

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

Network Analysis

1. Description of networks

Vladimir Batagelj

IMFM Ljubljana, IAM UP Koper, and NRU HSE Moscow

Master's programme

Applied Statistics with Social Network Analysis International Laboratory for Applied Network Research NRU HSE, Moscow 2020

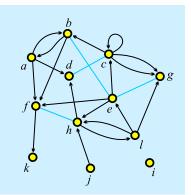
V. Batagelj

Rnet, intro

イロト イ理ト イヨト イヨト

Э

nac



Outline

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netsJSON and Nets

- 1 Networks
- 2 Descriptions of networks
- 3 Properties
- 4 Types of networks
- 5 Temporal networks
- 6 Multi-relational networks
- 7 Two-mode networks
- 8 igraph in R
- 9 Pajek and R
- 10 netsJSON and Nets

イロト イポト イヨト

nac

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si

Current version of slides (November 17, 2020 at 04:56): slides PDF

Rnet, intro

Networks

V. Batagelj

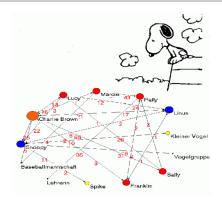
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

Alexandra Schuler/ Marion Laging-Glaser: Analyse von Snoopy Comics A *network* is based on two sets – set of *nodes* (vertices), that represent the selected *units*, and set of *links* (lines), that represent *ties* between units. They determine a *graph*. A link can be *directed* – an *arc*, or *undirected* – an *edge*.

Additional data about nodes or links can be known – their *properties* (attributes). For example: name/label, type, value, ...

San

Network = Graph + Data

The data can be measured or computed.

V. Batagelj

Rnet, intro

Networks / Formally

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

A network $\mathcal{N} = (\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W})$ consists of:

 a graph G = (V, L), where V is the set of nodes, A is the set of arcs, E is the set of edges, and L = E ∪ A is the set of links.

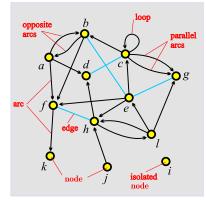
$$n=|\mathcal{V}|,\ m=|\mathcal{L}|$$

- \mathcal{P} node value functions / properties: $p: \mathcal{V} \rightarrow A$
- \mathcal{W} link value functions / weights: $w : \mathcal{L} \to B$

イロト イ理ト イヨト イヨト

-

Graph


Rnet, intro

V. Batagelj

Networks

Descriptions of networks

- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netsJSON and Nets

unit, actor – node, vertex tie, line – link, edge, arc

arc = directed link, (a, d)a is the *initial* node, d is the *terminal* node.

edge = undirected link, (c: d) c and d are end nodes.

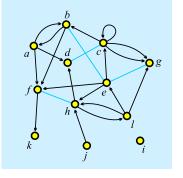
イロト イロト イヨト

Э

DQC

Rnet, intro

$Graph \ / \ Sets - \text{NET}$


Rnet, intro

V. Batagelj

Networks

Descriptions of networks

- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netsJSON and Nets

 $\begin{array}{rcl} \mathcal{V} &=& \{a, b, c, d, e, f, g, h, i, j, k, l\} \\ \mathcal{A} &=& \{(a, b), (a, d), (a, f), (b, a), \\ && (b, f), (c, b), (c, c), (c, g)_1, \\ && (c, g)_2, (e, c), (e, f), (e, h), \\ && (f, k), (h, d), (h, l), (j, h), \\ && (l, e), (l, g), (l, h)\} \\ \mathcal{E} &=& \{(b: e), (c: d), (e: g), (f: h)\} \\ \mathcal{G} &=& (\mathcal{V}, \mathcal{A}, \mathcal{E}) \\ \mathcal{L} &=& \mathcal{A} \cup \mathcal{E} \end{array}$

イロト イ理ト イヨト イヨト

nac

 $\mathcal{A} = \emptyset - undirected$ graph; $\mathcal{E} = \emptyset - directed$ graph.

WWW:GraphSet/net;TinaSet/net,picture picture.

V. Batagelj

Rnet, intro

Graph / Sets - NET

V. Batagelj

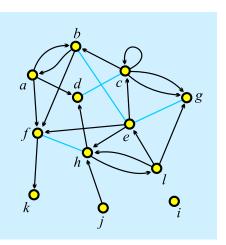
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

*Ve:	rtices	12	
1	"a"	0.1020	0.3226
2	"b"	0.2860	0.0876
3	"c"	0.5322	0.2304
4	"d"	0.3259	0.3917
5	"e"	0.5543	0.4770
6	"f"	0.1552	0.6406
7	"g"	0.8293	0.3249
8	"h"	0.4479	0.6866
9	"i"	0.8204	0.8203
10	"j" "k"	0.4789	0.9055
11	"k"	0.1175	0.9032
12	"1"	0.7095	0.6475
*Arc			
1	2		
2	1		
2 1 2 3 3 3 5 5	4		
1	6		
2	6 2 3 7 7		
3	2		
3	3		
3	7		
3	7		
5	3		
5	6		
5	8		
6	11		
8	4		
10	8		
12	5		
12	7		
8	12		
12	8		
*Edg	jes		
2 3 5	5		
3	4		
5	7		
6	8		

