

### Rnet, cohesion

V. Batagelj

Islands

Cores

Generalized cores

# **Network Analysis**

Structure of networks: cohesion

### Vladimir Batagelj

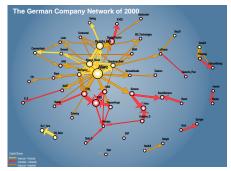
IMFM Ljubljana, IAM UP Koper and NRU HSE Moscow

### Master's programme

Applied Statistics with Social Network Analysis International Laboratory for Applied Network Research NRU HSE, Moscow 2020

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <




### Outline



Cores

Generalized cores

- Islands
   Cores
- 3 Generalized cores



イロト 不得 トイヨト 不良 トーヨー

500

L. Krempl, MPI.

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si

Current version of slides (November 16, 2020 at 00:06): slides PDF

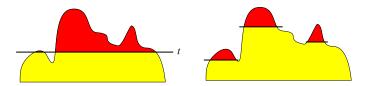
V. Batagelj

Rnet, cohesion



### Islands

Rnet, cohesion


V. Batagelj

#### Islands

Cores

Generalized cores

If we represent a given or computed value of nodes / links as a height of nodes / links and we immerse the network into a water up to selected level we get *islands*. Varying the level we get different islands.



We developed very efficient algorithms to determine the islands hierarchy and to list all the islands of selected sizes. See details.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar



# ... Islands

Rnet, cohesion V. Batagelj

Islands

Cores

Generalized cores Islands are very general and efficient approach to determine the 'important' subnetworks in a given network.

We have to express the goals of our analysis with a related property of the nodes or weight of the links. Using this property we determine the islands of an appropriate size (in the interval kto K).

In large networks we can get many islands which we have to inspect individually and interpret their content.

An important property of the islands is that they identify locally important subnetworks on different levels. Therefore they detect also emerging groups.

The set of nodes  $C \subseteq V$  is a local node peak, if it is a regular node island and all of its nodes have the same value. Node island with a single local node peak is called a simple node island. In similar way we define simple link island.



### ... Islands

Rnet, cohesion

V. Batagelj

#### Islands

Cores

Generalized cores

A set of nodes  $C \subseteq \mathcal{V}$  is a *regular node island* in network  $\mathcal{N} = (\mathcal{V}, \mathcal{L}, p), p : \mathcal{V} \to \mathbb{R}$  iff it induces a connected subgraph and the nodes from the island are 'higher' than the neighboring nodes

$$\max_{u\in N(C)}p(u)<\min_{v\in c}p(v)$$

A set of nodes  $C \subseteq \mathcal{V}$  is a *regular link island* in network  $\mathcal{N} = (\mathcal{V}, \mathcal{L}, w), w : \mathcal{L} \to \mathbb{R}$  iff it induces a connected subgraph and the links inside the island are 'stronger related' among them than with the neighboring nodes – in  $\mathcal{N}$  there exists a spanning tree  $\mathcal{T}$  over C such that

$$\max_{(u,v)\in\mathcal{L}, u\notin C, v\in C} W(u,v) < \min_{(u,v)\in\mathcal{T}} W(u,v)$$

Network/Create Partition/Islands/Line Weights Operations/Network+Vector/Islands/Vertex Property

V. Batagelj Rnet, cohesion



# Some properties of node islands

- Rnet, cohesion
- V. Batagelj

#### Islands

- Cores
- Generalized cores

- The sets of nodes of connected components of node-cut at selected level *t* are regular node islands.
- The set H<sub>p</sub>(N) of all regular node islands of network N is a complete hierarchy:
  - two islands are disjoint or one of them is a subset of the other
  - each node belongs to at least one island
- Node islands are invariant for the strictly increasing transformations of the property *p*.
- Two linked nodes cannot belong to two disjoint regular node islands.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <



# Simple node islands

#### Rnet, cohesion

V. Batagelj

### Islands

Cores

Generalized cores

- The set of nodes C ⊆ V is a local node peak, if it is a regular node island and all of its nodes have the same value.
- Node island with a single local node peak is called a simple node island.
- The types of node islands:
  - FLAT all nodes have the same value
  - SINGLE island has a single local node peak
  - MULTI island has more than one local node peaks

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

• Only the islands of type FLAT or SINGLE are simple islands.



# Some properties of link islands

- Rnet, cohesion
- V. Batagelj

#### Islands

- Cores
- Generalized cores

- The sets of nodes of connected components of link-cut at selected level *t* are regular link islands.
- The set H<sub>w</sub>(N) of all nondegenerated regular link islands of network N is hierarchy (not necessarily complete):
  - two islands are disjoint or one of them is a subset of the other

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Link islands are invariant for the strictly increasing transformations of the weight *w*.
- Two linked nodes may belong to two disjoint regular link islands.



# Simple link islands

- Rnet, cohesion
- V. Batagelj

#### Islands

- Cores
- Generalized cores

- The set of nodes C ⊆ V is a local link peak, if it is a regular link island and there exists a spanning tree of the corresponding induced network, in which all links have the same value as the link with the largest value.
- Link island with a single local link peak is called a simple link island.
- The types of link islands:
  - FLAT there exists a spanning tree, in which all links have the same value as the link with the largest value.

