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Abstract Contemporary computers collect databases that can be too large for
classical methods to handle. The present work takes data whose observations are
distribution functions (rather than the single numerical point value of classical data)
and presents a computational statistical approach of a new methodology to group the
distributions into classes. The clustering method links the searched partition to the
decomposition of mixture densities, through the notions of a function of distribu-
tions and of multi-dimensional copulas. The new clustering technique is illustrated
by ascertaining distinct temperature and humidity regions for a global climate dataset
and shows that the results compare favorably with those obtained from the standard
EM algorithm method.
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1 Introduction

Contemporary computers with increasing frequency make possible the collection of
massive datasets whose size (e.g., number of observations and number of variables)
can be too large for those same computers to analyse. Thus, some form of data aggre-
gation must first occur in order to reduce the dataset to a more manageable size
in order for appropriate analyses to proceed. The nature of the aggregation used will
depend on the scientific question(s) being asked. For example, the meteorological data
(considered in Sect. 5) arose from aggregating a dataset that contained millions of val-
ues for each variable (such as temperature, humidity, etc.) clearly too large to analyse
by standard methods. In our case, frequency distributions were generated by aggre-
gating values from the same latitude × longitude grid point.

This work focuses on data for which each observation is a distribution function.
The distribution function can be the original observation per se; or, as is illustrated in
the world climatology example, it may result from aggregation of (r , say, classical)
data points over some suitable domain.

The goal is to develop a methodology for grouping a sample of N (N = 16200 in
the example of Sect. 5) distributions in the p-dimensional Cartesian product of distri-
butions space, into a finite number K of classes. Let us assume there is an underlying
probability density function fk(·) for each class, k = 1, . . . , K . Then we can write
the mixture density

f (x1, . . . , x p;α) =
K∑

k=1

pk fk(x1, . . . , x p;αk) (1)

where α = (α1, . . . ,αK , p1, . . . , pK ) is the parameter with values in R
d associated

with f (·),αk = (αk1, . . . , αkdk ) is the parameter with values in R
dk associated with

fk(·;αk), and pk is the a priori probability that an element from the sample has the
density fk(·;αk) with 0 < pk < 1,

∑K
k=1 pk = 1, for all k = 1, . . . , K .

For classical data, (1) represents the mixture based on a sample of observations
x = (x1, . . . , x p) in R

p. Parametric mixture models for classical data are reviewed
in, e.g., Fraley and Raftery (2002). In this setting, this problem of mixture decomposi-
tion has been addressed by many authors adopting either of two different approaches.
The most widespread approach consists of treating the decomposition problem as an
estimation problem, targeted at estimating the parameters (pk,αk, k = 1, . . . , K ),
usually using maximum likelihood estimation techniques. In general, optimization
algorithms are based on the EM algorithm of Dempster et al. (1977). Variations of
the EM algorithm and/or adaptations to special situations include the stochastic EM
(SEM) algorithm (e.g., Celeux and Diebolt 1986; Meng and Rubin 1991), the clas-
sification EM (CEM) algorithm (e.g., Celeux and Govaert 1992), the Monte Carlo
EM (MCEM) algorithm (e.g., Tanner and Wong 1987; Wei and Tanner 1990) and
those developed by Redner and Walker (1984), with more details in McLachlan and
Peel (2000).

Another approach builds on clustering ideas within the framework of classification
methodology. These methods consider a set of N observations to be grouped into
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K classes (P1, . . . , PK ) = P where each class Pk is assimilated to a sample with
probability law fk(·;αk); see, e.g., the dynamical clustering algorithms of Diday et al.
(1974), Schroeder (1976), Scott and Symons (1971) and Symons (1981). These meth-
ods were combined with EM concepts to produce a classification EM algorithm by
Celeux and Govaert (1992, 1993). Celeux et al. (1989) consider dynamical cluster-
ing on mixture distributions. Other classical clustering approaches include iterative
relocation algorithms (e.g., Hartigan and Wong 1979; Diday et al. 1974), hierarchical
classification (e.g., Brossier 1990), neural networks (e.g., Bishop 1995; Bock 1998),
overlapping classification such as additive clustering (e.g., Arabie and Carroll 1980),
pyramids (e.g., Diday 1984), and the functional clustering model (e.g., Winsberg and
DeSoete 1999; James and Sugar 2003), among others. An excellent review of most of
these algorithms can be found in Gordon (1999).

Our purpose is to present details of a new dynamical clustering method for mixture
distributions in the context of data analysis where the observed distribution function
replaces the single point numerical value of classical data. Further, ideas behind the
concept of copulas (see Nelsen 1999) are introduced as part of the methodology.
Copulas provide a means of describing dependence relations between a joint distri-
bution function and the corresponding marginal distributions. An important family of
copulas is the Archimedean family. The methodology developed leads to estimation
questions within copula theory. Genest and MacKay (1986) describe the relationship
between 2-dimensional Archimedean copulas and Kendall’s tau. Genest and Rivest
(1993) considered inference questions for a Frank family copula for classical data
through Kendall’s tau relationship. Our methodology includes the possibility of using
Kendall’s tau and also Spearman’s rho relationship with copulas. While our approach
is new, it could be viewed as a form of hierarchical modeling (using cumulative dis-
tribution functions instead of density functions) and with cumulative functions as the
functions of functional data analysis.

Some useful formula and definitions relating to functions of distributions along
with some basic results in copula theory are presented in Sect. 2. The algorithm of
the suggested dynamical clustering method is described in Sect. 4 with the associated
estimation issues addressed in Sect. 3. The theory is applied to a bivariate (temperature
and humidity) climatological data set in Sect. 5.1, and compared with results obtained
from the EM algorithm method in Sect. 5.2.

2 Mixture decomposition for probability distributions

We start with a description of the data and output sought, in Sect. 2.1; this includes
the concept of a (joint) distribution function of distribution values. Our approach is
to model the data as a mixture of distributions utilizing the concept of copulas; see
Sect. 2.2. An important class of copulas, the Archimedean family, is presented briefly
in Sect. 2.3.

2.1 Input and output

Let Y = (Y1, . . . , Yp) be a p-dimensional random vector taking values in Rp; and let
F j be the distribution function associated with Y j , j = 1, . . . , p. Here, and throughout
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this work, a distribution function, or simply distribution, is taken to be a cumula-
tive distribution function (cdf). Then, we have a sample F = (F1, . . . , FN ) of N
p-dimensional distributions where Fu = (F1

u , . . . , F p
u ), u = 1, . . . , N , are realiza-

tions of a random vector with F j
u being the realization of the distribution F j for

observation u, u = 1, . . . , N . While each Fu may be a well-defined known distribu-
tion, more typically it will be an empirical distribution F̃ (r)

u estimated in part or entirely
from r (say) observations. For example, F̃ (r)

u may be known to follow a normal distri-
bution but its parameters are estimated from the data. In our climatology application
(Sect. 5), the F̃ (r)

u are estimated as kernel density functions. Except where necessary
to distinguish these cases (such as in “Appendix A.2”), we denote F̃ (r)

u ≡ Fu . Each
Fu belongs to �F = �1

F × · · · × �
p
F , with �

j
F being the set of possible distributions

to describe the individuals from �F for the j th variable and “×” is the product of
spaces operator.

Our aim is to find a partition of this sample of N distributions into K classes; and
thence to obtain estimates of the underlying distribution corresponding to the outcome
classes, and the proportions of the observations of F in each class.

We need the concept of “distribution function of distribution values” and “joint
distribution function of distribution values”. For clarity of notational presentation, the
methodology is described for p = 1. In this case, Fu = F1

u is the distribution function
of the observation unit u for this variable, and �F = �1

F . Key formulae for the general
p case are presented in (5) and (12).

