Rnet, cohesion
V. Batagelj

## Islands

Cores

# Introduction to Network Analysis 

## Structure of networks: cohesion

Vladimir Batagelj

IMFM Ljubljana, IAM UP Koper and NRU HSE Moscow

Master's programme Applied Statistics with Social Network Analysis International Laboratory for Applied Network Research NRU HSE, Moscow 2018

## $\mathbb{B}$

## Outline

Rnet, cohesion
V. Batagelj

## Islands

Cores
Generalized cores

L. Krempl, MPI.

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si
Current version of slides (December 11, 2018 at 12 : 18): slides PDF

## Islands

Rnet,

If we represent a given or computed value of nodes / links as a height of nodes / links and we immerse the network into a water up to selected level we get islands. Varying the level we get different islands.


We developed very efficient algorithms to determine the islands hierarchy and to list all the islands of selected sizes.
See details.

## Islands

Rnet,

Islands are very general and efficient approach to determine the 'important' subnetworks in a given network.

We have to express the goals of our analysis with a related property of the nodes or weight of the links. Using this property we determine the islands of an appropriate size (in the interval $k$ to $K$ ).
In large networks we can get many islands which we have to inspect individually and interpret their content.

An important property of the islands is that they identify locally important subnetworks on different levels. Therefore they detect also emerging groups.
The set of nodes $\mathcal{C} \subseteq \mathcal{V}$ is a local node peak, if it is a regular node island and all of its nodes have the same value. Node island with a single local node peak is called a simple node island. In similar way we define simple link island.

## Islands

Rnet,

A set of nodes $C \subseteq \mathcal{V}$ is a regular node island in network $\mathcal{N}=(\mathcal{V}, \mathcal{L}, p), p: \mathcal{V} \rightarrow \mathbb{R}$ iff it induces a connected subgraph and the nodes from the island are 'higher' than the neighboring nodes

$$
\max _{u \in N(C)} p(u)<\min _{v \in C} p(v)
$$

A set of nodes $C \subseteq \mathcal{V}$ is a regular link island in network $\mathcal{N}=(\mathcal{V}, \mathcal{L}, w), w: \mathcal{L} \rightarrow \mathbb{R}$ iff it induces a connected subgraph and the links inside the island are 'stronger related' among them than with the neighboring nodes - in $\mathcal{N}$ there exists a spanning tree $\mathcal{T}$ over $C$ such that

$$
\max _{(u, v) \in \mathcal{L}, u \notin C, v \in C} w(u, v)<\min _{(u, v) \in \mathcal{T}} w(u, v)
$$

Network/Create Partition/Islands/Line Weights Operations/Network+Vector/Islands/Vertex Property

## Some properties of node islands

Rnet, cohesion

- The sets of nodes of connected components of node-cut at selected level $t$ are regular node islands.
- The set $\mathcal{H}_{p}(\mathcal{N})$ of all regular node islands of network $\mathcal{N}$ is a complete hierarchy:
- two islands are disjoint or one of them is a subset of the other
- each node belongs to at least one island
- Node islands are invariant for the strictly increasing transformations of the property $p$.
- Two linked nodes cannot belong to two disjoint regular node islands.


## Simple node islands

Rnet, cohesion

- The set of nodes $\mathcal{C} \subseteq \mathcal{V}$ is a local node peak, if it is a regular node island and all of its nodes have the same value.
- Node island with a single local node peak is called a simple node island.
- The types of node islands:
- FLAT - all nodes have the same value
- SINGLE - island has a single local node peak
- MULTI - island has more than one local node peaks
- Only the islands of type fLAT or SINGLE are simple islands.


## Some properties of link islands

Rnet, cohesion

- The sets of nodes of connected components of link-cut at selected level $t$ are regular link islands.
- The set $\mathcal{H}_{w}(\mathcal{N})$ of all nondegenerated regular link islands of network $\mathcal{N}$ is hierarchy (not necessarily complete):
- two islands are disjoint or one of them is a subset of the other
- Link islands are invariant for the strictly increasing transformations of the weight $w$.
- Two linked nodes may belong to two disjoint regular link islands.


## Simple link islands

- The set of nodes $\mathcal{C} \subseteq \mathcal{V}$ is a local link peak, if it is a regular link island and there exists a spanning tree of the corresponding induced network, in which all links have the same value as the link with the largest value.
- Link island with a single local link peak is called a simple link island.
- The types of link islands:
- FLAT - there exists a spanning tree, in which all links have the same value as the link with the largest value.
- SINGLE - island has a single local link peak.
- mULTI - island has more than one local link peaks.
- Only the islands of type fLAT or SINGLE are simple islands.