イロト 不得 トイヨト イヨト ニヨー

Sar

- SINGLE island has a single local link peak.
- MULTI island has more than one local link peaks.
- Only the islands of type FLAT or SINGLE are simple islands.



# US patents

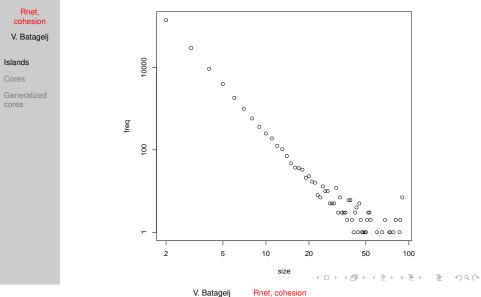
### Rnet, cohesion

V. Batagelj

#### Islands

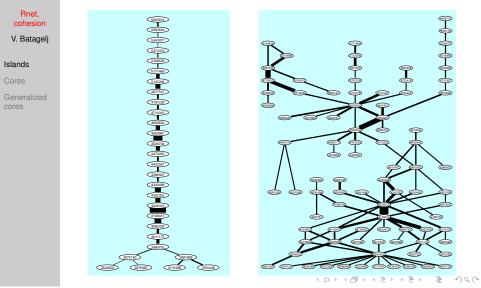
Cores

Generalized cores US patents network (Nber, US Patents) has 3774768 nodes and 16522438 arcs (1 loop). Without the loop it is acyclic. The weight of an arc is the proportion of paths through the arc from some initial node to some terminal node. We determined al (2,90)-islands. The corresponding subnetwork has 470137 nodes, 307472 arcs and for different *k*:  $C_2 = 187610$ ,  $C_5 = 8859$ ,  $C_{30} = 101$ ,  $C_{50} = 30$ , ... islands. Rolex


| [1]  | 0   | 139793 | 29670 | 9288 | 3966 | 1827 | 997 | 578 | 362 | 250 |
|------|-----|--------|-------|------|------|------|-----|-----|-----|-----|
| [11] | 190 | 125    | 104   | 71   | 47   | 37   | 36  | 33  | 21  | 23  |
| [21] | 17  | 16     | 8     | 7    | 13   | 10   | 10  | 5   | 5   | 5   |
| [31] | 12  | 3      | 7     | 3    | 3    | 3    | 2   | 6   | 6   | 2   |
| [41] | 1   | 3      | 4     | 1    | 5    | 2    | 1   | 1   | 1   | 1   |
| [51] | 2   | 3      | 3     | 2    | 0    | 0    | 0   | 0   | 0   | 1   |
| [61] | 0   | 0      | 0     | 0    | 1    | 0    | 0   | 2   | 0   | 0   |
| [71] | 0   | 0      | 1     | 1    | 0    | 0    | 0   | 1   | 0   | 0   |
| [81] | 2   | 0      | 0     | 0    | 0    | 1    | 2   | 0   | 0   | 7   |

イロト 不同 トイヨト イヨト 二日

DQC




# Distribution of island size





Main path and main island in US Patents Nber, US Patents; n = 3774768, m = 16522438



