek.R

bib.net

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

*vertices 16
1 "Batagelj, Vladimir"
2 "Doreian, Patrick"
3 "Ferligoj, Anuška"
4 "Granovetter, Mark"
5 "Moustaki, Irini"
2 "Doreian" Patrick" 3 "Ferligoj, Anuška" 4 "Granovetter, Mark" 5 "Moustaki, Irini" 6 "Mrvar, Andrej"
7 "Clustering with relational constraint"
8 "The Strength of Weak Ties"
9 "Partitioning signed social networks"
10 "Generalized Blockmodeling"
11 "Psychometrika"
12 "Social Networks"
13 "The American Journal of Sociology"
14 "Structural Analysis in the Social Sciences"
15 "Cambridge University Press"
16 "Springer"
*arcs :1 "authorOf"
*arcs :2 "cites"
*arcs :3 "containedIn"
*arcs :4 "editorOf"
*arcs :5 "publishedBy"

*arcs 1: 1 10 "authorOf" 1: "authorOf" 1: "authorOf" 1: authorOf" 3 "authorOf" 1: "authorOf" "editorOf" 1. "authorOf" 1. "authorOf" 4. "editorOf" 4. "editorOf" "containedIn" "containedIn" 1 3. 8 13 "containedIn" 3: 9 12 "containedIn" 1 2: 9 10 1 "cites" 10 7 1 1 "cites" 2: 5: 14 15 1 1 "publishedBy" 5: 11 16 1 1 "publishedBy"

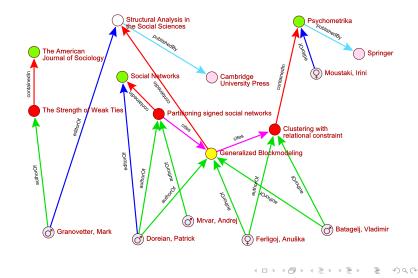
-

Sac

イロト イロト イヨト イヨト

bib.net, bibMode.clu, bibSex.clu; bib.paj, bib.ini.

V. Batagelj


Bibliographic network - picture / Pajek

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R

Pajek and R

netJSON and Graph

V. Batagelj

Reading Pajek files in R

Rnet, intro	
V. Batagelj	
Networks	
Descriptions of networks	
Properties	
Types of networks	wiki
Temporal networks	
Multi- relational	
networks Two-mode	
networks	
igraph in R	
Pajek and R	
netJSON and Graph	

Temporal network data

netJSON format

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netJSON and Graph

For describing temporal networks we initially, extending Pajek format, defined and used a lanus format.

Recently we started to develop a new format based on JSON – we named it netJSON (see EDA: Data on files, slides 46-57).

netJSON has two formats: a *basic* and a *general* format. Current implementation of the TQ library supports only the basic format. netJSON format is supported by a Python library Nets.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Informal description of the basic netJSON format

Rnet, intro

```
V. Batagelj
             "netJSON": "basic",
             "info": {
Networks
                 "org":1, "nNodes":n, "nArcs":mA, "nEdges":mE,
                 "simple":TF, "directed":TF, "multirel":TF, "mode":m,
of networks
                 "network":fName, "title":title,
                 "time": { "Tmin":tm, "Tmax":tM, "Tlabs": {labs} },
Properties
                 "meta": [events], ...
                 },
networks
             "nodes": [
Temporal
                 { "id":nodeId, "lab":label, "x":x, "y":y, ... },
networks
                 * * *
Multi-
relational
             "links": [
networks
                 { "type":arc/edge, "n1":nodeID1, "n2":nodeID2, "rel":
Two-mode
                 * * *
networks
igraph in R
Paiek and R
             where ... are user defined properties and *** is a sequence of such
netJSON and
             elements.
Graph
                                                      ◆ロ ▶ ◆ □ ▶ ★ 三 ▶ ◆ 三 ▶ ● 三 ● ● ○ ○ ○
```

V. Batagelj

Basic netJSON format

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netJSON and Graph

An event description can contain fields:

```
"date": date,
"title": short description,
"author": name,
"desc": long description,
"url": URL,
"cite": reference,
"copy": copyright
```

for describing temporal networks a node element and a link element has an additional required property ${\tt tq}$

Example 1, Franzosi's violence network / UTF-8 no sig

イロト イボト イヨト イヨト 三日

DQC