イロト イロト イヨト イヨト

 \exists

500

Graph / Neighbors - NET

V. Batagelj

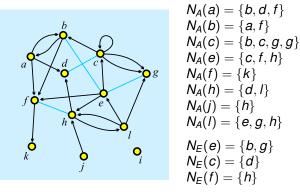
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

WWW: GraphList / net; TinaList / net.

$$N(v) = N_A(v) \cup N_E(v),$$
 also $N_{out}(v), N_{in}(v)$

Star in v, S(v) is the set of all links with v as their initial node.

V. Batagelj

Rnet, intro

DQC

Graph / Neighbors - NET

V. Batagelj

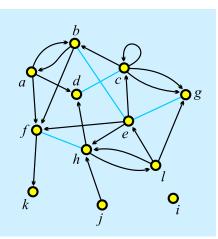
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

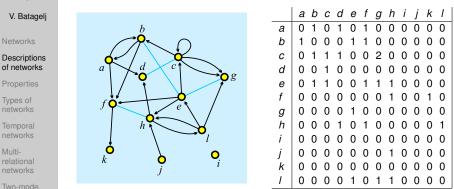
Pajek and R

netsJSON and Nets

	rtice	s		2					
1	"a"			10				32	
2	"b"		Ο.	28	6	0	Ο.	08	76
3	"c"		Ο.	53	2	2	Ο.	23	04
4	"d"		Ο.	32	5	9	Ο.	39	17
5	"e"		Ο.	55	4	3	Ο.	47	70
6	"f"		Ο.	15	5	2	Ο.	64	06
7	"g"		0.	82	9	3	0.	32	49
8	"h			44				68	
9	"i"			82				82	
	"j"			47				90	
11	"k"			11				90	
12	"1"			70				64	
	slis	:+	۰.	, 0		0	۰.	· ·	, 0
1	2	4	6						
2	1	6	0						
3	2	3	7		7				
5	3	6	8		'				
		ю	0						
6	11								
8		2							
10	8	_							
12	5	7	8						
	gesli	.st							
2	5								
3	4								
5	7								
6	8								

イロト イロト イヨト イヨト

 \exists


990

Rnet, intro

Graph / Matrix - MAT

networks

igraph in R

Pajek and R

netsJSON and Nets

WWW: GraphMat/net; TinaMat/net, paj.

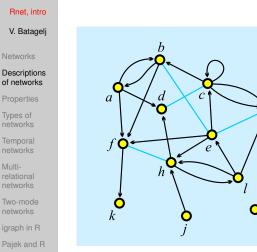
Graph *G* is *simple* if in the corresponding matrix all entries are 0 or 1.

V. Batagelj

Rnet, intro

イロト イロト イヨト イヨト

3


DQC

Multi-

netsJSON and Nets

Graph / Matrix – MAT

*Vertices 1 "a" 2 "b" 3 "c" 4 "d" 5 "e" 6 "f" 7 "g" 8 "h" 9 "i" 10 "j" 11 "k" 12 "l"	12 0.1020 0.2860 0.5322 0.3259 0.5543 0.1552 0.8293 0.4479 0.8204 0.4789 0.1175 0.7095	0.3226 0.0876 0.2304 0.3917 0.4770 0.6406 0.3249 0.6866 0.8203 0.9055 0.9032 0.6475
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$

イロト イロト イヨト イヨト

 \exists

990

Dg

Node Properties / CLU, VEC, PER

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets All three types of files have the same structure:

*vertices <i>n n</i> is the number of nodes	
v_1 node 1 has value v_1	
Vn	

CLUstering – partition of nodes – *nominal* or *ordinal* data about nodes

```
v_i \in \mathbb{N}: node i belongs to the cluster/group v_i;
```

VECtor – *numeric* data about nodes

 $v_i \in \mathbb{R}$: the property has value v_i on node i;

PERmutation – ordering of nodes

 $v_i \in \mathbb{N}$: node *i* is at the v_i -th position.

When collecting the network data consider to provide as much properties as possible.

Rnet, intro

・ロト ・ 四 ト ・ 回 ト ・ 日 ト

Example: Wolfe Monkey Data

Rnet, intro

V.	Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

inter.net	inter.net	sex.clu	age.vec	rank.per
Vertices 20 1 m01 2 m02* 3 m03* 4 m04* 5 m05* 6 f06* 7 f07* 8 f08* 9 f09* 10 f10* 11 f11* 12 f12* 13 f13* 14 f14* 15 f15* 16 f16* 17 f17* 18 f18* 20 f20* 20 f20* 21 3 10 1 4 4 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*vertices 20 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	*vertices 20 15 10 10 8 7 5 11 8 9 16 10 14 5 7 11 7 5 15 4	*vertices 20 1 2 3 4 5 10 11 6 12 9 7 8 18 19 20 13 14 15 16 17

Important note: 0 is not allowed as node number.