V. Batagelj

Rnet, cohesion



# Main island – Liquid crystal display

Rnet. cohesion

V. Batagelj

#### Islands

Table 1: Patents on the liquid-crystal display

pateent 2544659

2682562

3322485 3675587 3767289

3796479

4082428

#### Table 2: Patents on the liquid-crystal display

Table 3: Patents on the liquid-crystal display

| No.         Description         Description <thdescription< th=""> <thdes< th=""><th>_</th><th>date</th><th></th><th>patent</th><th></th><th></th></thdes<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _  | date          |                                                                | patent    |                 |                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|----------------------------------------------------------------|-----------|-----------------|---------------------------------------------------------------------------------------------------------------------------|
| Jun. P. 100         Within and Walkand         Statistic of Walkand         Statisticon Walkand         Statistic of Walkandd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | date          | AUXDOR(A) ADAI UIDO                                            | patient   | date            | AULBOR(X) ADD LIEG                                                                                                        |
| All De 2010         Within et al. Evelet means calculation of the second se                                                                                          | ,  | 3187 13, 1951 | Droyer. Deniros: nght-polarizing sheet and the into and the    | 4083/9/   | Apr 11, 1918    | On remark liquid crystal compositions                                                                                     |
| <ul> <li>Mar S R 100</li> <li>Marto S R</li></ul>                                                                                                                                                                                                                                                                                                                                                                 |    | Jun 20, 107.4 | Worden at al. Redention of connection and back                 |           | (Det 7, 1079)   | Control, et al. Linguis crystalling materials.                                                                            |
| <ul> <li>B. B. 1991. Testing and the start of the sta</li></ul>                                                    | 1  |               |                                                                |           |                 |                                                                                                                           |
| <ul> <li>M. B. M. D. M. S. M. Sampler, M. Sampler, M. S. M. Sampler, M. Sa</li></ul>                                                    | 2  | May 30, 1961  | wittans, mectro-optical elements tritaing an organic           |           | Dec 19, 1978    | Eidenschnik, et al. Liquid crystalline cyclonexale derivative                                                             |
| <ul> <li>Mar 201 Di Karten and Laper den la mark impage qu'ang<br/><ul> <li>Mar 201 Di Karten and Laper de la mark impage qu'ang<br/>Anno 4 1 and 1 and 1 and 1 ang ang ang<br/>Anno 4 1 and 1 and</li></ul></li></ul>                                                                              |    | 1             | nematic compound                                               | 4149413   | Apr 17, 1979    | Gray, et al. Optically active inquid crystal maxterss and                                                                 |
| <ul> <li>M. H. 199</li> <li>M. M. 199</li> <li>M. M. 199</li> <li>M. H. 199</li> <li>M. 199</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | Jan 18, 1972  | Josephson. Preparation of polymericar aromatic compounds       |           |                 | liquid crystal devices containing them                                                                                    |
| <ul> <li>M. B. 1991. And J. 2004 and an advancement advancement of the second seco</li></ul>                                                    | ٢  | May 30, 1972  | Mechanetz, et al. Liquid crystal termal maging system          | 4154607   | May 15, 1979    |                                                                                                                           |
| <ul> <li>M. B. M. B. M. S. M. M. S. M.</li></ul>                                                    | ÷  | Add 11 (1977) | Refers Double metal competitions and design                    | 11000010  | Ave 1 1040      | Control at al. I loaded another comparison                                                                                |
| <ul> <li>Ali Ma 201</li> <li>Ali Ma 201</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                           | 1  | Rep. 10, 1072 | Cheesel. Check with disting distances                          |           | Jan 15, 1000    | Beller et al. Lineald energiel relations                                                                                  |
| <ul> <li>Hor of short mediate and metal index a logistic strain of the strain of t</li></ul>                                                    |    | Ord 10, 1072  | Wennedd Pleater onthe meteric is adulat on alexteenboundle     | 1202200   | Mar. 17, 1080   | Pote at al. Noncolle bould annually motivately                                                                            |
| <ul> <li>Martin M., Santa M., Sa</li></ul>                                                    | ۰. | 1011 10, 1974 | the or dealer metated is dimensed threadout a listed           | 43304111  | (hat 11, 1980)  | Variable, et al. I bould among the production of the strengthener.                                                        |
| <ul> <li>Inde A 107</li> <li>Inde A 108</li> <li>Inde 108</li> <li>Inde 108</li> <li>Inde A 108</li>     &lt;</ul>                                                                                                                                                                                                                                                                                                                                                                                                      |    |               |                                                                |           |                 |                                                                                                                           |
| <ul> <li>Martin J., Chan et al. and a radius on arthur on grantement of the start of the sta</li></ul>                                                    |    | March 1077    | Concerns. Disalar designs atiliates limit most d links         | 1203002   | raps inc, sizes | dealers matching them                                                                                                     |
| <ul> <li>M. Da 100</li> <li>M. Da 100</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                    | ۰. | 1000 0, 1713  | respects. Laplacy areas to and graphs trying again             | 1200000   | Sec. 22, 2242   | Vorba Rotar concerned                                                                                                     |
| <ul> <li>Barton Markan, and Amarkan at any and a second secon</li></ul>                                                    |    | Oct 23, 1973  | Avirum et al. Class of stable transatilhene compounds          |           |                 |                                                                                                                           |
| <ul> <li>M. B. T. B. M. Strandson, and Adams a strate of the Const. Math. Math. Sci. 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1</li></ul>                                                    |    |               |                                                                | 4302352   | New 24, 1981    | Eldenachink at al. Enourophenelesclohoranos the preparat                                                                  |