Let F = (F1, . . . , FN ) be a sample of N distributions from the population �F .
A distribution function of distribution values at the point Z is the function defined
by G Z : [0, 1] −→ [0, 1], x �→ G Z (x) with

G Z (x) = P(F(Z) ≤ x), for all x ∈ R. (2)

In (2), F(Z) is a distribution function, and the domain of Z corresponds to the domain
of F . In the climatology application of Sect. 5, the Z refers to values of temperature
(and/or humidity).

If the function G Z (x) is empirically modeled from F, the distribution function is

Ge
Z (x) = P(Fu ∈ F; Fu(Z) ≤ x, u = 1, . . . , N )

= card(Fu ∈ F; Fu(Z) ≤ x, u = 1, . . . , N )

card(F)
. (3)

For instance, Fig. 1 shows N = 5 distributions {Fu, u = 1, . . . , 5}. Suppose we want
to calculate the empirical distribution Ge

Z (x) ≡ G Z (x). If x = 0.4, G Zi (x) is the
percentage of distributions taking a value smaller than or equal to 0.4 at the point Zi .
In this example, G Z1(0.4) = 3/5 and G Z2(0.4) = 1/5.

A joint distribution function of distribution values at the point Z = (Z1, . . . , Zn)

is the function defined by HZ : [0, 1]n −→ [0, 1], x = (x1, . . . , xn) �→ HZ(x) with

HZ(x1, . . . , xn) = P (Fu ∈ F; Fu(Z1) ≤ x1, . . . , Fu(Zn) ≤ xn, u = 1, . . . , N ).

(4)
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Fig. 1 Data: Observed frequency distributions Fu , u = 1, . . . , 5. Dotted lines illustrate calculation of
G Z1 (x) and G Z2 (x) from (3)

Notice that the function G Zi (xi ), i = 1, . . . , n, is just a distribution function of the
random variable F(Zi ) which takes values in [0,1]; and HZ1,...,Zn (x1, . . . , xn) is an
n-dimensional joint distribution function of the random vector (F(Z1), . . . , F(Zn)),
which takes values in [0, 1] with marginal distributions G Zi (xi ), i = 1, . . . , n. There-
fore, well known properties of univariate and multivariate distribution functions pertain
for G(·) and H(·), respectively. For example, for each Zi , xi , (i) G Zi (xi ) is a non-
decreasing function of xi , (ii) limxi →−∞ G Zi (xi ) = 0, (iii) limxi →+∞ G Zi (xi ) = 1,
(iv) G Zi (xi ) is continuous from the right; likewise for HZ(x). Proofs of (i)–(iii) are
found in Diday and Vrac (2005) and of (iv) in Vrac (2002).

The functions in (2) and (4) readily generalize when p > 1. For example,
(4) becomes, for Z = ((Z1

1, . . . , Z1
n1

), . . . , (Z p
1 , . . . , Z p

n p )), HZ : [0, 1]n −→ [0, 1]
where n = ∑p

j=1 n j , x = ((x1
1 , . . . , x1

n1
), . . . , (x p

1 , . . . , x p
n p )) �→ HZ(x), with

HZ(x) = P

(
Fu ∈ F; F1

u

(
Z1

1

) ≤ x1
1 , . . . , F p

u
(
Z p

n p

) ≤ x p
n p , u = 1, . . . , N

)
. (5)

We note that in our application in which the data Fu are cumulative distributions, it
follows that for a given variable the Z1, . . . , Zn and the Fu(Z1), . . . , Fu(Zn) have the
same order. However, this is not the case for all applications. For example, our meth-
odology can be applied to functional data, not necessarily cumulative distributions,
where now the Fu(Zi )’s would not necessarily be ordered even if the Zi ’s were. For
some applications, it may be necessary to characterize the dependencies between the
Fu(Zi )’s in a specific but non-ordered way.

2.2 Modeling dependent distributions with copulas

Schweizer and Sklar (1983) show how copulas link multidimensional joint distri-
bution functions to the one dimensional marginal distributions of the associated
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random variables. We give first the definition of a copula and the important Sklar’s
Theorem which underpins basic copula theory.

From Nelsen (1999), a function C ≡ C(v), v = (v1, . . . , vn) is defined as an
n-dimensional copula (or n-copula) C from [0, 1]n → [0, 1] if: (i) For all v in [0, 1]n ,
if at least one coordinate of v is 0, C(v) = 0, and if all coordinates of v are 1 except vm ,
then C(v) = vm ; (ii) For all a = (a1, . . . , an) and b = (b1, . . . , bn) in [0, 1]n such that
a ≤ b, then VC ([a, b]) ≥ 0, with VC ([a, b]) = �b

aC(v) = �
bn
an �

bn−1
an−1 . . . �

b1
a1C(v)

where the first order difference of C for the mth component of C is �
bm
am C(v) =

C(v1, . . . , vm−1, bm, vm+1, . . . , vn) − C(v1, . . . , vm−1, am, vm+1, . . . , vn).
Let H be an n-dimensional distribution function with unidimensional marginal

distribution functions F1, . . . , Fn . Then, from Sklar (1959) Theorem, there exists a
copula C such that, for all (x1, . . . , xn) in R

n ,

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (6)

If F1, . . . , Fn are continuous, then C is unique; otherwise, C is uniquely determined
on RanF1 × . . . × RanFn , where RanFu = [0, 1] is the range of Fu . Conversely,
if F1, . . . , Fn are distribution functions and C is a copula, the function H defined
by (6) is an n-dimensional distribution function with marginal distribution functions
F1, . . . , Fn .

Note that the functions H, F1, . . . , Fn , and C in Sklar’s Theorem can be parametric
or non-parametric functions. The modeling of dependencies between marginal distri-
bution functions from our sample F can be obtained by extending Sklar’s theorem.
Let G Z1, . . . , G Zn denote the distribution functions at the points Z1, . . . , Zn , and let
HZ1,...,Zn be the joint distribution function of these distributions. Then, there exists an
n-copula C such that, for all (x1, . . . , xn) belonging to R

n ,

HZ1,...,Zn (x1, . . . , xn) = C(G Z1(x1), . . . , G Zn (xn)). (7)

Moreover, C is uniquely determined on RanG Z1 × · · · × RanG Zn for continuous
G Zi , i = 1, . . . , n.

From (7), we see that the copula C is a way to model the dependencies between
the (G Z1 , . . . , G Zn ). Thus, e.g., in the climatology example in Sect. 5, the G Zi ’s
correspond to different temperatures and/or humidities. If there is no dependence
between the G Zi ’s, the product copula � emerges (where a copula C ≡ C(v1, . . . , vn)

is a product copula if C = ∏n
i=1 vi ; see Nelsen 1999). When p > 1, the same

notions apply with dependencies between variables j1 and j2 (say) modelled by the
sets (Z j1

1 , . . . , Z j1
n j1

) and (Z j2
1 , . . . , Z j2

n j2
); see (5).

Analogously with (1), we can write HZ1,...,Zn as a mixture of parametric
distributions,

H(x1, . . . , xn; γ ) =
K∑

k=1

pk Hk(x1, . . . , xn; γ k) (8)
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with, for all k = 1, . . . , K , 0 < pk < 1,
∑K

k=1 pk = 1, where Hk(·; γ k) is the para-
metric distribution for the mixture component (class) k with parameter γ k belonging
to R

dk (where dk is the dimension of the parameter γ k) and pk is the a priori prob-
ability that the vector (x1, . . . , xn) is in the kth class. The function Hk is the joint
distribution at the point Z = (Z1, . . . , Zn) for the kth component, with marginal
distributions Gk

Z1
, . . . , Gk

Zn
. Therefore, from (8) and Sklar’s Theorem (7), there exist

copulas Ck, k = 1, . . . , K , such that

H(x1, . . . , xn; γ ) =
K∑

k=1

pkCk
(
Gk

Z1

(
x1; bk

1

)
, . . . , Gk

Zn

(
xn; bk

n

);βk
)
. (9)

where γ = {bk
i , i = 1, . . . , n;βk, pk, k = 1, . . . , K },βk is the parameter of the

copula corresponding to the kth class, and Gk
Zi

(·; bk
i ) is the distribution function with

parameter bk
i at the point Zi in the class k. In this formulation, the parameters γ k in

(8) become the parameters {bk
i , i = 1, . . . , n,βk} of (9). Note that while G and C are

written in (9) as parametric functions, they can be non-parametric functions. We can
easily prove the following results by applying the chain rule to (8) and (9).

