Rnet, connectivity
V. Batagelj

Introduction to Network Analysis

 Structure of networks: connectivityVladimir Batagelj

IMFM Ljubljana, IAM UP Koper and NRU HSE Moscow

Master's programme
Applied Statistics with Social Network Analysis International Laboratory for Applied Network Research NRU HSE, Moscow 2018

Outline

Rnet, connectivity
V. Batagelj

Connectivity
Condensation
Bow-tie
Other
connectivities
Important nodes

Closeness
Betweeness
Hubs and authorities

1 Connectivity
2 Condensation
3 Bow-tie
4 Other connectivities
5 Important nodes
6 Closeness
7 Betweeness
8 Hubs and authorities
9 Clustering

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si
Current version of slides (December 12, 2018 at 00 : 42): slides PDF

Walks

Rnet,
connectivity

V. Batagelj

Connectivity
Condensation
Bow-tie
Other connectivities

Important nodes

Closeness
Betweeness
Hubs and authorities

Clustering
length $|s|$ of the walk s is the number of links it contains.
$s=(j, h, l, g, e, f, h, l, e, c, b, a)$ $|s|=11$
A walk is closed iff its initial and terminal node coincide.
If we don't consider the direction of the links in the walk we get a semiwalk or chain.
trail - walk with all links different path - walk with all nodes different
cycle - closed walk with all internal nodes different
A graph is acyclic if it doesn't contain any cycle.

Shortest paths

\quadRnet, connectivity
V. Batagelj
Connectivity
Condensation
Bow-tie
Other
connectivities
Important
nodes
Closeness
Betweeness
Hubs and
authorities
Clustering

A shortest path from u to v is also called a geodesic from u to v. Its length is denoted by $d(u, v)$.
If there is no walk from u to v then $d(u, v)=\infty$.

$$
\begin{aligned}
& d(j, a)=|(j, h, d, c, b, a)|=5 \\
& d(a, j)=\infty \\
& \hat{d}(u, v) \\
& \max (d(u, v), d(v, u)) \quad \text { is } \quad \text { a }
\end{aligned}
$$ distance:

$\hat{d}(v, v)=0, \hat{d}(u, v)=\hat{d}(v, u)$,
$\hat{d}(u, v) \leq \hat{d}(u, t)+\hat{d}(t, v)$.
The diameter of a graph equals to the distance between the most distant pair of nodes: $D=\max _{u, v \in \mathcal{V}} d(u, v)$.
Network/Create New Network/Subnetwork with Paths/

B
 Shortest paths

Rnet,
connectivity

V. Batagelj

Connectivity
Condensation

Bow-tie

Other
connectivities
Important nodes

Closeness
Betweeness
Hubs and authorities Clustering

DICT28.

Equivalence relations and Partitions

A relation R on \mathcal{V} is an equivalence relation iff it is reflexive $\forall v \in \mathcal{V}: v R v$, symmetric $\forall u, v \in \mathcal{V}: u R v \Rightarrow v R u$, and transitive $\forall u, v, z \in \mathcal{V}: u R z \wedge z R v \Rightarrow u R v$.
Each equivalence relation determines a partition into equivalence classes $[v]=\{u: v R u\}$.
Each partition \mathbf{C} determines an equivalence relation $u R v \Leftrightarrow \exists C \in \mathbf{C}: u \in C \wedge v \in C$.
k-neighbors of v is the set of nodes on 'distance' k from v, $N^{k}(v)=\{u \in v: d(v, u)=k\}$.
The set of all k-neighbors, $k=0,1, \ldots$ of v is a partition of \mathcal{V}.
k-neighborhood of $v, N^{(k)}(v)=\{u \in v: d(v, u) \leq k\}$.
Network/Create Partition/k-Neighbors

B
 Motorola's neighborhood

Rnet, connectivity
V. Batagelj

Connectivity
Condensation
Bow-tie
Other
connectivities
Important nodes

Closeness

Hubs and authorities

Clustering

The thickness of edges is a square root of its value.

Connectivity

\quadRnet, connectivity
V. Batagelj
Connectivity
Condensation
Bow-tie
Other
connectivities
Important
nodes
Closeness
Betweeness
Hubs and
authorities
Clustering

Node u is reachable from node v iff there exists a walk with initial node v and terminal node u.