| <ul> <li>Martin M., Schlammann Machanna und Sander angemännlichen Geschlammann auf der Schlammann auf de</li></ul>                                                    |    |               | temperature and others in a range up to 100°C                  |           |                 | thereof and their me as components of liquid creatal dielect                                                              |
| <ul> <li>Mar J. 201 Mar et al. Security of the security of</li></ul>                                                    | r. | Nov 20, 1973  | Steinstrasser. Substituted agory bengene compounds             | 4330426   | May 18, 1982    | Eldenschink, et al. Cyclohexylbinhenyls, their prenaration a                                                              |
| <ul> <li>Mu Di, 200</li> <li>Mu Di, 200</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                           |    | Mar 5, 1974   | Boller, et al. Nematorenic material which exhibit the Kerr     |           |                 |                                                                                                                           |
| <ul> <li>willing a summaring in control white which are low to the second s</li></ul>                                                    |    |               | effect at isotropic temperatures                               | 4340498   | Jul 20, 1982    | Starimori. Haloremated exter derivatives                                                                                  |
| <ul> <li>Mar R. 2019. The strain is a strain of the strain is a strain is a strain of the strain is a strain of the st</li></ul>                                                    |    | Mar 12, 1974  | Helfrich, et al. Electro-ontical light-modulation cell         | 4349452   | Sep 14, 1982    | Osman, et al. Cyclohexylcyclohexanoates                                                                                   |
| <ul> <li>Martin R. 2014. Display and a Light organization and spectra set of the spec</li></ul>                                                    |    |               | utilizing a nematorenic material which exhibits the Kerr       | 4357078   | Nov 2, 1982     | Carr. et al. Lieuid crystal compounds containing an alicycli                                                              |
| <ul> <li>Apper A. 2011. Second Science Sci</li></ul>                                                    |    |               | effect at isotropic temperatures                               |           |                 | ring and exhibiting a low dielectric anisotropy and liquid                                                                |
| <ul> <li>Agir A (19)</li> <li>Agir A (</li></ul>                                                                                                                                                                                                                                                                                                                                                                                        | 5  | Mar 18, 1975  |                                                                |           |                 | crystal materials and devices incorporating such compound                                                                 |
| <ul> <li>Mark (19)</li> <li>Mark (19) waht, Horne optical density of a schematic problem of the schematic problem</li></ul>                                                        |    |               | method                                                         |           | Nov 30, 1982    | Osman, et al. Anisotropic cyclohexyl cyclohexylmethyl ethe                                                                |
| <ul> <li>Jun Sc 107</li> <li>Technony et al. Place induction of the using registration o</li></ul>                                                        |    | Apr 8, 1975   | Deutscher, et al. Use of nematic liquid crystalline substances | 4368135   | Jan 11, 1983    | Osman. Anisotropic compounds with negative or positive                                                                    |
| <ul> <li>Bernstein and State and</li></ul>                                                    |    | May 6, 1975   | Suzuki. Electro-optical display device                         |           |                 | DC-anisotropy and low optical anisotropy                                                                                  |
| <ul> <li>M. D. Y. 100.</li> <li>M. M. M</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Γ. | Jan 24, 1975  | Tenkamoto, et al. Phase control of the voltages applied to     |           | May 31, 1983    | Krause, et al. Liquid crystalline naphthalene derivatives                                                                 |
| <ul> <li>Marg A, 100</li> <li>Marg A, 200</li> <li>Cons at A. Lower constrained and attraction.<br/>A set of the set of the</li></ul>                                                         |    |               | opposite electronis for a choesteric to nematic phase          | 4387038   | Jan 7, 1983     | Fukui, et al. 4-(Trans-F-alkyleyclohexyl) benanic acid                                                                    |
| <ul> <li>Mark (19) Vanisht, Elpide priori ampenditas karata Bakharata (1990)</li> <li>Mark (1900)</li> <li>Ma</li></ul>                                                                                                                                                                                                                                                                                                                                                                                |    |               |                                                                |           |                 | 4"-cyano-4"-hiphenyly1 osters                                                                                             |
| <ul> <li>Jan 1, 199</li> <li>Jan 1, 199</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                           |    | 3137 30, 1976 | Gray, et al. Liquid crystal materials and devices              | 438/039   | Jin 7, 1983     |                                                                                                                           |
| <ul> <li>Bartolina et al. Land control descriptions.</li> <li>Bartolina et al. Land control descript</li></ul>                                                                                                                                                                                                | 5  | May 4, 1976   | Taliazaci. Liquid crystal composition faving high detective    |           |                 | cartoxync acid 4 - cyanotephenyt eder                                                                                     |
| <ol> <li>Ku Yu, Yu Yu, Yu Xu Xu, Yu Xu Xu</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | Jun 1 1070    | ansotropy and display device incorporating same                | 440025/3  | Aug 23, 1983    | Romer, et al. Liquid crystalline cyclonexyphenyi derivative<br>Etdosochick, et al. Liquid anextelline theories containing |
| <ul> <li>No. 28, 103</li> <li>Sharka L, 102</li> <li>Sharaka L, 102</li> <li>Sharka L, 102</li> <li>Sharka L,</li></ul>                                                                                                                                                                                                                                                                                                                                                                |    | Ann 17, 1970  | Ob. Low enhance enterented field effect leaved emotels         | 111.51.00 |                 | Labrachink, et al. Laplat Gystamic Instance Containing                                                                    |