Let hk(·) ≡ hk(x1, . . . , xn; γ k) = ∂n Hk/∂x1 . . . ∂xn denote the probability density
function associated with the distribution function Hk(·). Then, hk(·) can be written as

hk(x1, . . . , xn; γ k) =
{

n∏

i=1

dGk
Zi

dxi

(
xi ; bk

i

)
}

∂n

∂x1 . . . ∂xn

× Ck
(
Gk

Z1

(
x1; bk

1

)
, . . . , Gk

Zn

(
xn; bk

n

);βk
)
. (10)

Hence, substituting from (10) into (9), we have that the probability density function
h(·) ≡ h(x1, . . . , xn; γ ) = ∂n H/∂x1 . . . ∂xn associated with H(·) can be written as

h(x1, . . . , xn; γ ) =
K∑

k=1

pk

{
n∏

i=1

dGk
Zi

dxi

(
xi ; bk

i

)
}

∂n

∂x1 . . . ∂xn

× Ck
(
Gk

Z1

(
x1; bk

1

)
, . . . , Gk

Zn

(
xn; bk

n

);βk
)
. (11)

These equations readily generalize to p > 1. In this case, (11) becomes

h
(

x1
1 , . . . , x p

n p ; γ p
)

=
K∑

k=1

pk

⎧
⎨

⎩

p∏

j=1

n j∏

i=1

dGk
Z j

i

dx j
i

(
x j

i ; b jk
i

)
⎫
⎬

⎭

· ∂n

∂x1
1 . . . ∂x p

n p

Ck
(
Gk

Z1
1

(
x1

1 ; b1k
1

)
, . . . , Gk

Z p
n p

(
x p

n p ; bpk
n p

);βk
)

(12)

where γ p = (b jk
i , βk, pk, i = 1, . . . , n j , j = 1, . . . , p, k = 1, . . . , K ) is the set of

parameters, and where Z = ((Z1
1, . . . , Z1

n1
), . . . , (Z p

1 , . . . , Z p
n p )) with n = ∑p

j=1 n j .
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Note that while for a given j , the Z j
1 , . . . , Z j

n j may be ordered, it is not necessarily

the case that, for j1 	= j2, the values of Z j1
1 , . . . , Z j1

n j1
, Z j2

1 , . . . , Z j2
n j2

are ordered.
An alternative approach to using (5) and (12) when p > 1 is to use Sklar’s The-

orem twice to obtain a copula of copulas. Thus, from (9) and (11), for each variable
Y j , the distribution H Y j (·) is found, j = 1, . . . , p. We can then calculate the set of
p-dimensional values (HY1, . . . , HYp ) for each of the N observations in �; this gives
the set Hu, u = 1, . . . , N . Then we can repeat the methodology of (9) and (11) (orig-

inally based on the nFu’s) to one based now on these N {H
Y j
u , j = 1, . . . , p} values.

For example, to calculate the HY j (·), (9) becomes, for j = 1, . . . , p,

HY j
(
x j

1, . . . , x j
n j ; γ j

) =
K j∑

k=1

p j
k Ck

(
Gk

Z j
1

(
x j

1; b jk
1

)
, . . . , Gk

Z j
n j

(
x j

p; b jk
p

);β
j
k

)
,

where γ j = (b jk
1 , . . . , b jk

p , p j
k , β

j
k , k = 1, . . . , K j ), j = 1, . . . , p, and where the

x j
1 , . . . , x j

p are the values of the cumulative distribution function of the variable Y j

estimated in Z j
1 , . . . , Z j

p. Then, when based on the N {H
Y j
u , j = 1, . . . , p} values,

(9) becomes

H(x1, . . . , x p; γ ) =
K ′∑

k=1

p′
kCk

(
G ′k

Y1

(
x1; b′k

1

)
, . . . , G ′k

Yp

(
x p; b′k

p

);β ′
k

)
(13)

where now γ = (b′k
j , j = 1, . . . , p, p′

k, β ′
k, k = 1, . . . , K ′), and where G ′k

Y j
is

the distribution function of the HY j (·) values of the kth component. Thus the depen-
dencies between the variables Y j , j = 1, . . . , p, are modeled through the copula in
(13). There are still n values of Zi as in the use of (12) directly; but by using (9) and
(11), n j are used for each application of (9) and (11) by j . The dependencies within

each set of Z j
i for each j are modeled first through the copulas of (9), and then the

dependencies between the variables Y j are modeled through the copulas of (13).

2.3 Archimedean copulas

Our focus is on Archimedean copulas, a large parametric class with several attractive
features. Archimedean copulas are characterized by the following relationship.

Let φ be a continuous strictly decreasing function from [0, 1] to [0,∞] such that
φ(1) = 0 and let φ[−1] be its pseudo-inverse function. Let C(v1, . . . , vn) be a function
from [0, 1]n to [0, 1] which satisfies

C(v1, . . . , vn) = φ[−1](φ(v1) + · · · + φ(vn)). (14)

Then, C(v1, . . . , vn) is an n-dimensional Archimedean copula. See Nelsen (1999).
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From Diday and Vrac (2005), an n-dimensional Archimedean copula
Cn(v1, . . . , vn) satisfies

Cn(v1, . . . , vn) = φ[−1]
n (φn(Cn−1(v1, . . . , vn−1)) + φn(vn)) (15)

where

Cn−1(v1, . . . , vn−1) = φ
[−1]
n−1 (φn−1(Cn−2(v1, . . . , vn−2)) + φn−1(vn−1)) (16)

and so on, with 0 ≤ v1, . . . , vn ≤ 1 and where φi is a continuous strictly decreasing
convex function, i = 1, . . . , n. For a parametric copula, we note that in (15) and
(16), φn(·) and φn−1(·) would contain parameters which can take different values as
n changes.

The Frank (1979) family of copulas is given by, for n = 2, for (v1, v2) ∈ [0, 1]n ,

C(v1, v2;β) = (ln β)−1 ln{1 + [(βv1 − 1)(βv2 − 1)]/(β − 1)} (17)

for β > 0 and β 	= 1; and is generated by φβ(y) = − ln[(1 − β y)/(1 − β)]. It
follows that φ[−1](y) = [ln(β)]−1 ln[1 − (1 − β)e−y]. Hence, from (15), the Frank
copula for n > 2 can be easily generated. Other important Archimedean copulas are
the Clayton family 1978, the Genest–Ghoudi family (1994), and the Ali–Mikhail–Haq
family (1978), among others; see Nelsen (1999). Properties of copulas are given in
Nelsen (1999).

3 Estimation

The basic algorithms used (see Sect. 4) involve estimation of parameters. Behind these
is the question of the choice of Z = (Z1, . . . , Zn). These are covered in turn.

3.1 Estimation of the parameters

Optimizing any of the clustering criterion (such as (29) or (30) in Sect. 4) involves
first estimating the n univariate distributions G Z (x; b) and the parameters b if a para-
metric G Z (·) is taken, then the copula linking these functions C(·;β) which implies
also estimating the copula parameters β when a parametric copula is used, and finally
the mixture ratios pk .