V. Batagelj

Rnet, intro

ヘロト 人間 ト 人主 ト 人主 ト

 \exists

500

Pajek's Project File / PAJ

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netsJSON and Nets

All types of data can be combined into a single file – Pajek's *project* file *file*.paj.

The easiest way to do this is:

- read all data files in Pajek,
 - compute some additional data,
- delete (dispose) some data,
- save all as a project file with File/Pajek Project File/Save.

Next time you can restore everything with a single File/Pajek Project File/Read.

Wolfe network as a Pajek's project file (PDF/paj).

イロト イロト イヨト イヨト 二日

DQC

Special graphs - path, cycle, star, complete

Rnet, intro

V. Batagelj

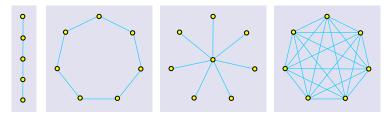
Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

Graphs: path P_5 , cycle C_7 , star S_8 in complete graph K_7 .

イロト イロト イヨト

Э

500

Representations of properties

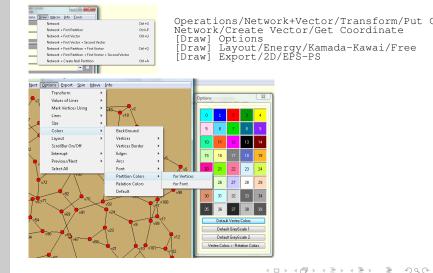
Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netsJSON and Nets

Properties of nodes \mathcal{P} and links \mathcal{W} can be measured in different scales: numerical, ordinal and nominal. They can be *input* as data or *computed* from the network.

In **Pajek** numerical properties of nodes are represented by *vector*s, nominal properties by *partitions* or as *label*s of nodes. Numerical property can be displayed as *size* (width and height) of node (figure), as its *coordinate*; and a nominal property as *color* or *shape* of the figure, or as a node's *label* (content, size and color).

We can assign in **Pajek** numerical values to links. They can be displayed as *value*, *thickness* or *grey level*. Nominal vales can be assigned as *label*, *color* or *line pattern* (see Pajek manual, section **5.3**).


・ロト ・ 同ト ・ ヨト ・ ヨト

Some related operations

- V. Batagelj
- Networks
- of networks
- Properties
- Types of networks
- networks
- relational networks
- Two-mode networks
- igraph in R
- Paiek and R
- netsJSON and Nets

V. Batagelj

Rnet, intro

DQC

Display of properties - school (Moody)

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

Types of networks

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties

Types of networks

- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netsJSON and Nets

- Besides ordinary (directed, undirected, mixed) networks some extended types of networks are also used:
 - *2-mode networks*, bipartite (valued) graphs networks between two disjoint sets of nodes.
 - multi-relational networks.
 - *temporal networks*, dynamic graphs networks changing over time.
 - specialized networks: representation of genealogies as *p-graphs*, *Petri's nets*, ...

The network (input) file formats should provide means to express all these types of networks. All interesting data should be recorded (respecting privacy).

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Temporal networks

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks

Temporal networks

- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R
- netsJSON and Nets

In a *temporal network* the presence/activity of node/link can change through time. **Pajek** supports two types of descriptions of temporal networks based on *presence* and on *events*.

Temporal network

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

Temporal network

$$\mathcal{N}_T = (\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W}, T)$$

is obtained if the *time* T is attached to an ordinary network. T is a set of *time points* $t \in T$.

In temporal network nodes $v \in \mathcal{V}$ and links $l \in \mathcal{L}$ are not necessarily present or active in all time points. If a link l(u, v) is active in time point *t* then also its endnodes *u* and *v* should be active in time *t*.

We will denote the network consisting of links and nodes active in time $t \in T$ by $\mathcal{N}(t)$ and call it a *time slice* in time point t. To get time slices in **Pajek** use

Network/Temporal Network/Generate in time

V. Batagelj F

Rnet, intro

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Temporal networks – presence

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

Time.net netsJSON

Node *a* is present in time points 5, 6, 7, 8, 9, 10 and 12, 13, 14.

Edge (1:3) is present in time points 6, 7, 8.

* means 'infinity'.

A link is present, if both its endnodes are present.