| <ol> <li>N. N. 100 Koh, et al. Equal crast attributions the detectopical<br/>detector of the second second</li></ol>                                                 |    |               | compositions and method of synthesis                           |           |                 | chemits based therein                                                                                                     |
| <ul> <li>Mer A. 197.</li> <li>Martin Martin, Maltha energy and a strategy of the strat</li></ul>                                                        |    | Dec 28, 1976  | Heich, et al. Liquid crostal mixtures for electro-ontical      | 4419263   | Dec 6 1983      | Proefde et al. Lieuid creatalline ewishervicarbenitrile                                                                   |
| <ul> <li>Mar J. Hill, "In Structure anticorport generation and deterministic structure and struc</li></ul>                                                    |    |               |                                                                |           |                 | derivations                                                                                                               |
| <ol> <li>Mar Z. 1071</li> <li>Jan Z. 2017</li> <li>Jan Z. 2</li></ol>                                                                                                                                                                                                                                                                                                                                                                                        |    | Mar 8, 1977   | Steinstrasser. Modified nematic mixtures with                  | 4422951   | Dec 27, 1983    | Statimori, et al. Lionid crostal benzene derivatives                                                                      |
| Apr 12 197 bill, de la compañsa da las de las de la compañsa da las de                                                           |    |               | positive dielectric anisotrony                                 | 4455443   | Jun 19, 1984    | Takatez, et al. Nematic haloren Compound                                                                                  |
| Age 12, 127 Banks, et al. Provinsional stability of higher boundary stability of the stability of higher boundary stability of highe                                                          |    | Mar 22, 1977  | Gavrilovic. Liquid crostal compounds and electro-ontic         | 4456712   | Jun 26, 1984    | Christie, et al. Bismaleimide triagine composition                                                                        |
| mathaf for property main and hydr replat comparison<br>in 1, 1977. Boost, et al. Most hegat cycles are supported and detectory<br>in 20, 1977. Blaces, et al. Externa and the support of the support of the support<br>Marx, 1978. Tool, et al. (1994) and the support of the support of the support<br>Marx, 1978. Tool, et al. (1994) and the support of the support<br>Marx, 1978. Tool, et al. (1994) and the support of the support<br>Marx, 1978. Tool, et al. (1994) and the support of the support<br>Marx, 1978. Tool, et al. (1994) and (1994)<br>and (1994) and (1994) a                                  |    |               | devices incorporating them                                     |           | Jul 17, 1984    | Petrzifka, et al. Liquid crystal mixture                                                                                  |
| Jun 14, 1377 Tana and a page a constant semponds and electro-optic<br>Jun 28, 177 TB loss, et al. Structure physical comparadia<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds<br>mark of the semponds of the semponds of the semponds of the semponds<br>Mar 7, 3787 Ten et al. Optical physical results of the semponds of the semponds<br>mark of the semponds of the semponds of the semponds of the semponds<br>mark of the semponds of | 5  | Apr 12, 1977  | Inukai, et al. P-cyanophenyi 4-alkyl-4-biphenyicarbuxylate,    | 4472293   | Sep 18, 1984    |                                                                                                                           |
| Jun 14, 1977 [Kooi, et al. Normal: Biptil crystal compounds and destro-optic<br>Jun 28, 1977 [Kooi, et al. Normal: Epidi crystal compounds and<br>Jun 28, 1977 [Kooi, et al. Moment: Epidi crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epidi crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epidi crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epidi crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [Kooi, et al. Moment: Epide crystal compounds and<br>Mar 7, 1987 [K                                                                                                                           |    |               |                                                                |           |                 | four rings and liquid crystal compositions containing the sa-                                                             |
| devices incorporating them<br>1 ma 28, 1977 Hone, et al. Elsen-optic device<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active considered with the m<br>1 mar 7, 1975 Grag, et al. Optically active constraints with the m<br>1 mar 7, 1975 Grag, et al. Optically active constraints with the m<br>1 mar 7, 1975 Grag, et al. Optically active constraints with the m<br>1 mar 7, 1975 Grag, et al. Optically active constraints with the m<br>1 mar 7, 1975 Grag, et al. Optically active constraints with the m<br>1 mar 7, 1975 Grag, et al. Optically active constraints with the m<br>1 mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints with the mar 7, 1975 Grag, et al. Optically active constraints wi              |    |               | tadag same                                                     | 4472592   | Sep 18, 1984    | Takatsu, et al. Nematic liquid crystalline compounds                                                                      |
| Jan 26, 1977 Bloom, et al. Electro-optic device     Mar 7, 1978 Grag, et al. Optically active cyano-highenryl compounds and     Elementatical containing them     Apr 9, 1985 Elementatical containing them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | Jun 14, 1977  |                                                                | 4480117   | Oct 30, 1984    | Takatsu, et al. Nematic liquid crystalline compounds                                                                      |
| Mar 7, 1978 Gray, et al. Optically active cyano-hiphenyl compounds and<br>lightly crystal materials containing them 4510009 Apr 9, 1985 Eidenschink, et al. Cyclohexane derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |               | nervoes incorporating them                                     | 4502974   | Mar 5, 1985     |                                                                                                                           |
| liquid crostal materials containing them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |               |                                                                |           |                 | compounds                                                                                                                 |
| Apr 4, 1978 Hen. Liquid crystal compaction and method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2  | Mar 7, 1978   | Gray, et al. Optically active cyano-biphenyl compounds and     | 4510069   | Apr 9, 1985     | Eldenschink, et al. Cyclohexane derivatives                                                                               |
| April, 1997, LEVE LINE, ANDRE LIVERA COMPARING AND INCOME.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | Aug. 4, 1076  | Inquid crystal materials containing them                       |           |                 |                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | ap 4, 1948    | near refine contrast compositions and include                  |           |                 |                                                                                                                           |