3.1.1 Estimation of G Z (x)

Estimating a distribution function and/or the related probability density function has
received considerable attention in the literature. For example, Silverman (1986) pro-
vides an excellent introduction to empirical density estimation techniques; and Prakasa
Rao (1983) studies theoretical aspects of the subject. One approach would be to adapt
these methods to the notion of copulas and mixture distributions. Thus, estimation
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of the distributions, G Z (x), can be achieved by extending the classical histogram
approach to give the empirical frequency as given in (3).

A second approach is to use a kernel density function. There are many possibilities.
One such choice is an adaptation of the Parzen (1962) truncated window approach.
Hence, the distribution function G Z (x) can be estimated through

f̂ (x) = 1

cN

1

Nh

N∑

u=1

K e

(
x − xu

h

)
(18)

where cN is such that
∫ 1

0 f̂ (x)dx = 1, K e is the kernel function and h is the window
width. One choice of h is that value automatically estimated by the mean integrated
square error (MISE) formula h = 1.06σ N−1/5 where σ is the standard deviation cal-
culated from the sample, when the kernel function being used is the standard normal
density; this choice is typically used when the true probability density function is not
known. The constant 1.06 changes for other kernel functions. Details for choices of
kernel K e and the calculation of the window h can be found in Silverman (1986).

Alternatively, parametric approaches could be used. For example, the distribution
G(x) could be modeled as a Dirichlet’s law. In one dimension, this becomes the beta
law

f (x; b) = xα1−1(1 − x)α2−1

∫ 1
0 yα1−1(1 − y)α2−1dy

, 0 < x < 1, (19)

where b = (α1, α2) are parameters with αi > 0, i = 1, 2. Hence, we can determine

G(x; b) =
x∫

0

f (t; b)dt.

The parameter b can be estimated using classical techniques such as the maximum
likelihood method to give Ĝ(x; b) = G(x; b̂). Another approach is to use a Gaussian
law for f (·).

3.1.2 Estimation of the copulas

For discussion purposes, let us assume we wish to work with the log-likelihood clas-
sification criterion (30), and a parametric copula. The parameters of the copulas to
be estimated must maximize the function L = W2(P, γ ′). If each observation u is
described by Fu , let {Fu(Zi ), i = 1, . . . , n} be denoted by {xi , i = 1, . . . , n}. Then,
the parameters βk, k = 1, . . . , K , are estimated to be those which maximize
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L =
K∑

k=1

∑

u∈Pk

ln

[{
n∏

i=1

dG Zi

dxi

(
xi ; bk

i

)
}

× ∂n

∂x1 . . . ∂xn

× Ck
(
Gk

Z1

(
x1; bk

1

)
, . . . , Gk

Zn

(
xn; bk

n

);βk
)
]

(20)

for given specified copula functions Ck(·). For the Frank family of copulas (17), we
can show that when n = 2, writing C ≡ Ck(x1, x2;β),

∂2C

∂x1∂x2
= (β − 1)βx1+x2 ln β

[(β − 1) + (βx
1 − 1)(βx

2 − 1)]2 . (21)

For the Clayton family of copulas,

∂2C

∂u∂v
= (β + 1)(uv)−β−1(u−β + v−β − 1)−2−1/β;

for the Genest–Ghoudi family,

∂2C

∂u∂v
= 1

β

(
1

β
− 1

)
{1 − [(1 + uβ)1/β + (1 + vβ)1/β ]β}1/β−2(uv)β−1

×[(1 + uβ)(1 + vβ)]1/β−1;

and for the Ali–Mikhail–Haq family,

∂2C

∂u∂v
= (1 − β)[1 + β(1 − u)(1 − v)]

[1 + β(1 − u)(1 − v)]3 .

The relevant copula derivative is then substituted into the function L in (20) as
appropriate.

Numerical iteration The function L of (20) can be maximized using numerical
methods. Let us write W k

i ≡ Gk
Zi

(xi ; bk
i ), i = 1, . . . , n. i.e., we can write (20) as

L =
K∑

k=1

∑

u∈Pk

ln

[{
n∏

i=1

d

dxi
G Zi

(
xi ; bk

i

)
}

× lk(βk)

]

with

lk(βk) = ∂n

∂wk
1 . . . ∂wk

n

Ck
(
Gk

Z1

(
x1, bk

1

)
, . . . , Gk

Zn

(
xn; bk

n

);βk
)

(22)

where βk is the vector of parameters associated with the copula Ck(·). Then, esti-
mating the copula Ck(·) involves finding those βk which maximize lk(βk) in (22)

123



M. Vrac et al.

for specified Ck(·;βk), for each k. If explicit expressions for β̂k cannot be obtained,
numerical methods are employed.

One such method is the Newton-Raphson technique. Thus, for example, when
n = 3, we use the iterative relationship at each iteration s, s = 1, 2, . . . , writing
lk(βk) ≡ l(β) for simplicity,

βs+1 = βs + {I (β̂)}−1grad(βs) (23)

where the information matrix is

I (β) =
(−∂2l(β1, β2)

∂βi∂β j

)
, i, j = 1, 2,

and the gradient vector is

grad(β) = (∂l(β1, β2)/∂βi ), i = 1, 2,

where β = (β1, β2) is two-dimensional for an n = 3 dimensional Archimedean
copula and where I (β̂) is estimated by I (βs).

Copula functions for more than two variables can be quite difficult to define. How-
ever, when, in (22), n > 2, this difficulty can be circumvented by exploiting the
relationship (15) which relates an n-dimensional copula to a two-dimensional cop-
ula. To illustrate, let Wi ≡ W k

i , i = 1, 2, 3, denote the n = 3 random variables in
(22). We consider the copula C1(w1, w2;β1) to be the link between the variables W1
and W2 and the copula C2(·) as the link between the random variables C1(·;β1) and
W3, viz.,

C2(C1(w1, w2;β1), w3;β2).

We first estimate β1 and hence C1(·;β1) from realizations (w11, . . . , w1N ) and
(w21, . . . , w2N ) as described above. This allows us to compute realizations of
C1(·;β1) as {C1(w11, w21; β̂1), . . . , C1(w1N , w2N ; β̂1)}. These realizations along
with the (w31, . . . , w3N ) are used to estimate β2 and hence we can estimate
C2(w1, w2, w3; β̂2). Continuing in this manner, we can estimate Cn(w1, . . . , wn; β̂)

where now β̂ ≡ (β̂1, . . . , β̂n−1). Note that even so when the number of dimensions is
large, care is needed to implement this procedure.

Correlation coefficients An alternative approach is to estimate the underlying
Archimedean copulas through correlation coefficients. For notational simplicity,
let us assume we have the n random variables X1, . . . , Xn with joint distribu-
tion function H(x1, . . . , xn) and marginal distribution functions F1(x1), . . . , Fn(xn),
respectively, with the dependencies expressed through the copula Cn(·;β) with
β = (β1, . . . , βn−1), as in Sklar’s Theorem, i.e.,

H(x1, . . . , xn) = Cn(F1(x1), . . . , Fn(xn);β) ≡ Cn(β).
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By extending Nelsen (1999), it is easily shown (see Hillali 1998) that Kendall’s
coefficient of association τ satisfies, for n = 2,

τ = τ {C2(β)} =
{

22
∫

C2(v1, v2;β)dC2(v1, v2;β) − 1

}
.