Node v is weakly connected with node u iff there exists a semiwalk with v and u as its end-nodes.

Node v is strongly connected with node u iff they are mutually reachable.

Weak and strong connectivity are equivalence relations. Equivalence classes induce weak/strong components.

```
Network/Create Partition/Components/
```


Connectivity in igraph

Rnet, connectivity
V. Batagelj

Connectivity
Condensation
Bow-tie
Other
connectivities
Important nodes

Closeness
Betweeness
Hubs and authorities Clustering

```
> wdir <- "C:/.../2017/Moscow/Rnet/test"
> setwd(wdir)
> library(igraph)
> source("C:\\...\\\Rnet\\test\\igraph+.R")
> R <- read.graph("./nets/class.net",format="pajek")
> vertex_attr(R) $shape <- NULL
> plot(R)
> w <- components(R,mode="weak")
> W <- components(R,mode="strong")
> S}(R)$strong <- s$membership
> col <- c("red","green","orange","blue","green","magenta",
    "grey","black")
> plot(R,vertex.color=col[s$membership])
> main <- extract_clusters(R,"strong",c(4))
> plot(main)
```


Weak components

\quadRnet, connectivity
V. Batagelj
Connectivity
Condensation
Bow-tie
Other
connectivities
Important
nodes
Closeness
Betweeness
Hubs and
authorities
Clustering

Special graphs - bipartite, tree

 nodes

A graph $\mathcal{G}=(\mathcal{V}, \mathcal{L})$ is bipartite iff its set of nodes \mathcal{V} can be partitioned into two sets \mathcal{V}_{1} and \mathcal{V}_{2} such that every link from \mathcal{L} has one end-node in \mathcal{V}_{1} and the other in \mathcal{V}_{2}.

A weakly connected graph \mathcal{G} is a tree iff it doesn't contain loops and semicycles of length at least 3.

Condensation

\quadRnet, connectivity
V. Batagelj
Connectivity
Condensation
Bow-tie
Other
connectivities
Important
nodes
Closeness
Betweeness
Hubs and
authorities
Clustering

If we shrink every strong component of a given graph into a node, delete all loops and identify parallel arcs the obtained reduced graph is acyclic. For every acyclic graph an ordering / level function $i: \mathcal{V} \rightarrow \mathbb{N}$ exists s.t. $(u, v) \in \mathcal{A} \Rightarrow i(u)<i(v)$.

\mathbb{B}

Condensation - Example

Rnet, connectivity

Network/Create Partition/Components/Strong [1] Operations/Network+Partition/Shrink Network [1][0] Network/Create New Network/Transform/Remove/Loops [yes] Network/Acyclic Network/Depth Partition/Acyclic Partition/Make Permutation
Permutation/Inverse Permutation
select partition [Strong Components]
Operations/Partition+Permutation/Functional Composition Partitic Partition/Make Permutation
select [original network]
File/Network/Export Matrix to EPS/Using Permutation

Rnet, connectivity

Internal structure of strong components

Let d be the largest common divisor of lengths of closed walks in a strong component.

The component is said to be simple, iff $d=1$; otherwise it is periodical with a period d.
The set of nodes \mathcal{V} of strongly connected directed graph $\mathcal{G}=(\mathcal{V}, R)$ can be partitioned into d clusters $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots$, \mathcal{V}_{d}, s.t. for every $\operatorname{arc}(u, v) \in R$ holds $u \in \mathcal{V}_{i} \Rightarrow v \in \mathcal{V}_{(\operatorname{imod} d)+1}$.

Network/Create Partition/
Components/Strong-Periodic

B

... Internal structure of strong components

Rnet, connectivity
V. Batagelj

Connectivity
Condensation
Bow-tie
Other connectivities

Important nodes

Closeness

Hubs and authorities

Clustering

Bonhoure's periodical graph. Pajek data

Bow-tie structure of the Web graph

Rnet,
connectivity
V. Batagelj

Connectivity
Condensation

Let \mathcal{S} be the largest strong com-

Disconnected components
Kumar \&: The Web as a graph ponent in network $\mathcal{N} ; \mathcal{W}$ the weak component containing \mathcal{S}; \mathcal{I} the set of nodes from which \mathcal{S} can be reached; \mathcal{O} the set of nodes reachable from $\mathcal{S} ; \mathcal{T}$ (tubes) set of nodes (not in \mathcal{S}) on paths from \mathcal{I} to $\mathcal{O} ; \mathcal{R}=\mathcal{W}$ ($\mathcal{I} \cup \mathcal{S} \cup \mathcal{O} \cup \mathcal{T}$) (tendrils); and $\mathcal{D}=\mathcal{V} \backslash \mathcal{W}$. The partition