## US patents

Rnet, cohesion V. Batagelj

US patents network (Nber, US Patents) has 3774768 nodes and16522438 arcs ( 1 loop). Without the loop it is acyclic. The weight of an arc is the proportion of paths through the arc from some initial node to some terminal node. We determined al (2,90)-islands. The corresponding subnetwork has 470137 nodes, 307472 arcs and for different $k$ : $C_{2}=187610, C_{5}=8859, C_{30}=101, C_{50}=30, \ldots$ islands. Rolex

| $[1]$ | 0 | 139793 | 29670 | 9288 | 3966 | 1827 | 997 | 578 | 362 | 250 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $[11]$ | 190 | 125 | 104 | 71 | 47 | 37 | 36 | 33 | 21 | 23 |
| $[21]$ | 17 | 16 | 8 | 7 | 13 | 10 | 10 | 5 | 5 | 5 |
| $[31]$ | 12 | 3 | 7 | 3 | 3 | 3 | 2 | 6 | 6 | 2 |
| $[41]$ | 1 | 3 | 4 | 1 | 5 | 2 | 1 | 1 | 1 | 1 |
| $[51]$ | 2 | 3 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| $[61]$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 |
| $[71]$ | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| $[81]$ | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 7 |

Distribution of island size

Rnet, cohesion<br>V. Batagelj

Islands
Cores
Generalized cores


Main path and main island in US Patents Nber, US Patents; $n=3774768$, $m=16522438$

| Rnet, |
| :---: |
| cohesion |

V. Batagelj

Islands
Cores


## Main island - Liquid crystal display

Rnet, cohesion<br>V. Batagelj

Islands
Cores

Thibke 1 Patents os the inguld-crystal disphy


Table 2 Patents on the inguiderystal disphy


Table 3 . Paternts on the ingulut-crystal display


## Word clouds for LCD island and foam island

Rnet, cohesion V. Batagelj

Islands

Cores


## B

The Edinburgh Associative Thesaurus $n=23219, m=325624$, transitivity weight

Rnet, cohesion
V. Batagelj

Islands
Cores
Generalized cores



## Dense groups

Rnet, cohesion

Several notions were proposed in attempts to formally describe dense groups in graphs.

Clique of order $k$ is a maximal complete subgraph (isomorphic to $\left.K_{k}\right), k \geq 3$.
$s$-plexes, LS sets, lambda sets, cores, ...
For all of them, except for cores, it turned out that they are difficult to detemine.

## Cores and generalized cores

Rnet, cohesion

The notion of core was introduced by Seidman in 1983. Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a graph. A subgraph $\mathcal{H}=(W, \mathcal{E} \mid W)$ induced by the set $W$ is a $k$-core or a core of order $k$ iff $\forall v \in W$ : $\operatorname{deg}_{\mathcal{H}}(v) \geq k$, and $\mathcal{H}$ is a maximal subgraph with this property. The core of maximum order is also called the main core.
The core number of node $v$ is the highest order of a core that contains this node. The degree deg $(v)$ can be: in-degree, out-degree, in-degree + out-degree, etc., determining different types of cores.

## Properties of cores

Rnet, cohesion

From the figure, representing 0, 1, 2 and 3 core, we can see the following properties of cores:

- The cores are nested: $i<j \Longrightarrow \mathcal{H}_{j} \subseteq \mathcal{H}_{i}$
- Cores are not necessarily connected subgraphs.

An efficient algorithm for determining the cores hierarchy is based on the following property:

> If from a given graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ we recursively delete all nodes, and edges incident with them, of degree less than $k$, the remaining graph is the $k$-core.

## 6-core of Krebs Internet industries

Rnet,
cohesion
V. Batagelj


## Generalized cores

Rnet, cohesion V. Batagelj

The notion of core can be generalized to networks. Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, w)$ be a network, where $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is a graph and $w: \mathcal{E} \rightarrow \mathbb{R}$ is a function assigning values to edges. A node property function on $\mathbf{N}$, or a $p$-function for short, is a function $p(v, U), v \in \mathcal{V}, U \subseteq \mathcal{V}$ with real values. Let $N_{U}(v)=N(v) \cap U$. Besides degrees and (corrected) clustering coefficient, here are some examples of $p$-functions:

$$
\begin{aligned}
p_{S}(v, U) & =\sum_{u \in N_{U}(v)} w(v, u), \text { where } w: \mathcal{E} \rightarrow \mathbb{R}_{0}^{+} \\
p_{M}(v, U) & =\max _{U \in N_{U}(v)} w(v, u), \text { where } w: \mathcal{E} \rightarrow \mathbb{R} \\
p_{t}(v, \mathcal{U}) & =\frac{\left|\mathcal{L}(\mathcal{U}) \cap \mathcal{L}\left(K\left(N^{+}(v)\right)\right)\right|}{\left|\mathcal{L}\left(K\left(N^{+}(v)\right)\right)\right|} \\
p_{k}(v, U) & =\text { number of cycles of length } k \text { through node } v \text { in }(U, \mathcal{E} \mid U)
\end{aligned}
$$

The subgraph $\mathcal{H}=(C, \mathcal{E} \mid C)$ induced by the set $C \subseteq \mathcal{V}$ is a $p$-core at level $t \in \mathbb{R}$ iff $\forall v \in C: t \leq p(v, C)$ and $C$ is a maximal such set.

## Additional $p$-functionss

Rnet, cohesion
V. Batagelj

## Islands

Cores
Generalized cores
relative density
$p_{\gamma}(v, \mathcal{C})=\frac{\operatorname{deg}(v, \mathcal{C})}{\max _{u \in N(v)} \operatorname{deg}(u)}$, if $\operatorname{deg}(v)>0 ; 0$, otherwise
diversity
$p_{\delta}(v, \mathcal{C})=\max _{u \in N^{+}(v, \mathcal{C})} \operatorname{deg}(u)-\min _{u \in N^{+}(v, \mathcal{C})} \operatorname{deg}(u)$
average weight
$p_{a}(v, \mathcal{C})=\frac{1}{|N(v, \mathcal{C})|} \sum_{u \in N(v, \mathcal{C})} w(v, u)$, if $N(v, \mathcal{C}) \neq \emptyset ; 0$, otherwise

## Generalized cores algorithms

Rnet,

The function $p$ is monotone iff it has the property

$$
C_{1} \subset C_{2} \Rightarrow \forall v \in \mathcal{V}:\left(p\left(v, C_{1}\right) \leq p\left(v, C_{2}\right)\right)
$$

The degrees and the functions $p_{S}, p_{M}$ and $p_{k}$ are monotone. For a monotone function the $p$-core at level $t$ can be determined, as in the ordinary case, by successively deleting nodes with value of $p$ lower than $t$; and the cores on different levels are nested

$$
t_{1}<t_{2} \Rightarrow \mathcal{H}_{t_{2}} \subseteq \mathcal{H}_{t_{1}}
$$

The $p$-function is local iff $p(v, U)=p\left(v, N_{U}(v)\right)$.
The degrees, $p_{S}$ and $p_{M}$ are local; but $p_{k}$ is not local for $k \geq 4$. For a local $p$-function an $O(m \max (\Delta, \log n))$ algorithm for determining the $p$-core levels exists, assuming that $p\left(v, N_{C}(v)\right)$ can be computed in $O\left(\operatorname{deg}_{C}(v)\right)$. For details see the paper.

## Cores and generalized cores / Pajek commands

Rnet, cohesion
V. Batagelj

Cores
Generalized cores

File/Network/Read [Geom.net]
Network/Create Partition/k-Core/All
Info/Partition
Operations/Network+Partition/Extract Subnetwork [13-*]
Draw/Network+First Partition
Layout/Energy/Kamada-Kawai
Options/Values of lines/Similarities
Layout/Energy/Kamada-Kawai
Operations/Network+Partition/Extract Subnetwork [21]
Draw/Network
Layout/Energy/Kamada-Kawai
Options/Values of lines/Forget
Layout/Energy/Kamada-Kawai
[select Geom.net]
Network/Create Vector/Generalized Cores/Sum/All
Info/Vector
Vector/Make Partition/by Intervals/Selected Thresholds Info/Partition
Operations/Network+Partition/Extract Subnetwork [2]
Draw/Network
Options/Values of lines/Similarities
Layout/Energy/Fruchterman-Reingold

## Cores of orders 10-21 in Computational Geometry

| Rnet, |
| :--- |
| cohesion |
| V. Batagelj |
| Islands |
| Cores |
| Generalized <br> cores |



## B

## $p_{s^{-}}$-core at level 46 of Geombib network

Rnet, cohesion
V. Batagelj

Islands
Cores
Generalized cores