|          | natest  | date          | anthorix) and title                                                                                                         |
|----------|---------|---------------|-----------------------------------------------------------------------------------------------------------------------------|
| _        | 4514044 | Apr 30, 1985  | Gunima, et al. 1-(Trans-1-alkylevelohexyl)-2-(trans-1-(p-sub-                                                               |
|          |         |               | stituted nheard) cyclohexyllethane and liouid crostal mixture                                                               |
| outy     | 4526704 | Jul 2, 1985   | Petrzifka, et al. Multiring liquid crystal osters                                                                           |
| tone     | 4550981 | Nov 5, 1985   | Petrzilka, et al. Lionid crystalline esters and mixtures                                                                    |
|          | 4558151 | Dec 10, 1985  | Takatsu, et al. Nematic liquid crystalline compounds                                                                        |
|          | 4583826 | Apr 22, 1986  | Petrzilka, et al. Phenylethanes                                                                                             |
|          | 4621901 | Nov 11, 1986  | Petrzilka, et al. Novel liquid crystal mintures                                                                             |
|          | 4630856 |               | Petrzika, et al. Benzonitriles                                                                                              |
|          | 4657695 |               | Saito, et al. Substituted pyridatines                                                                                       |
|          | 4655580 | Apr 21, 1987  | Fearon, et al. Ethane derivatives                                                                                           |
|          | 4695131 | Sep 22, 1987  | Balkwill, et al. Disubstituted ethanes and their use in liquid                                                              |
|          | 1000101 | 2019 22, 1201 | crystal materials and devices                                                                                               |
|          | 4704227 | Nov 3, 1987   | Krane, et al. Liouid crystal compounds                                                                                      |
|          | 4709030 | Nov 24, 1987  | Petrzika, et al. Novel liouid crystal miatures                                                                              |
|          | 4710315 | Dec 1, 1987   | Schad, et al. Anisotronic compounds and liouid crostal                                                                      |
|          | 1110313 | 100.1, 1901   | mixtures therewith                                                                                                          |
| ation    | 4713197 | Dec 15, 1987  | Eidenschink, et al. Nitrogen-containing heterocyclic compounds                                                              |
| etrice . | 4715032 | Jan 12, 1983  | Eatensching, et al. Nitrogen-containing heterocyclic compounds.<br>Wachtler, et al. Cyclohexane derivatives                 |
| and      | 4721367 | Jan 26, 1988  | Yoshinara, et al. Liquid crostal device                                                                                     |
|          | 4752414 | Jun 20, 1988  | Tosimaga, et al. Liquid crystal device<br>Eidenschink, et al. Nitrogen-containing heterocyclic compounds.                   |
|          | 4770503 | Sep 13, 1988  | Eatenschink, et al. Nitrogen-containing heterocyclic compounds<br>Buchecker, et al. Liquid crystalline compounds            |
|          | 4795579 | Jan 3, 1989   | Vanchier, et al. 2.2"-diffnoro-4-alkoxy-4"-hydroxydinhenyds and                                                             |
| die      | 4/900/9 | Jan 3, 1989   | vancher, et al. 2,2 -diffuoro-4-alanay-4-alyuroxy-uphenyus and<br>their derivatives, their production process and           |
| TK I     |         |               | their derivatives, their production process and<br>their use in liquid crystal display devices                              |
| - L      | 4797228 | Jan 10, 1989  | Goto, et al. Cyclohexane derivative and liquid crystal                                                                      |
| lan l    | 1101440 | 3200 10, 1989 |                                                                                                                             |
|          | 4520539 | Apr 11, 1989  | composition containing same<br>Kranes, et al. Nitrogen-containing heterocyclic esters                                       |
|          | 4820839 | May 23, 1989  | Clark, et al. Mitrogen-containing neterocyclic esters<br>Clark, et al. Liquid crystal devices                               |
|          | 4832462 | Oct 31, 1989  |                                                                                                                             |
|          | 4957349 |               | Woher, et al. Liquid crystal display element<br>Clerc. et al. Active matrix screen for the color display of                 |
|          | 4951349 | Sep 18, 1990  | cherc, et al. Active matrix screen for the cour display of<br>television nictures, control system and process for producing |
|          |         |               |                                                                                                                             |
| CARE !   | 5010365 | May 21, 1991  | suid screen<br>linura. Liouid crystal display device with a birefringent                                                    |
| 100      | 2010068 | May 21, 1991  | compensator                                                                                                                 |
| 108      | 5010949 | May 21, 1991  | Okada. Liquid crystal element with improved contrast and                                                                    |
|          | 2010069 | May 21, 1991  |                                                                                                                             |
| play     | 5177795 |               | brightness                                                                                                                  |
|          | 5122295 | Jun 16, 1992  | Weber, et al. Matrix liquid crystal display                                                                                 |
|          | 5124824 | Jun 23, 1992  | Kozaki, et al. Liquid crystal display device comprising a                                                                   |
|          | 1       |               | retardation compensation layer having a maximum principal<br>refractive index in the thickness direction                    |
|          | 5171469 | Dec 15, 1992  | refractive index in the thickness direction                                                                                 |
|          | 5171469 |               | Hittich, et al. Liquid-crystal matrix display<br>Sarawa, et al. Liquid crystal display with ground regions                  |
|          | 5253617 | Feb 1, 1994   |                                                                                                                             |
|          | 5308538 | May 3, 1994   | between terminal groups                                                                                                     |
| rs of    |         |               | Weber, et al. Supertwist liquid-crystal display                                                                             |
| ame      | 5374374 | Dec 20, 1994  | Weber, et al. Supertwist liquid-crystal display                                                                             |
|          | 5543077 | Aug 6, 1996   | Rieger, et al. Nematic liquid-crystal composition                                                                           |
|          | 5555116 | Sep 10, 1996  | Ishikawa, et al. Liquid crystal display having adjacent                                                                     |
|          |         |               | electrode terminals set equal in length                                                                                     |
|          | 5683624 | Nov 4, 1997   | Sekiguchi, et al. Liquid crystal composition                                                                                |
|          | 5855814 | Jan 5, 1999   | Matsui, et al. Liquid crystal compositions and liquid crystal                                                               |
|          |         |               | display elements                                                                                                            |