イロト イ理ト イヨト イヨト

э

DQC

Temporal networks – events

Rnet, intro

and Nets

Rnet, intro			*Vertices 3
V. Batagelj	Event	Explanation initial events - following events happen when	*Events TI 1
Networks	te t av v n s	time point <i>t</i> starts end events – following events happen when time point <i>t</i> is finished add vertex <i>v</i> with label <i>n</i> and properties <i>s</i>	AV 2 "b" TE 3 HV 2
Descriptions of networks	HV V SV V DV V AA U V S	hide node v show node v delete node v add arc (u, v) with properties s	TI 4 AV 3 "e" TI 5
Properties	HA U V SA U V DA U V	hide arc (u, v) show arc (u, v) delete arc (u, v)	AV 1 "a" TI 6
Types of networks	AE U V S HE U V SE U V DE U V	add edge $(u : v)$ with properties s hide edge $(u : v)$ show edge $(u : v)$ delete edge $(u : v)$	AE 1 3 1 TI 7
Temporal networks	CV V S CA UV S CE UV S CT UV	change property of node v to s change property of arc (u, v) to s change property of edge $(u : v)$ to s	SV 2 AE 1 2 1 TE 7
Multi- relational networks	CD UV CD UV PE UV S AP UV S	change (un)directedness of link (u, v) change direction of arcc (u, v) replace pair of arcs (u, v) and (v, u) by single edge $(u : v)$ with properties s add pair of arcs (u, v) and (v, u)	DE 1 2 DV 2 TE 8
Two-mode	DP UV EP UVS	with properties s delete pair of arcs (u, v) and (v, u) replace edge $(u : v)$ by pair of arcs (u, v) and (v, u) with properties s	DE 1 3 TE 10 HV 1
igraph in R			TI 12 SV 1 TE 14
Pajek and R	Time.ti	m.Friends.tim.	DV 1

File/Network/Read Time Events

V. Batagelj

Rnet, intro

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ < の へ ○</p>

Temporal networks / September 11

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks


Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

Steve Corman with collaborators from Arizona State University transformed, using his Centering Resonance Analysis (*CRA*), daily Reuters news (66 days) about September 11th into a temporal network of words coappearance.

イロト イロト イヨト イヨト

DQC

Multi-relational networks

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks

Multirelational networks

- Two-mode networks
- igraph in R
- Pajek and R
- netsJSON and Nets

A *multi-relational network* is denoted by

$$\mathcal{N} = (\mathcal{V}, (\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_k), \mathcal{P}, \mathcal{W})$$

and contains different relations \mathcal{L}_i (sets of links) over the same set of nodes. Also the weights from \mathcal{W} are defined on different relations or their union.

Examples of such networks are: Transportation system in a city (stations, lines); WordNet (words, semantic relations: synonymy, antonymy, hyponymy, meronymy,...), KEDS networks (states, relations between states: Visit, Ask information, Warn, Expel person, ...), ...

イロト イ理ト イヨト イヨト

... Multi-relational networks

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

The relation can be assigned to a link as follows:

• add to a keyword for description of links (*arcs, *edges, *arcslist, *edgeslist, *matrix) the number of relation followed by its name:

*arcslist :3 "sent a letter to"

All links controlled by this keyword belong to the specified relation. (Sampson, SampsonL)

• Any link controlled by *arcs or *edges can be assigned to selected relation by starting its description by the number of this relation.

3: 47 14 5

Link with endnodes 47 and 14 and weight 5 belongs to relation 3.

V. Batagelj

Rnet, intro

nac

Computer-assisted text analysis

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

An often used way to obtain networks is the *computer-assisted text analysis* (CaTA).

Terms considered in TA are collected in a *dictionary* (it can be fixed in advance, or built dynamically). The main two problems with terms are *equivalence* (different words representing the same term) and *ambiguity* (same word representing different terms). Because of these the *coding* – transformation of raw text data into formal *description* – is done often manually or semiautomaticly. As units of TA we usually consider clauses, statements, paragraphs, news, messages, Till now the thematic and semantic TA mainly used statistical methods for analysis of the coded data. In thematic TA the units are coded as rectangular matrix *Text units* \times *Concepts* which can be considered as a two-mode network.

Examples: M.M. Miller: VBPro, H. Klein: Text Analysis/ TextQuest.

```
Rnet, intro
```


... approaches to CaTA

Rnet, intro

V. Batagelj

Networks

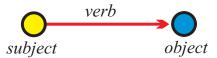
Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks


Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

In semantic TA the units (often clauses) are encoded according to the S-V-O (*Subject-Verb-Object*) model or its improvements.

Examples: Roberto Franzosi; *KEDS*, *Tabari*, KEDS / Gulf. This coding can be directly considered as network with *Subjects* \cup *Objects* as nodes and links (arcs) labeled with *Verbs*.

See also RDF triples in semantic web, SPARQL.