Hence, by estimating τ and exploiting this relationship, the copula C can be found.
One approach is to extend the idea of Hillali (1998) as follows. We wish to estimate the
copula through (15). For clarity, let us take the case n = 3 (therefore, β = (β1, β2)),
and let Xi have realizations {xi1, . . . , xi N ), i = 1, 2, 3. For each (Xi , X j ) pair, we
estimate the corresponding τ̂ value and take the average to give

T ∗ = {τ̂ (X1, X2) + τ̂ (X1, X3) + τ̂ (X2, X3)}/3. (24)

Then, the estimate β̂ = (β̂1, β̂2) satisfies the relationship

τ {C3(β̂)} = T ∗. (25)

The parameter β1 can be viewed as the coefficient of association between X1 and X2
so that it is estimated by

β̂1 = τ−1{τ̂ (X1, X2)}. (26)

Then, in turn, β̂2 is the value of β2 which satisfies τ {C(β̂1, β2)} = T ∗.
Notice that τ {C(β2)} only depends on β2 and not on the distributions (X1, X2) and

(X1, X3); therefore it is not possible to estimate β2 from τ {C(β2)} and then β1 from
τ {C(β1, β̂2)} = T ∗. This difficulty is avoided by estimating β1, as in Hillali’s method
from (25). We then can estimate C1(X1, X2;β1) and hence determine its realizations

{C1(X11, X21; β̂1), . . . , C1(X1N , X2N ; β̂1)}.

The parameter β2 is now interpreted as the coefficient of association between the
random variables Z = C(X1, X2;β1) and X3. Then, the parameter β2 is estimated as
being that value which satisfies

τ {C2(β2)} = τ̂ (Z , X3). (27)

The generalization to n > 3 variables flows through. As such, this method is well
adapted to n-dimensional copulas in general through (15).

Or, instead of using Kendall’s τ , we can use Spearman’s ρ, where now

ρ = ρ{Cn(β)} = 1

[(n + 1)−1 − 2−n]
{∫

v1 . . . vndCn(v1, . . . , vn;β) − 2−n
}
.

The same ideas carry through where now τ is replaced by ρ in the Eqs. 24–27 above.
See Vrac (2002) for details; see also Genest and Rivest (1993) for estimation of bivar-
iate Archimedean copulas for classical data using Kendall’s τ .

123



M. Vrac et al.

Fig. 2 Surface distribution of
distributions in Fig. 1
Data—calculated using Parzen’s
window for h(Z) = M I SE

3.1.3 Estimation of {pk}

The mixing ratios {pk, k = 1, . . . , K } are estimated in the usual way with

p̂k = card(Pk)

card(F)
. (28)

Alternative estimators of pk are suggested in Celeux and Govaert (1993).

3.2 Choice of Z

The estimation steps of Sect. 4 presuppose values of Z have been chosen. These
choices can be induced by the nature of the estimated function of the distributions
G Z (x), and the densities of these distributions gZ (x).

The surface S of distributions of distribution values G Z (x), associated with the
population � and the random variable in the domain V , is S = {(Z , x, w); Z ∈ V ;
x ∈ [0, 1];w = G Z (x)}. The surface S′ of densities of distributions gZ (x)

associated with the population � and the random variable in the domain V , is
S′ = {(Z , x, w); Z ∈ V ; x ∈ [0, 1];w = gZ (x)}.

For the data of Fig. 1, the surface S of the distributions G Z (x) is shown in Fig. 2,
where representations of the G Z (x) each in one dimension are shown for several values
of Z . Here, each G Z (x) was estimated via the kernel density method for a Gaussian
kernel using the Parzen truncated window. The window width h ≡ h(Z) was cal-
culated by the mean integrated square error formula with the standard deviation σ

estimated from the sample {F1(Z), . . . , FN (Z)} for each Z . By taking the derivative
of the surfaces G Z (x), we can obtain the corresponding density functions gZ (x) of
the observed distributions.

Intuitively, natural choices of the Z ’s correspond to changes in the nature of these
surfaces. That this is so follows from recognizing that a given choice of Z is not good
if all the observed distributions of Fu in the distributions base F have the same value
at that Z , as this would inhibit the partitioning process. Rather, good choices of Z are
those Zi∗ (say) for which there exist distinct classes of values among the set of values
{Fu(Zi∗), u = 1, . . . , N }. Equally important, a priori knowledge from experts (in
the area from which the data were generated) can help identify where such “bumps”
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Fig. 3 Surface densities of distributions for humidity data—calculated from 16,200 observed distributions

might occur. For example, Fig. 3 shows the surface S′ of the densities gZ (x) calculated
from the 16,200 distributions of the humidities from the climatology data considered
in Sect. 5. The clear inflection point at Z1 = 0.000003 identifies this as a suitable
Z value; whereas the Z2 = 0.006 value also used in the actual analysis (in Sect. 5)
comes from experts.

Although the definitions of the surfaces S and S′ are written and illustrated here
for the case p = 1, they can be extended to the general case p > 1. However, the
visual representation of choosing the Z values might be complex when more than one
dimension is used.

Vrac (2002) and Diday and Vrac (2005) proposed a triangle method to assist in the
choices of Z ; Jain and Dubes (1988) also proposed methods to help identify cluster-
ing tendencies. While for the data considered in Sect. 5, the actual specifics of these
Z values were not an issue, the question of what might be in general the best choices and
how many Z ’s remains. It is known, however, that convergence does occur regardless
of the number n of Z ’s used for empirical copulas; see Vrac (2002).

4 Clustering algorithm

The clustering algorithm proposed is one obtained by adapting the dynamical clus-
tering method developed by Diday et al. (1974) and Celeux et al. (1989) for classical
observations in pattern recognition and by Symons (1981) for clustering multinormal
observations, to the present situation whereby we seek the best grouping of the N
distributions (observations) in F into K classes P = (P1, . . . , PK ). The main idea at
each iteration/step, is to estimate the parameters of the densities hk(·), k = 1, . . . , K ,
which best describe the classes for the current partition according to a specified given
clustering criterion.

For each partition, this involves determining the distributions Gk
Zi

(·), i = 1, . . . , n,

k = 1, . . . , K , and thence estimating its parameters bk
i whenever a parametric G is

taken. It also involves fixing the copula models Ck(·), k = 1, . . . , K , and includes
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estimating the associated parameters βk when parametric copulas are chosen. Details
of these estimations were given in Sect. 3.

There are many possible clustering criteria, W (P, γ ), with associated parame-
ters γ , that can be used to determine the best partition P = (P1, . . . , PK ), such as the
log-likelihood criterion (see, e.g., Symons 1981)

W1(P, γ ) =
N∑

u=1

ln

[
K∑

k=1

pkhk(Fu(Z1), . . . , Fu(Zn); γ k)

]
; (29)

or, a classification criterion such as the widely used log-likelihood classification cri-
terion (see, e.g., Celeux et al. 1989)

W2(P, γ ′) =
K∑

k=1

∑

u∈Pk

ln[hk(Fu(Z1), . . . , Fu(Zn); γ k)] (30)

where now γ ′ = (γ k, k = 1, . . . , K ). Notice that this criterion does not use the mixing
probabilities pk, k = 1, . . . , K ; it uses the distribution functions hk, k = 1, . . . , K ,
directly. This allows for more robust clusters to be formed.

Although the log-likelihood criterion (29) is widely used within a clustering context,
it is more generally employed when there is a greater interest in modeling/estimating
the global distribution h(·). In contrast, the log-likelihood classification criterion (30)
gives more importance to the conditional distributions hk(·), k = 1, . . . , K , and thus
is more useful when the focus is put more on the classes found from the partitioning
process than on the modeling/estimation of the whole density. Both types of criteria
are possible in the proposed method. Indeed, other types of clustering criteria can be
used. What is important is that a criterion be selected, against which the optimal set
of classes (P1, . . . , PK ) can be ascertained.