$$
\{\mathcal{I}, \mathcal{S}, \mathcal{O}, \mathcal{T}, \mathcal{R}, \mathcal{D}\}
$$

is called the bow-tie partition of \mathcal{V}.
Note: chains can exist in the set \mathcal{R}.
Network/Create Partition/Bow-Tie

Biconnectivity

Rnet, connectivity
V. Batagelj

Nodes u and v are biconnected iff they are connected (in both directions) by two independent (no common internal node) paths. Biconnectivity determines a partition of the set of links.

A node is an articulation node iff its deletion increases the number of weak components in a graph.
A link is a bridge iff its deletion increases the number of weak components in a graph.

```
Network/Create New Network/with Bi-Connected
Components.
```

The notion of biconnectivity can be generalized do k-connectivity. No very efficient algorithm for $k>3$ exists.

k-connectivity

Node connectivity κ of graph \mathcal{G} is equal to the smallest number of nodes that, if deleted, induce a disconnected graph or the trivial graph K_{1}.

Link connectivity λ of graph \mathcal{G} is equal to the smallest number of links that, if deleted, induce a disconnected graph or the trivial graph K_{1}.

Whitney's inequality: $\kappa(\mathcal{G}) \leq \lambda(\mathcal{G}) \leq \delta(\mathcal{G})$.
Graph \mathcal{G} is (node) k-connected, if $\kappa(\mathcal{G}) \geq k$ and is link k-connected, if $\lambda(\mathcal{G}) \geq k$.

Whitney / Menger theorem: Graph \mathcal{G} is node/link k-connected iff every pair of nodes can be connected with k node/link internally disjoint (semi)walks.

Triangular and short cycle connectivities

In an undirected graph we call a triangle a subgraph isomorphic to K_{3}.

A sequence ($T_{1}, T_{2}, \ldots, T_{s}$) of triangles of \mathcal{G} (node) triangularly connects nodes $u, v \in \mathcal{V}$ iff $u \in T_{1}$ and $v \in T_{s}$ or $u \in T_{s}$ and $v \in T_{1}$ and $\mathcal{V}\left(T_{i-1}\right) \cap \mathcal{V}\left(T_{i}\right) \neq \emptyset, i=2, \ldots s$. It edge triangularly connects nodes $u, v \in \mathcal{V}$ iff a stronger version of the second condition holds $\mathcal{E}\left(T_{i-1}\right) \cap \mathcal{E}\left(T_{i}\right) \neq \emptyset, i=2, \ldots s$.

Node triangular connectivity is an equivalence on \mathcal{V}; and edge triangular connectivity is an equivalence on \mathcal{E}. See the paper.

Triangular connectivity in directed graphs

Rnet, connectivity
V. Batagelj

Connectivity

If a graph \mathcal{G} is mixed we replace edges with pairs of opposite arcs. In the following let $\mathcal{G}=(\mathcal{V}, \mathcal{A})$ be a simple directed graph without loops. For a selected $\operatorname{arc}(u, v) \in \mathcal{A}$ there are only two different types of directed triangles: cyclic and

cyc

tra transitive.
For each type we get the corresponding triangular network $\mathcal{N}_{\text {cyc }}$ and $\mathcal{N}_{\text {tra }}$ by determining the corresponding weight $w_{c y c}$ or $w_{\text {tra }}$ to its arcs, counting the number of cyclic/transitive triangles that contain the arc. We remove arcs with weight zero. The notion of triangular connectivity can be extended to the notion of short (semi) cycle connectivity.