《日》《圖》《王》《王》

Multi-relational temporal network -**KEDS/WEIS**

Rnet, intro	% Recoded by WEISmonths, Sun Nov % from http://www.ku.edu/~keds/da						
V. Batagelj Networks	*vertices 325 1 "AFG" [1-*] 2 "AFR" [1-*] 3 "ALB" [1-*] 4 "ALBMED" [1-*] 5 "ALGG" [1-*]						
Descriptions of networks Properties Types of networks Temporal networks	5 *ALG* [1-*] 318 *YUGGOV" [1-*] 319 *YUGMAC" [1-*] 320 *YUGMAC" [1-*] 321 *YUGKTN" [1-*] 322 *YUGSER" [1-*] 323 *ZAJ*" [1-*] 324 *ZAJ*" [1-*] 325 *ZIM* [1-*] 325 *ZIM* [1-*] *arcs :0 **** ABANDONED" *arcs :11 *SURRENDER" *arcs :12 *RETREAT" *arcs :223 *MIL ENCAGEMENT" *arcs :224 *RIOT"						
Multi- relational networks Two-mode networks igraph in R Pajek and R netsJSON	*arcs : 225 "ASSASSINATE TORTURE" *arcs 224: 314 153 1 [4] 224: 314 83 1 [4] 224: 3 83 1 [4] 224: 3 83 1 [4] 224: 3 83 1 [4] 224: 295 35 1 [175] 212: 295 35 1 [175] 43: 306 87 1 [175] 13: 295 35 1 [175] 121: 295 22 1 [175] 121: 246 295 1 [175] 121: 35 295 1 [175]	890402 890404 890407 890408 030731 030731 030731 030731 030731 030731	YUG YUG ALB ETHALB GER UNWCT VAT UNWCT UNWCT SER BOSSER	KSV ETHALB ETHALB KSV CYP BOSSER EUR BOSSER BAL UNWCT UNWCT	224 212 224 123 042 212 043 121 122 121	(RIOT) RIOT-TO (ARREST PERSON) (RIOT) RIOTS (INVESTIGATE) (ENDORSE) (ARREST PERSON) (RAILY) RALLIED (RETRACT) (CRITICIZE) (DENIGRATE) (CRITICIZE)	
and Nets	Kanaga Event Data Svat	om Kl	=DC				

Kansas Event Data System KEDS

V. Batagelj

Rnet, intro

Two-mode networks

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets In a *two-mode* network $\mathcal{N} = ((\mathcal{U}, \mathcal{V}), \mathcal{L}, \mathcal{P}, \mathcal{W})$ the set of nodes consists of two disjoint sets of nodes \mathcal{U} and \mathcal{V} , and all the links from \mathcal{L} have one endnode in \mathcal{U} and the other in \mathcal{V} . Often also a *weight* $w : \mathcal{L} \to \mathbb{R} \in \mathcal{W}$ is given; if not, we assume w(u, v) = 1 for all $(u, v) \in \mathcal{L}$.

A two-mode network can also be described by a rectangular matrix $\mathbf{A} = [a_{uv}]_{U \times V}$.

$$\mathbf{a}_{uv} = egin{cases} \mathbf{w}_{uv} & (u,v) \in \mathcal{L} \ \mathbf{0} & ext{otherwise} \end{cases}$$

Examples: (persons, societies, years of membership), (buyers/consumers, goods, quantity), (parlamentarians, problems, positive vote), (persons, journals, reading). A two-mode network is announced by *vertices $n n_{\mathcal{U}}$. Authors and works.

Deep South

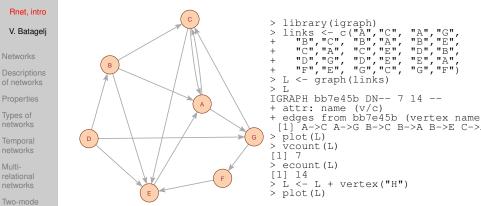
Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks

Two-mode networks

- igraph in R
- Pajek and R
- netsJSON and Nets

Classical example of two-mode network are the Southern women (Davis 1941).


Davis.paj. Freeman's overview.

DQC

	1.6	NODE P	UNCHER	ES ANE	DATE	CE OF S	SOCIAL	EVEN	TO KE	PORTE	DINO	d City	Heral	6
NAMES OF PARTICIPARTS OF GROUP I	(1) 6/20	3/2	(3) 4/12	(4) 9/25	(5)	(6) 5/19	3/15	(8) 9/16	(9) 4/8	(10) 6/10	盟	(12)	(13) 11/21	(14) 8/3
1. Mrs. Evelyn Jefferson.	X	××	X	×	X	X		×	x					
2. Miss Laura Mandeville	X	X	X		X	X	X	X						
3. Miss Theresa Anderson	l	X	X	×	X	X	X	X	X					
4. Miss Brenda Rogers	X		X	X	X	X	X	X						
5. Miss Charlotte McDowd			X	X	X		X							
6. Miss Frances Anderson.			X		X	X		X						
7. Miss Eleanor Nye					X	X	X	X						
7. Miss Eleanor Nye					L	x I		X	X					
9. Miss Ruth DeSand					X		X	X	x					
10. Miss Verne Sanderson.								x I	x					
11. Miss Myra Liddell						·····	~	10	10	X		12		
12. Miss Katherine Rogers.						r		10	10	1x		×	- V	Y
13. Mrs. Sylvia Avondale.								12	10	12		0	0	0
14. Mrs. Nora Favette						14	Q.	^	10	10	14	0	0	0
15. Mrs. Helen Lloyd.								X	1	10	××	0	^	^
16. Mrs. Dorothy Murchison							^		x	1^	1	^		
17. Mrs. Olivia Carleton											12			
18. Mrs. Flora Price											10			
10. Bill, Fiota Flice	1								1^	1	1~			