Suppose we take the log-likelihood criterion (29). Let the initialization of the par-
tition be P0 = (P0

1 , . . . , P0
K ), and let the partition after the sth iteration be Ps =

(Ps
1 , . . . , Ps

K ). Then, the algorithm consists of two successive and iterative steps, viz.,

Step 1: Estimation of the parameters of the mixture distribution (11) (or (12), as
appropriate) by maximizing the selected criterion (e.g., (29)), based on Ps ,
to give ps+1

k and γ s+1
k ; and

Step 2: Definition of the new partition {Ps+1
k , k = 1, . . . , K } where Ps+1

k is defined
as

Ps+1
k =

{
Fu; ps+1

k hk
(
Fu; γ s+1

k

) ≥ ps+1
m hm

(
Fu; γ s+1

m

)

for all m 	= k, m = 1, . . . , K
}
. (31)

When |W (Ps+1, γ s+1) − W (Ps, γ s)| < ε, for some preassigned small value of ε,
the process stops.

The allocation step (31) is written for a criterion such as (29); when a clustering
classification criterion such as (30) is used, the mixing parameters ps+1

k and ps+1
m
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terms in (31) are omitted. The basic idea is that at the (s + 1)th iteration, units Fu are
moved into (i.e., allocated to) the Ps+1

k which optimizes the partition at this iteration
for the given partitioning criterion. Note that this ‘move’ can keep the unit Fu in the
same class it occupied after the preceding iteration.

Since the algorithm is a K-means type algorithm, the initial partition can affect the
final estimates of the parameters and the resulting clustering. This starting partition
must be chosen as close as possible to the final partition. Hence, expert knowledge
is certainly valuable. For example, in our climate application in Sect. 5, latitudinal
strip-clusters were used as an initial partition. However, it is still possible that the
algorithm converges toward a local minimum. Consequently, the algorithm is run
several times for each desired number K of clusters, and the approximate weight of
evidence (AW E) criterion (see Eq. 32 below) is used to obtain the final partition.

There are as many as three sets of parameters involved in Step 1, correspond-
ing respectively to the mixture ratios pk, k = 1, . . . , K , the copula parameters βk,

k = 1, . . . , K , in C(·;βk), and the marginal distribution parameters bk
i , k = 1, . . . , K ,

i = 1, . . . , n, in G(·; bk
i ), as detailed in Sect. 3. If a non-parametric marginal dis-

tribution G(·) is chosen, the algorithm can be applied in a similar manner; likewise,
for a non-parametric copula. That this algorithm converges, and in a finite number
S∗ ∈ N of iterations, is proven (along with some other asymptotic properties) in the
“Appendix”.

This adaptation of the (Diday et al. 1974; Schroeder 1976; Scott and Symons 1971;
Symons 1981) classical dynamical clustering method to distributions works well, as
demonstrated by its application to some climatology data described in Sect. 5, and sub-
stantiated by the convergence properties. There are other classical optimization algo-
rithms which could be considered for adaptation to the present situation; see Sect. 1.

Finally, in clustering analyses the number of classes K is usually prespecified as,
to date, the literature does not provide a completely satisfactory method to assess K .
There are many criteria that have been suggested in the literature. While it is not the
goal of this paper to evaluate these criteria, one such criterion (used in the applica-
tion of Sect. 5) is the approximate weight of evidence (AW E) criterion suggested by
Banfield and Raftery (1993), viz., for given K ,

AW E(K ) = −2 log(LC ) + 2d(3/2 + log N ) (32)

where LC is the classification maximum likelihood (e.g., the maximized value of (30)),
d is the number of parameters to be estimated, and N is the sample size. Then, the
clustering algorithm is run for many specific values of K ; that K which maximizes
AW E(K ) is selected.

5 An application

5.1 Copula methodology

The foregoing theory is illustrated by an analysis of an atmospheric dataset covering
the globe from the European Center for Medium-range Weather Forecasts (ECMWF)
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located in Reading U. K. Data points are realized as grid points over the earth at
each latitude and longitude degree, and extended in altitude to 37 temperature and 24
humidity data point levels. Clearly, technically, these are not random points. However,
for simplification of the problem and illustration of the approach, those assumptions
are made on the dataset. The temperatures used are those forecast six hours earlier
for midnight on December 15, 1999 at 3-dimensional latitude × longitude × altitude
grid points. The objective then is to partition the weather world into well-defined tem-
perature and humidity (p = 2) regions by latitude and longitude based on these data
including estimation of the underlying probability distribution function for each iden-
tified region. There are essentially two discretization steps involved, viz., discretize
the globe by grids in three dimensions, and then discretize the surfaces S (or S′) at
these grids according to Z (see Sect. 3.2).

The first discretization step develops the temperature-humidity patterns for every
other (i.e., 2◦ apart) latitude-longitude grid point. Hence, N = 16, 200. At each of
these N grid-points, the temperature distributions F1

u (·) are calculated from the 37
temperature altitude level values; and likewise the humidity distributions F2

u (·) are
calculated from its 24 altitude level values. Hence, the main idea is that the distribu-
tions characterize the variability of the temperature and humidity all along the vertical
of the grid-point (Note that the temperature usually does not simply decrease for higher
altitudes, because of the phenomenon of inversion that occurs after the tropopause).
This representation of the data is more informative than many of the classical represen-
tations typically used, such as the average, since the variation within each observation
is retained for our method whereas it is lost when an average (say) is used. The tem-
perature and humidity profiles Fu = (F1

u (·), F2
u (·)), u = 1, . . . , N , are estimated

(through (18)) by the Parzen method where we take the window h to be the mean
integrated square error (MISE) values, and where in this case cN = 1. The aim is to
group these N distributions covering both temperature and humidity into K classes.

We give the results for the coupling approach (13) where Y = (Y1, Y2) where
Y1 = temperature and Y2 = humidity. The p = 2 (or, equivalently, n = n1 + n2 =
2 + 2 = 4) values of Y ≡ Z selected (at the second discretization step) were
Z = ((Z1

1, Z1
2), (Z2

1, Z2
2)) = (225, 265, 0.00003, 0.006). The analysis was run on

several choices of {Z j
i , i = 1, . . . , n} and different numbers n for each j = 1, 2.

For these data, the same results were obtained showing insensitivity to the actual
number and choice of Z j

i , due to the fact that the cumulative distribution functions
were quite smooth. Also, the choice of the two temperature thresholds Z1

1 = 225 K
and Z1

2 = 265 K (K ≡ Kelvin degrees) corresponding to the 25th percentiles were
determined (in consultation with a meteorological expert and by observing where the
inflection points occurred in the surface of the distributions G Z (x) or the densities
gZ (x)) to be used in the estimation of the distributions. Additional analyses run by
adding two additional Zi values in each tail along with the selected 225 K and 265 K
values also gave the same results. The humidity threshold values were determined
as inflection points in gZ (x) and from experts (as illustrated in Sect. 3.2, where now
Z ≡ Y2).

A Frank family copula C(·;βk) of (17) was fitted and distributions G Zi (·;αk
1, αk

2)

corresponding to the beta law of (19), i = 1, 2, were adopted for the kth class
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Fig. 4 Classification into 7 temperature and humidity regions—based on Frank copulas, beta G(·)’s.
Regions: 1 South Polar (Cold and Dry), 2 Sub-Polar (Relatively Cold and Dry), 3 SubTropical (Relatively
Hot and Wet), 4 Tropical (Hot and Wet), 5 Temperate, 6 Sub-Temperate (Relatively Warm and Dry), 7-North
Polar (Frigid and Dry)

Table 1 Parameters of the classification in 7 clusters for temperature and humidity

Region β ′
k αk

1 in Y1 αk
2 in Y1 αk

1 in Y2 αk
2 in Y2 p′

k

1 0.000001 6.71 2.14 5.70 5.22 0.20

2 0.100001 70.00 70.00 10.42 14.54 0.06

3 0.200001 18.97 88.13 8.06 145.22 0.25

4 0.050867 19.53 112.07 6.49 357.52 0.14

5 0.362295 12.32 31.49 5.03 18.55 0.14

6 0.126157 0.87 7.18 3.32 7.18 0.09

7 0.003896 23.22 4.77 13.37 3.11 0.12

(i.e., region), k = 1, . . . , K . Also, the clustering criterion used was the log-
likelihood criterion of (29). The initial partition was constructed according to lati-
tudes by defining K strips of latitudes to give a kind of prior tropical class and two (or
more, etc.) non-tropical classes. In our case, we wanted an odd number of classes to
keep the geographical symmetry (in latitude) of the earth’s atmosphere with respect
to a central tropical cluster.