イロト イロト イヨト

 $\exists$ 

590





# Word clouds for LCD island and foam island

### Rnet, cohesion

### V. Batagelj

#### Islands

Cores

Generalized cores



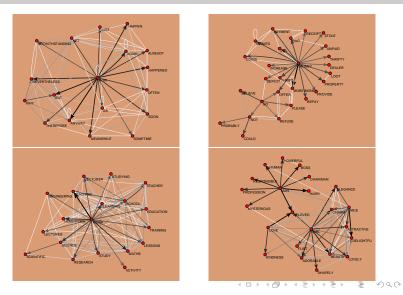
Rnet, cohesion

<ロト < 同ト < 巨ト < 巨ト = 三 の < ○</p>



Rnet.

# The Edinburgh Associative Thesaurus


n = 23219, m = 325624, transitivity weight



#### Islands

Cores

Generalizec cores



V. Batagelj

Rnet, cohesion



### Dense groups

### Rnet, cohesion

### V. Batagelj

Islands

Cores

Generalized cores Several notions were proposed in attempts to formally describe dense groups in graphs.

*Clique* of order *k* is a maximal complete subgraph (isomorphic to  $K_k$ ),  $k \ge 3$ .

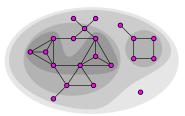
s-plexes, LS sets, lambda sets, cores, ...

For all of them, except for cores, it turned out that they are difficult to detemine.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <



# Cores and generalized cores


Rnet, cohesion

V. Batagelj

Islands

#### Cores

Generalized cores



The notion of core was introduced by Seidman in 1983. Let  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  be a graph. A subgraph  $\mathcal{H} = (W, \mathcal{E}|W)$  induced by the set W is a *k*-core or a core of order *k* iff  $\forall v \in W$ :  $\deg_{\mathcal{H}}(v) \geq k$ , and  $\mathcal{H}$  is a maximal subgraph with this property. The core of maximum order is also called the *main* core.

イロト イロト イヨト イヨト 二日

Sar

The *core number* of node v is the highest order of a core that contains this node. The degree deg(v) can be: in-degree, out-degree, in-degree + out-degree, etc., determining different types of cores.



# Properties of cores

### Rnet, cohesion

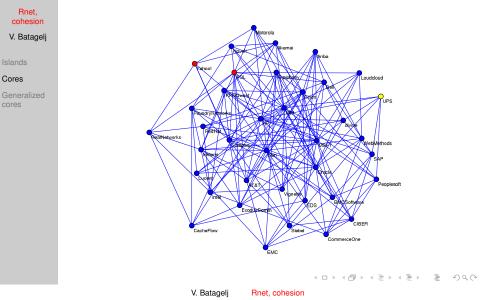
V. Batagelj

Islands

Cores

Generalized cores From the figure, representing 0, 1, 2 and 3 core, we can see the following properties of cores:

- The cores are nested:  $i < j \implies \mathcal{H}_j \subseteq \mathcal{H}_i$
- Cores are not necessarily connected subgraphs.


An efficient algorithm for determining the cores hierarchy is based on the following property:

If from a given graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  we recursively delete all nodes, and edges incident with them, of degree less than k, the remaining graph is the k-core.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



# 6-core of Krebs Internet industries





## Generalized cores

Rnet, cohesion

V. Batagelj

Islands

Cores

Generalized cores

The notion of core can be generalized to networks. Let  $\mathcal{N} = (\mathcal{V}, \mathcal{E}, w)$  be a network, where  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  is a graph and  $w : \mathcal{E} \to \mathbb{R}$  is a function assigning values to edges. A *node property function* on **N**, or a *p*-function for short, is a function  $p(v, U), v \in \mathcal{V}, U \subseteq \mathcal{V}$  with real values. Let  $N_U(v) = N(v) \cap U$ . Besides degrees and (corrected) clustering coefficient, here are some examples of *p*-functions:

$$\mathcal{P}_{\mathcal{S}}(v, U) = \sum_{u \in N_U(v)} w(v, u), ext{ where } w : \mathcal{E} o \mathbb{R}^+_0$$

$$p_M(v, U) = \max_{u \in N_U(v)} w(v, u), \text{ where } w : \mathcal{E} \to \mathbb{R}$$

$$p_t(v, \mathcal{U}) = \frac{|\mathcal{L}(\mathcal{U}) \cap \mathcal{L}(K(N^+(v)))|}{|\mathcal{L}(K(N^+(v)))|}$$