igraph Example

networks igraph in R

Pajek and R

netsJSON and Nets igraph is a library for analyzing networks. It has also an R interface. For other R libraries for solving network analysis problems see: Ian McCulloh, Alexander Perrone: R Packages for Social Network Analysis. ESNAM. Springer 2018.

See also: sna, network, statnet, ggnet

V. Batagelj Rr

Rnet, intro

・ロト ・ 同ト ・ ヨト ・ ヨト

nac

igraph object display

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks

igraph in R

- Pajek and R
- netsJSON and Nets

- D/U 'D' directed / 'U' undireted.
- N/- 'N' named (labeled). A dash means that the network is not named.
- $W\!/\!-$ 'W' weighted (has values on links). Unweighted networks have a dash in this position.
- B/- 'B' bipartite (two-mode). A dash means that the network is one-mode.

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

igraph attributes

```
Rnet, intro
             > V(L)
             + 8/8 vertices, named, from 84e744b:
 V. Batagelj
             [1] ACGBEÓFH
             > É(L)
             + 14/14 edges from 84e744b (vertex names):
              [1] A->C Ă->G B->C B->A B->E C->A C->E D->B D->G D->F F->A F->F
             > V(L)$name
             of networks
             > V(L)$name[5] <- "John"</p>
             > V(L)$color <- sample(c("vellow", "cvan"), vcount(L), rep=TRUE)</p>
             >
               plot(L)
             > ve <- V(L)[color=="yellow"]; cy <- V(L)[color=="cyan"]</pre>
networks
             > Ē(L)[ve %--% cv]$color <- "red"
             > E(L)[ye %--% ye]$color <- "blue"
             > E(L)[cy %--% cy]$color <- "blue"
networks
             > L$name <- "Example"
             > E(L) $weight <- sample(1:10,ecount(L),rep=TRUE)</p>
Multi-
             > graph_attr_names(L)
             [11 "name"
networks
             > graph attr(L)
             $name
Two-mode
             [1] "Example"
networks
             > vertex_attr_names(L)
             [1] "name" "color"
igraph in R
             > edge_attr_names(L)
[1] "color" "weight"
             > w <- E(L) $weight; plot(L,edge.width=w)</p>
             > write.graph(L, "Links.net", format="pajek")
netsJSON
and Nets
                                                      ・ロト ・ 同ト ・ ヨト ・ ヨト
                                                                           3
                                                                              nac
                                V. Batagelj
                                           Rnet, intro
```


Description of networks using a spreadsheet

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

How to describe a network \mathcal{N} ? In principle the answer is simple – we list its components \mathcal{V} , \mathcal{L} , \mathcal{P} , and \mathcal{W} .

The simplest way is to describe a network \mathcal{N} by providing $(\mathcal{V}, \mathcal{P})$ and $(\mathcal{L}, \mathcal{W})$ in a form of two tables.

As an example, let us describe a part of network determined by the following works:

Generalized blockmodeling, Clustering with relational constraint, Partitioning signed social networks, The Strength of Weak Ties

There are nodes of different types (modes): persons, papers, books, series, journals, publishers; and different relations among them: author_of, editor_of, contained_in, cites, published_by.

Both tables are often maintained in Excel. They can be exported as text in CSV (Comma Separated Values) format.

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

bibNodes.csv

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

<pre>name;mode;country;sex;year;vol;num;fPage;lPage;x;y "Batagelj, Vladimir";person;SI;m;;;;809.1;653.7 "Doreian, Patrick";person;SI;f;;;;358.5;679.1 "Ferligoj, Anuška";person;SI;f;;;;145.6;660.5 "Ganovetter, Mark";person;US;m;;;;145.6;660.5 "Moustaki, Irini";person;SI;m;;;;1478.0;630.1 "Clustering with relational constraint";paper;;1982;47;;413;41 "The Strength of Weak Ties";paper;;1973;78;6;1360;1380;111.3; "Partitioning signed social networks";paper;;2009;31;1;1;11;41 "Generalized Blockmodeling";book;;2005;24;;1;385;533.0;445.9 "Psychometrika";journal;;;;;;310 "Social Networks";journal;;;;;;311.3;168.9 "Structural Analysis in the Social Sciences";series;;;;;310 "Cambridge University Press";publisher;UK;;;;;534.3;238.2</pre>	32 08
"Cambridge University Press";publisher;UK;;;;;;534.3;238.2 "Springer";publisher;US;;;;;;884.6;174.0	

bibNodes.csv

In large networks, to avoid the empty cells, we split a network to some subnetworks – a collection.