We ran our copula methodology for K = 5, . . . , 18 classes and calculated the
approximate weight of evidence (AW E) criterion (32) where in our case LC is the
maximized value of (29), d = 2 × K , and N = 16,200 is the number of atmospheric
profiles. For these data, this AW E criterion was maximized at K = 7.

The resulting classes and parameter estimates are shown in Fig. 4 and Table 1,
respectively. Notice that for these classes, the estimated beta law parameters (α̂k

1, α̂k
2)
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vary substantially across regions reflecting the highly variable weather patterns from
one region to another (as should be expected). The results are good and consistent
with those found for each variable analysed alone (not shown). First, note the tropical
class 4 which describes particularly well a region of high meteorological significance,
namely the Inter Tropical Convergence Zone (ITCZ) and more acute transitions to
colder and drier classes further away from the equator. Secondly, the northern win-
ter and the southern summer are identified; see, e.g., how the winter’s north polar
regions are quite colder than the summer’s south polar region which is more like the
sub-north-polar region. The distinctiveness of the Himalayas and Andes (both colder)
and of the southern Australian desert (drier) from the surrounding geography is easily
identified by this analysis. Also, the humidity spiral centered over 60◦N and 60◦E is
observed. Also, estimates of the mixing parameters (in Table 1) are consistent with the
surface coverage for these clusters (in Fig. 4); e.g., the Sub-Tropical region (class 3)
at p′

3 = 0.25 reflects the fact this region covers more of the globe than does, say, the
relatively cold and dry region (class 2) for which p′

3 = 0.06.

This seven class partition, described above, adds the desirable feature (that was
missing in previous meteorological studies using K = 5 classes) that differences
between winter in the northern hemisphere and summer in the southern hemisphere
are clearly identified. Furthermore, prior climatological classes with K = 5 found the
classes to be too large. For example, Chédin et al. (1985) and Achard (1991) used
K = 5 classes corresponding to two polar, two temperate and one tropical classes.
Because of the small number of classes, this partition in effect assumes equivalent
behavior (i.e., similar thermodynamic profiles) in the winter in the northern hemi-
sphere and in the summer in the southern hemisphere (and conversely), and does
not properly describe the transitions between polar and temperate zones or between
temperate and tropical zones.

As a complementary experiment, the temperature and humidity profiles of
February 1 2000 (6 weeks ahead) have been classified onto the seven previously deter-
mined classes. This classification (i.e., determination of the best associated cluster)
has been realized based on Eq. 31. The resulting map of distribution of the clusters is
presented in Fig. 5. The agreement between the “forecasted” clusters and the map of
observed mean temperature between 500 and 700 hectopascal (hPa), as well as with
the map of total water vapor content (maps not shown) has great precision. Most of
the water vapor and temperature structures are correctly retrieved with high accuracy.
Notice also that the South Polar region is by February starting to cool down as it
heads to its winter season and so becomes more like the former North Polar region
(dark blue); and likewise, north subpolar regions (light blue) in the north are warming
up with a larger portion becoming more like the December South Polar region. The
faster change of the South Polar region compared to the North Polar region is due to
the fact that only insolation plays a role in the south, whereas in the north the inertia
of the temperature of the oceans can be predominant. Again, this feature is entirely
consistent with known weather changes from December to February in these regions.
Consequently, this clustering method allows the researcher not only to define precise
and useful structures, but also to coherently infer the classes (or, clusters) associated
with new statistical entities (here, the atmospheric profiles of a future day).
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Fig. 5 Forecast (February 1 2000) Temperature and Humidity Regions—based on Frank copulas, beta
G(·)’s. Regions: 1 South Polar (Cold and Dry), 2 Sub-Polar (Relatively Cold and Dry), 3 SubTropical
(Relatively Hot and Wet), 4 Tropical (Hot and Wet), 5 Temperate, 6 Sub-Temperate (Relatively Warm and
Dry), 7 North Polar (Frigid and Dry)

Finally, the class distributions hk(·), k = 1, . . . , K and the mixture distributions
h(·) can be calculated, if desired. The details are omitted; see Vrac (2002).

5.2 Comparison with EM algorithm

It is interesting to compare our approach with the EM method since both are based on
statistical models to define clusters. Therefore, the data were also analysed by two EM
clustering methods (Dempster et al. 1977), using the form of this algorithm as given in
McLachlan and Peel (2000). In each case, relevant classes were found, based on both
temperature and humidity variables; all gave results less consistent with climatological
classifications of the globe as defined by experts compared with those for the copula
method proposed herein. We describe these briefly. Complete details, including plots
of the corresponding class regions, plots of the distribution functions for temperature
and for humidity, by class, and detailed descriptions of similarities and differences
with those given herein for the copula method are in Vrac (2002).

The first EM method was based on raw numerical data taking the 16,200 grid points
and fixing values for 5 specific temperature and 5 specific humidity variables from
the most reliable raw data values (37 temperatures and 24 humidity values) available.
These specific values were those obtained by first running a standard classification
and regression tree (CART) analysis on these (37 temperatures and 24 humidity)
values with the referent classification being the seven clusters obtained from a hier-
archical ascending clustering applied to these 61 variables. (For these data, the most
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Fig. 6 Classification of 7 Temperature and Humidity Regions—EM Algorithm on Raw Data Regions: 1
South Polar (Cold and Dry), 2 Sub-Polar (Relatively Cold and Dry), 3 SubTropical (Relatively Hot and
Wet), 4 Tropical (Hot and Wet), 5 Temperate, 6 Sub-Temperate (Relatively Warm and Dry), 7 North Polar
(Frigid and Dry)

discriminant temperature (T ) values were those at T1, (T9 + T10)/2, (T16 + T17)/2,

(T24 +T25)/2 and (T32 +T33)/2; and the most discriminant humidity (H ) values were
those at H1, (H4 + H5)/2, (H8 + H9)/2, (H16 + H17)/2 and (H20 + H21)/2, where
the subscript refers to the altitude level measured at each grid point starting with the
lowest altitude; e.g, T1 is the temperature at the lowest altitude.) The seven classifi-
cations obtained from the EM algorithm applied to the resulting raw data values are
as shown in Fig. 6. Comparing Fig. 6 with the classifications of Fig. 4, we see that
classes are very poorly defined lacking, e.g., the dynamic nature of class boundaries
with relatively ‘smooth’ edges. There is however a coherency in that the differences
between northern winters and southern summers are identified. On the other hand,
while there are some air incursions (albeit badly defined) in the Northern Hemisphere
such as the Gulf Stream, there are none at all in the Southern Hemisphere. Further-
more, regions known to be tropical are identified as a mixture of regions. It is added
that when, instead of using the CART approach, a principal component analysis was
run retaining those which accounted for 90% of the variance to run the EM algorithm
almost identical results (to those in Fig. 6) were obtained.