Network/Create New Network/with Ring Counts/3-Rings/Directed

Edge-cut at level 16 of triangular network of Erdős collaboration graph

Rnet, connectivity
V. Batagelj

Connectivity
Condensation
Bow-tie
Other connectivities

Important nodes

Closeness
Betweeness
Hubs and authorities

$$
\begin{aligned}
& \text { without Erdős, } \\
& n=6926 \\
& m=11343
\end{aligned}
$$

Arc-cut at level 11 of transitive triangular network of ODLIS dictionary

Rnet,
connectivity

V. Batagelj

Connectivity
Condensation
Bow-tie
Other connectivities

Important nodes

Closeness
Betweeness
Hubs and authorities Clustering

Important nodes in network

To identify important / interesting elements (nodes, links) in a network we often try to express our intuition about important / interesting element using an appropriate measure (index, weight) following the scheme

> larger is the measure value of an element, more important / interesting is this element

Too often, in analysis of networks, researchers uncritically pick some measure from the literature. For formal approach see Roberts.

It seems that the most important distinction between different node indices is based on the view/decision whether the network is considered directed or undirected.

Important nodes in network

Rnet, connectivity
V. Batagelj

Connectivity

This gives us two main types of indices:

- networks containing directed links (we replace edges by pairs of opposite arcs): measures of importance; with two subgroups: measures of influence, based on out-going arcs; and measures of support, based on incoming arcs;
- measures of centrality, based on all links.

For undirected networks all three types of measures coincide. If we change the direction of all arcs (replace the relation with its inverse relation) the measure of influence becomes a measure of support, and vice versa.

... Important nodes in network

Rnet,

The real meaning of measure of importance depends on the relation described by a network. For example the most 'important' person for the relation '._ doesn't like to work with _.- is in fact the least popular person.

Removal of an important node/link from a network produces a substantial change in structure/functioning of the network.

Normalization

\quadRnet, connectivity
V. Batagelj
Connectivity
Condensation
Bow-tie
Other
connectivities
Important
nodes
Closeness
Betweeness
Hubs and
authorities
Clustering

Let $p: \mathcal{V} \rightarrow \mathbb{R}$ be an index in network $\mathcal{N}=(\mathcal{V}, \mathcal{L}, p)$. If we want to compare indices p over different networks we have to make them comparable. Usually we try to achieve this by normalization of p. Let $\mathcal{N} \in \mathbf{N}(\mathcal{V})$, where $\mathbf{N}(\mathcal{V})$ is a selected family of networks over the same set of nodes V,

$$
p_{\max }=\max _{\mathcal{N} \in \mathbf{N}(\mathcal{V})} \max _{v \in \mathcal{V}} p_{\mathcal{N}}(v) \quad \text { and } \quad p_{\min }=\min _{\mathcal{N} \in \mathbf{N}(\mathcal{V})} \min _{v \in \mathcal{V}} p_{\mathcal{N}}(v)
$$

then we define the normalized index as

$$
p^{\prime}(v)=\frac{p(v)-p_{\min }}{p_{\max }-p_{\min }} \in[0,1]
$$

Degrees

Rnet, connectivity
V. Batagelj

Connectivity Condensation

The simplest index are the degrees of nodes. Since for simple networks deg $_{\text {min }}=0$ and $\operatorname{deg}_{\max }=n-1$, the corresponding normalized indices are
centrality $\quad \operatorname{deg}^{\prime}(v)=\frac{\operatorname{deg}(v)}{n-1}$
and similary
support $\operatorname{indeg}^{\prime}(v)=\frac{\operatorname{indeg}(v)}{n}$
influence $\operatorname{outdeg}^{\prime}(v)=\frac{\text { outdeg }(v)}{n}$
Instead of degrees in original network we can consider also the degrees with respect to the reachability relation (transitive closure).

```
Network/Create Partition/Degree
Network/Create Vector/Centrality/Degree
Network/Create Vector/Centrality/Proximity
Prestige
```


Closeness

Rnet, connectivity
V. Batagelj

Connectivity
Condensation

Most indices are based on the distance $d(u, v)$ between nodes in a network $\mathcal{N}=(\mathcal{V}, \mathcal{L})$. Two such indices are radius $\quad r(v)=\max _{u \in \mathcal{V}} d(v, u)$ total closeness $S(v)=\sum_{u \in \mathcal{V}} d(v, u)$
These two indices are measures of influence - to get measures of support we have to replace in definitions $d(u, v)$ with $d(v, u)$. If the network is not strongly connected $r_{\text {max }}$ and $S_{\text {max }}$ are equal to ∞. Sabidussi (1966) introduced a related measure $1 / S(v)$; or in its normalized form
closeness $\quad c l(v)=\frac{n-1}{\sum_{u \in \mathcal{V}} d(v, u)}$
$D=\max _{u, v \in \mathcal{V}} d(v, u)$ is called the diameter of network.
Network/Create Vector/Centrality/Closeness Network/Create New Network/Subnetwork with Paths/Info on Diameter