V. Batagelj

Rnet, intro

イロト イ理ト イヨト イヨト

 \exists

500

bibLinks.csv

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

from; relation; to "Batagelj, Vladimir"; authorOf; "Generalized Blockmodeling" "Doreian, Patrick"; authorOf; "Generalized Blockmodeling" "Ferligoj, Anuška"; authorOf; "Generalized Blockmodeling" "Batagelj, Vladimir";authorOf;"Clustering with relational constr "Ferligoj, Anuška";authorOf;"Clustering with relational constra: "Granovetter, Mark";authorOf;"The Strength of Weak Ties" "Granovetter, Mark";editorOf;"Structural Analysis in the Social "Doreian, Patrick"; authorOf; "Partitioning signed social networks "Mrvar, Andrej";authorOf;"Partitioning signed social networks" "Moustaki, Irini";editorOf;"Psychometrika" "Doreian, Patrick";editorOf;"Social Networks" "Generalized Blockmodeling";containedIn;"Structural Analysis in "Clustering with relational constraint";containedIn;"Psychometr: "The Strength of Weak Ties";containedIn;"The American Journal of "Partitioning signed social networks"; containedIn; "Social Networks"; containedIn; co "Partitioning signed social networks"; cites; "Generalized Blockmo "Generalized Blockmodeling"; cites; "Clustering with relational co "Structural Analysis in the Social Sciences"; publishedBy: "Cambr: "Psychometrika"; publishedBy; "Springer"

bibLinks.csv

V. Batagelj

Rnet, intro

Factorization and description of large networks

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

To save space and improve the computing efficiency we often replace values of categorical variables with integers. In R this encoding is called a *factorization*.

We enumerate all possible values of a given categorical variable (coding table) and afterwards replace each its value by the corresponding index in the coding table.

This approach is used in most programs dealing with large networks. Unfortunately the coding table is often a kind of meta-data.

・ロト ・ 四 ト ・ 回 ト ・ 日 ト

CSV2Pajek.R

Rnet, intro

```
V. Batageli
                  # transforming CSV file to Pajek files
                  # by Vladimir Batagelj, June 2016
                  # setwd("C:/Users/batagelj/work/Python/graph/SVG/EUSN")
                  # colC <- c(rep("character",4),rep("numeric",7)); nas=c("","NA","NaN")</pre>
                  colC <- c(rep("character",4),rep("numeric",5)); nas=c("","NA","NAN")</pre>
                  nodes <- read.csv2("bibNodes.csv",encoding='UTF-8',colClasses=colC,na.strings=nas)</pre>
                  n <- nrow(nodes): M <- factor(nodes$mode): S <- factor(nodes$sex)</pre>
of networks
                  mod <- levels(M); sx <- levels(S); S <- as.numeric(S); S[is.na(S)] <- 0</pre>
                  links <- read.csv2("bibLinks.csv",encoding='UTF-8',colClasses="character")
                  F <- factor(links$from,levels=nodes$name.ordered=TRUE)
                  T <- factor(links$to,levels=nodes$name,ordered=TRUE)</p>
                  r <= factor linksStelation); rel <= levels(R)
net <= falle("bib.net","w"); cat('*vertices ',n,'\n',file=net)
clu <= file("bibMode.clu","w"); sex <= file("bibSex.clu","w")
cat('%',file=clu); cat('%',file=sex)
networks
                  for(i in 1:length(mod)) cat(' ',i,mod[i],file=clu)
                  cat('\n*vertices ',n,'\n',file=clu)
networks
                  for(i in 1:length(sx)) cat(' ',i,sx[i],file=sex)
                  cat('\n*vertices '.n.'\n'.file=sex)
                  for (v in 1:n)
                    cat(v,' "',nodes$name[v],'"\n',sep='',file=net);
relational
                    cat(M[v],'\n',file=clu); cat(S[v],'\n',file=sex)
networks
                  for(r in 1:length(rel)) cat('*arcs :',r,' "',rel[r],'"\n',sep='',file=net)
Two-mode
                  cat('*arcs\n',file=net)
                  for(a in 1:nrow(links))
networks
                    cat(R[a],': ',F[a],' ',T[a],' 1 1 "',rel[R[a]],'"\n',sep='',file=net)
                  close(net); close(clu); close(sex)
igraph in R
```