 $p_k(v, U) =$  number of cycles of length k through node v in  $(U, \mathcal{E}|U)$ 

The subgraph  $\mathcal{H} = (C, \mathcal{E}|C)$  induced by the set  $C \subseteq \mathcal{V}$  is a *p*-core at level  $t \in \mathbb{R}$  iff  $\forall v \in C : t \leq p(v, C)$  and *C* is a maximal such set.

<ロト < 同ト < 三ト < 三ト = 三 の < ○



# Additional *p*-functions

### Rnet, cohesion

V. Batagelj

Islands

Cores

Generalized cores

relative density  
$$p_{\gamma}(v, C) = \frac{\deg(v, C)}{\max_{u \in N(v)} \deg(u)}$$
, if  $\deg(v) > 0$ ; 0, otherwise

diversity  

$$p_{\delta}(v, C) = \max_{u \in N^+(v, C)} \deg(u) - \min_{u \in N^+(v, C)} \deg(u)$$

average weight  $p_a(v, C) = \frac{1}{|N(v, C)|} \sum_{u \in N(v, C)} w(v, u)$ , if  $N(v, C) \neq \emptyset$ ; 0, otherwise

V. Batagelj Rnet, cohesion



# Generalized cores algorithms

Rnet, cohesion V. Batagelj

v. Duluge

Islands

Cores

Generalized cores

The function *p* is *monotone* iff it has the property

$$C_1 \subset C_2 \Rightarrow \forall v \in \mathcal{V} : (p(v, C_1) \leq p(v, C_2))$$

The degrees and the functions  $p_S$ ,  $p_M$  and  $p_k$  are monotone. For a monotone function the *p*-core at level *t* can be determined, as in the ordinary case, by successively deleting nodes with value of *p* lower than *t*; and the cores on different levels are nested

$$t_1 < t_2 \Rightarrow \mathcal{H}_{t_2} \subseteq \mathcal{H}_{t_1}$$

The *p*-function is *local* iff  $p(v, U) = p(v, N_U(v))$ . The degrees,  $p_S$  and  $p_M$  are local; but  $p_k$  is **not** local for  $k \ge 4$ . For a local *p*-function an  $O(m \max(\Delta, \log n))$  algorithm for determining the *p*-core levels exists, assuming that  $p(v, N_C(v))$ can be computed in  $O(\deg_C(v))$ . For details see the paper.

V. Batagelj

Rnet, cohesion

イロト イロト イヨト イヨト 二日

San



# Cores and generalized cores / Pajek commands

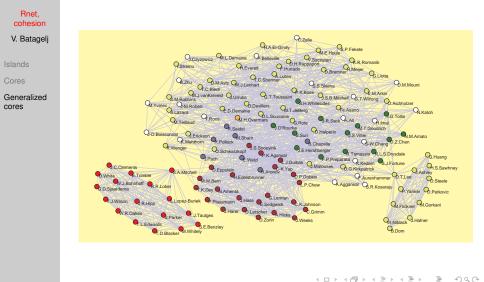
### Rnet, cohesion

V. Batagelj

Islands

Cores

Generalized cores


File/Network/Read [Geom.net] Network/Create Partition/k-Core/All Info/Partition Operations/Network+Partition/Extract Subnetwork [13-\*] Draw/Network+First Partition Layout/Energy/Kamada-Kawai Options/Values of lines/Similarities Layout/Energy/Kamada-Kawai Operations/Network+Partition/Extract Subnetwork [21] Draw/Network Layout/Energy/Kamada-Kawai Options/Values of lines/Forget Layout/Energy/Kamada-Kawai [select Geom.net] Network/Create Vector/Generalized Cores/Sum/All Info/Vector Vector/Make Partition/by Intervals/Selected Thresholds [ Info/Partition Operations/Network+Partition/Extract Subnetwork [2] Draw/Network Options/Values of lines/Similarities Layout/Energy/Fruchterman-Reingold

・ロト ・ 同ト ・ ヨト ・ ヨト

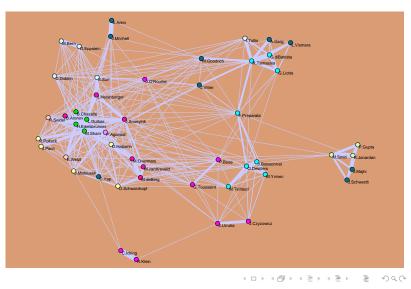
DQC



# Cores of orders 10–21 in Computational Geometry



V. Batagelj Rnet, c


Rnet, cohesion



# $p_S$ -core at level 46 of Geombib network



- V. Batagelj
- Islands
- Cores
- Generalized cores



V. Batagelj Rnet, cohesion