Betweeness

\quadRnet, connectivity
V. Batagelj
Connectivity
Condensation
Bow-tie
Other
connectivities
Important
nodes
Closeness
Betweeness
Hubs and
authorities
Clustering

Important are also the nodes that can control the information flow in the network. If we assume that this flow uses only the shortest paths (geodesics) we get a measure of betweeness (Anthonisse 1971, Freeman 1977)

$$
b(v)=\frac{1}{(n-1)(n-2)} \sum_{\substack{u, t \in v: g_{u, t}>0 \\ u \neq v, t \neq v, u \neq t}} \frac{g_{u, t}(v)}{g_{u, t}}
$$

where $g_{u, t}$ is the number of geodesics from u to t; and $g_{u, t}(v)$ is the number of those among them that pass through node v.

For computation of geodesic matrix see Brandes.
Network/Create Vector/Centrality/Betweenness

B

Padgett's Florentine families

	close	between
1. Acciaiuoli	0.368421	0.000000
2. Albizzi	0.482759	0.212454
3. Barbadori	0.437500	0.093407
4. Bischeri	0.400000	0.104396
5. Castellani	0.388889	0.054945
6. Ginori	0.333333	0.000000
7. Guadagni	0.466667	0.254579
8. Lamberteschi	0.325581	0.000000
9. Medici	0.560000	0.521978
10. Pazzi	0.285714	0.000000
11. Peruzzi	0.368421	0.021978
12. Ridolfi	0.500000	0.113553
13. Salviati	0.388889	0.142857
14. Strozzi	0.437500	0.102564
15. Tornabuoni	0.482759	0.091575

Hubs and authorities

Rnet, connectivity
V. Batagelj

Connectivity

To each node v of a network $\mathcal{N}=(\mathcal{V}, \mathcal{L})$ we assign two values: quality of its content (authority) x_{v} and quality of its references (hub) y_{v}.
A good authority is selected by good hubs; and good hub points to good authorities (see Kleinberg).

$$
x_{v}=\sum_{u:(u, v) \in \mathcal{L}} y_{u} \quad \text { and } \quad y_{v}=\sum_{u:(v, u) \in \mathcal{L}} x_{u}
$$

Let \mathbf{W} be a matrix of network \mathcal{N} and \mathbf{x} and \mathbf{y} authority and hub vectors. Then we can write these two relations as $\mathbf{x}=\mathbf{W}^{T} \mathbf{y}$ and $\mathbf{y}=\mathbf{W} \mathbf{x}$.
We start with $\mathbf{y}=[1,1, \ldots, 1]$ and then compute new vectors \mathbf{x} and \mathbf{y}. After each step we normalize both vectors. We repeat this until they stabilize.
We can show that this procedure converges. The limit vector \mathbf{x}^{*} is the principal eigen vector of matrix $\mathbf{W}^{\top} \mathbf{W}$; and \mathbf{y}^{*} of matrix $\mathbf{W} \mathbf{W}^{\top}$.

... Hubs and authorities

Rnet, connectivity
V. Batagelj

Connectivity

Similar procedures are used in search engines on the web to evaluate the importance of web pages. PageRank, PageRank / Google, HITS / AltaVista, SALSA, theory.

Network/Create New Network/Sulonetwork with Paths/Info on Network/Create Vector/Centrality/Closeness Network/Create Vector/Centrality/Betweeness Network/Create Vector/Centrality/Hubs-Authorities Network/Create Vector/Centrality/Clustering Coefficients

Examples: Krebs, Krempl. World Cup 1998 in Paris, 22 national teams. A player from first country is playing in the second country.

There exist other measures based on eigen-values and eigen-vectors such as Katz, Bonachich and Brandes. See also Borgatti.