Pajek and R

netsJSON and Nets

CSV2Pajek.R

イロト イ理ト イヨト イヨト

bib.net

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

<pre>*vertices 16 1 "Batagelj, Vladimir" 2 "Doreian, Patrick" 3 "Ferligoj, Anuška", 4 "Granovetter, Mark" 5 "Moustaki, Irini" 6 "Mrvar, Andrej"</pre>
7 "Clustering with relational constraint"
8 "The Strength of Weak Ties"
9 "Partitioning signed social networks"
10 "Generalized Blockmodeling"
11 "Psychometrika"
12 "Social Networks"
13 "The American Journal of Sociology"
14 "Structural Analysis in the Social Sciences"
15 "Cambridge University Press"
16 "Springer"
*arcs :1 "authorOf"
*arcs :2 "cites"
*arcs :3 "containedIn"
*arcs :4 "editorOf"
*arcs :5 "publishedBy"

*arcs 1: 1 "authorOf" "authorOf" 1. thorOf" aut horOf" Ż 1. "authorOf" 1: "authorOf" 4: 14 "editorOf" 1: "authorOf" 6 "authorOf" 4. 5 "editorOf" 4. "editorOf" 3. 10 14 1 1 "containedIn" "containedIn" 3. 8 13 "containedIn" 3. 9 "containedIn" 2. 9 10 1 "cites" 2: "cites" 10 7 1 1 5: 14 15 1 1 "publishedBy" 5: 11 16 1 1 "publishedBv"

-

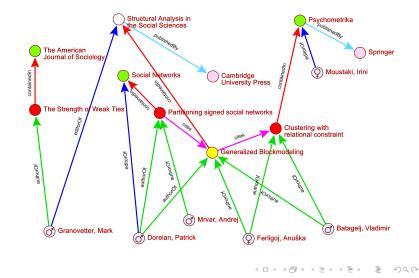
DQC

イロト イロト イヨト イヨト

bib.net, bibMode.clu, bibSex.clu; bib.paj, bib.ini.

V. Batagelj

Rnet, intro


Bibliographic network - picture / Pajek

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R

Pajek and R

netsJSON and Nets

Reading Pajek files in R

Rnet, intro		
V. Batagelj		
Networks		
Descriptions of networks		
Properties		
Types of networks	wiki	
Temporal networks		
Multi- relational		
networks		
Two-mode networks		
igraph in R		
Pajek and R		
netsJSON and Nets		

Temporal network data

netsJSON format

Rnet, intro

- V. Batagelj
- Networks
- Descriptions of networks
- Properties
- Types of networks
- Temporal networks
- Multirelational networks
- Two-mode networks
- igraph in R
- Pajek and R

netsJSON and Nets For describing temporal networks we initially, extending Pajek format, defined and used a lanus format.

Recently we started to develop a new format based on JSON – we named it netsJSON (see EDA: Data on files, slides 46-57).

netsJSON has two formats: a *basic* and a *general* format. Current implementation of the TQ library supports only the basic format. netsJSON format is supported by a Python library Nets.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Informal description of the basic netsJSON format

Rnet, intro

```
V. Batagelj
```

```
Networks
```

```
Descriptions
of networks
```

```
Properties
```

```
Types of 
networks
```

```
Temporal
networks
```

```
Multi-
relational
networks
```

```
Two-mode
networks
```

```
igraph in R
```

Pajek and R

```
netsJSON
and Nets
```

```
"netsJSON": "basic",
"info": {
   "org":1, "nNodes":n, "nArcs":mA, "nEdges":mE,
   "simple":TF, "directed":TF, "multirel":TF, "mode":m,
   "network":fName, "title":title,
   "time": { "Tmin":tm, "Tmax":tM, "Tlabs": {labs} },
   "meta": [events], ...
   ł.,
"nodes": [
   { "id":nodeId, "lab":label, "x":x, "y":y, ... },
   * * *
"links": [
     "type":arc/edge, "n1":nodeID1, "n2":nodeID2, "rel":
   * * *
where ... are user defined properties and *** is a sequence of such
elements.
                                     ◆ロ ▶ ◆ □ ▶ ★ 三 ▶ ◆ 三 ▶ ● 三 ● ● ○ ○ ○
```

V. Batagelj

```
Rnet, intro
```


Basic netsJSON format

Rnet, intro

V. Batagelj

Networks

Descriptions of networks

Properties

Types of networks

Temporal networks

Multirelational networks

Two-mode networks

igraph in R

Pajek and R

netsJSON and Nets

An event description can contain fields:

```
"date": date,
"title": short description,
"author": name,
"desc": long description,
"url": URL,
"cite": reference,
"copy": copyright
```

for describing temporal networks a node element and a link element has an additional required property ${\tt tq}$

Example 1, Franzosi's violence network / UTF-8 no sig

イロト イボト イヨト イヨト 三日