Rnet, connectivity

V. Batagelj

Connectivity
Condensation
Bow-tie
Other
connectivities
Important nodes

Closeness
Betweeness
Hubs and authorities

Clustering

Exporters (hubs)

Importers (authorities)

Clustering

Rnet, connectivity
V. Batagelj

Connectivity

Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be simple undirected graph. Clustering in node v is usually measured as a quotient between the number of links in subgraph $\mathcal{G}^{1}(v)=\mathcal{G}\left(N^{1}(v)\right)$ induced by the neighbors of node v and the number of links in the complete graph on these nodes:

$$
C(v)= \begin{cases}\frac{2\left|\mathcal{L}\left(\mathcal{G}^{1}(v)\right)\right|}{\operatorname{deg}(v)(\operatorname{deg}(v)-1)} & \operatorname{deg}(v)>1 \\ 0 & \text { otherwise }\end{cases}
$$

We can consider also the size of node neighborhood by the following correction

$$
C_{1}(v)=\frac{\operatorname{deg}(v)}{\Delta} C(v)
$$

where Δ is the maximum degree in graph \mathcal{G}. This measure attains its largest value in nodes that belong to an isolated clique of size Δ.

Network/Create Vector/Clustering

User defined indices

\quadRnet, connectivity
V. Batagelj
Connectivity
Condensation
Bow-tie
Other
connectivities
Important
nodes
Closeness
Betweeness
Hubs and
authorities
Clustering

Xingqin Qi et al. defined in their paper Terrorist Networks, Network Energy and Node Removal a new measure of centrality based on Laplacian energy - Laplacian centrality

$$
L(v)=\operatorname{deg}(v)(\operatorname{deg}(v)+1)+2 \sum_{u \in N(v)} \operatorname{deg}(u)
$$

```
select the network
Network/Create Vector/Centrality/Degree/All
Operations/Network+Vector/Neighbours/Sum/All [False]
Vector/Transform/Multiply by [2]
select the degree vector as First
select the degree vector as Second
Vectors/Multiply (First*Second)
Vectors/Add (First+Second)
select the 2*sum on neighbors as Second
Vectors/Add (First+Second)
dispose auxiliary vectors
File/Vector/Change Label [Laplace All centrality]
```

macro

Network centralization measures

Rnet, connectivity
V. Batagelj

Connectivity

Extremal approach: Let $p: \mathcal{V} \rightarrow \mathbb{R}$ be an index in network $\mathcal{N}=(\mathcal{V}, \mathcal{L})$. We introduce the quantities

$$
\begin{aligned}
p^{\star} & =\max _{v \in \mathcal{V}} p(v) \\
D & =\sum_{v \in \mathcal{V}}\left(p^{\star}-p(v)\right) \\
D^{\star} & =\max \{D(\mathcal{N}): \mathcal{N} \text { is a network on } \mathcal{V}\}
\end{aligned}
$$

Then we can define centralization with respect to p

$$
C_{p}(\mathcal{N})=\frac{D(\mathcal{N})}{D^{\star}}
$$

Usually the most centralized graph is the star S_{n} and the least centralized is the complete graph K_{n}.

.. . Network centralization measures

Rnet, connectivity
V. Batagelj

Variational approach: The other approach is based on the variance. First we compute the average node centrality

$$
\bar{p}=\frac{1}{n} \sum_{v \in \mathcal{V}} p(v)
$$

and then define

$$
V_{p}(\mathcal{N})=\frac{1}{n} \sum_{v \in \mathcal{V}}(p(v)-\bar{p})^{2}
$$

Important nodes in igraph

Rnet, connectivity
V. Batagelj

Connectivity
Condensation
Bow-tie
Other
connectivities
Important nodes

Closeness
Betweeness
Hubs and authorities

```
> R <- read.graph("./nets/class.net",format="pajek")
> vertex_attr(R)$shape <- NULL
> b <- betweenness(R,normalized=TRUE)
> plot(R,vertex.size=b*100)
> c <- closeness(R, normalized=TRUE)
> plot(R,vertex.size=c*100)
> e <- eigen_centrality(R)
> plot(R,vertex.size=e$vector*30)
> hub=hub.score(R) $vector
> plot(R,vertex.size=hub*20)
> aut=authority.score(R) $vector
> plot(R,vertex.size=aut*20)
> b <- bonpow(R, rescale=TRUE)
> plot(R,vertex.size=b*200)
> # clustering coefficient
> t <- transitivity(R,type="local")
> plot(R,vertex.size=t*25)
```

Clustering