The second EM algorithm was based on the 16,200 probability distributions of
temperature and humidity profiles for functional data, which estimates the parameters
of a (p = 2, and n1 = n2 = 2; hence, n1 + n2 = 4) multivariate normal distribution
without restrictions on the covariance matrix. This produced the classes of Fig. 7.
This classification is an improvement over that of Fig. 6 in that class boundaries are
more dynamic than for the first EM method. However, classes in general are not well
defined. For example, class 7 (red) encompasses completely different atmospheric
profiles, grouping together mountain areas such as the Himalayas and the Alps with
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Fig. 7 Classification of 7 Temperature and Humidity Regions—EM Algorithm on Distributions Regions:
1 South Polar (Cold and Dry), 2 Sub-Polar (Relatively Cold and Dry), 3 SubTropical (Relatively Hot and
Wet), 4 Tropical (Hot and Wet), 5 Temperate, 6 Sub-Temperate (Relatively Warm and Dry), 7 North Polar
(Frigid and Dry)

polar oceanic and the American plains areas. The air incursion corresponding to the
Gulf Stream is missing, as is the dry Southern Australian desert.

Thus we see that the copula methodology (i.e., Fig. 4) has produced results that are
more consistent with global classifications as developed by climatology experts than
have these EM algorithmic methods.

6 Conclusion

Based on the dataset analysed, the proposed methodology which incorporates copu-
las into clustering techniques, has produced more coherent classes than other known
methods against which it was compared. It is known that EM methods are biased in
terms of partitioning but unbiased in terms of law. In contrast, our method is unbi-
ased in terms of partitioning but biased in terms of law. Comparisons with yet more
known methods can be reasonably expected to reach the same conclusions. The pres-
ent methodology was based on extending the dynamical clustering classical approach
to distribution-valued data. Other approaches such as those based on other clustering
algorithms should also be explored.

A number of questions remain for further development including a rigorous study
of the number and choices of the Zi , i = 1, . . . , n, points in the G Zi (·) distributions
and the implications of those choices. While for our data (where this was not an issue),
and intuitively, the proposed procedure is robust, a definitive study of this issue also
needs to be undertaken.
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In a different direction, adding a spatial component to the methodology would be
an interesting, and challenging problem left for future research. For the present appli-
cation, it is preferable not to have a spatial component so as to let the algorithm find
the regions/classes by itself without any a priori information. Moreover, we note that
the classes obtained are not temporal classes in which a conditional spatial structure
could be modeled. Instead, the classes are spatial regions, gathering together locations
of the world having the same atmospheric conditions. Thus, it would be difficult to use
a spatial structure when two locations in the same class (i.e., with relatively equivalent
meteorological features) could be extremely far away from each other and separated
by other classes (e.g., Himalayas and Polar regions).

On the other hand, whenever a classification of geographical regions is being
explored, methods that take into account contiguity constraints could lead to bet-
ter results. In our case, it was deemed preferable to let the clustering algorithm be as
free as possible from geographical constraints. Indeed, in our application, some impor-
tant climate phenomena (e.g., extreme precipitation, local low pressure systems) are
on such a small spatial scale that incorporating contiguity constraints could prevent
the algorithm from capturing such events. However, incorporating constraints into the
algorithm is well worthy of future consideration.

Further, our approach can be viewed as a form of hierarchical modeling where the
bottom level of the hierarchy—the raw data—is removed. In our case, the first level is
the determination of the marginal distributions G(·) which are then used to estimate
the parameters of the copula functions C(·;β). Then standard hierarchical model-
ing techniques allow us to parameterize the model with distribution functions instead
of density functions. It would be interesting to extend this approach as a Bayesian
hierarchical model methodology, using, e.g., the ideas of Richardson and Green (1997).
Note also that the distribution functions which formed the “raw data” of our method
are special cases of the “functions” of functional data analysis.

Finally, there remain questions of identifiability of our mixture model. Here, by
identifiability we mean that two mixtures of the form in (1) with components and
mixing probabilities (K , pk) and (K ∗, p∗

k ), respectively, are identifiable if K = K ∗
and pk = p∗

k , except for permutation of the component identifiers. It is known from
Yakowitz and Spragins (1968) that a necessary and sufficient condition that the class
of finite mixture of distributions ( f (·) on the left side of (1)) be identifiable is that the
class of distributions from which the mixture distributions are selected (the fk(·)’s on
the right side of (1)) be linearly independent over R see also, e.g., Titterington et al.
(1985), Li and Sedransk (1988), McLachlan and Peel (2000). Titterington et al. (1985)
noted that in many cases, the Yakowitz and Spragins conditions can be hard to verify,
though they do go on to show that it is often possible to establish their sufficiency
conditions. In the present paper, we have a finite mixture of copulas (as in (9)). Intu-
itively, by analogy with Eqs. 1 and 9 (or Eqs. 8 and 9), it seems not unreasonable to
suggest similar suitably adapted conditions would pertain for the copula setting. This
may mean that attention would perforce be restricted to finite mixtures of specific
copula families. We leave this open problem as a topic for future work. In contrast,
for EM based algorithms, questions of identifiability have been studied by, e.g, Bock
and Gibbons (1996), Chan and Kuk (1997), and Kuk and Chan (2001), with Kuk and
Chan (2001) showing that when an identifiability problem exists, implementing the
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unconstrained EM algorithm is valid and that the loss of uniqueness of the estimates
is usually not a major issue.

Recalling Schweizer (1984) that “Distributions are the numbers of the future”,
we have developed a methodology for grouping N “observed” distribution functions
into K classes, as but one step along the path pointed out by Schweizer. Perhaps the
most important issue is the need to develop adequate analytical methods for different
types of complex data, such as distributions, classes of data which will only grow as
computers expand their capabilities.

The authors wish to thanks the referees for their careful reading and helpful com-
ments which have improved the manuscript. Partial support from the National Science
Foundation is gratefully acknowledged.

Appendix A: Convergence properties

Three convergence properties related to the use of the clustering algorithm (of Sect. 4)
can be derived. In “Appendix A.1”, its convergence to a locally optimal solution, in
a finite number of iterations S∗, is proved; followed in “Appendix A.2” by the deri-
vation of some asymptotic properties. In “Appendix A.3”, convergence results for a
global distribution function of distribution values are obtained. As these properties are
developed, we remind ourselves that the estimation process is hierarchical, with first
the marginal (cumulative) distribution functions being estimated and then the copula
parameters being estimated from these estimated marginal distributions.

A.1 Convergence of the clustering algorithm

Proposition 1 The algorithm for the mixture decomposition of copulas by the dynam-
ical clustering algorithm (of Sect. 4) converges to a locally optimal solution in a finite
number of iterations.

Proof We prove this result for the log-likelihood classification criterion (30); the proof
is similar for other clustering criteria. Let Ps = (Ps

1 , . . . , Ps
K ) denote the partition

into K classes at the sth iteration; and let γ s = (γ s
1, . . . , γ

s
K ) denote the values of the

parameters at the sth iteration.
Let us write (30), at the sth iteration, with W2(·) ≡ W (·), as

W (Ps; γ s) =
K∑

k=1

W (Ps
k ; γ s

k),

W
(
Ps

k ; γ s
k

) =
∑

u∈Ps
k

ln
[
hk

(
Fu(Z1), . . . , Fu(Zn); γ s

k

)]

where W (Ps
k ; γ s

k) is the log-likelihood classification criterion for the kth cluster; Ps is
the class that results from the allocation process (Step 2) based on the parameters
γ s−1; and γ s = g(Ps) where g(·) is the parameterization function (in our case, the
maximum likelihood method) which gives, at the sth iteration, the new estimates γ s
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of the parameters based on these classes. We want to show that {W (Ps, γ s)} con-
verges, is increasing in value and is stationary. Here stationarity is defined to mean
that there exists an integer S∗ such that for all s ≥ S∗, W (Ps; γ s) = W (P∗; γ ∗),
where P∗ is the partition with parameters γ ∗ at the S∗’th iteration.

First, from (31) by definition it follows that

W
(
Ps+1; γ s+1) ≥ W

(
Ps; γ s+1). (33)

Next, we can show that W (Ps
k ; γ s+1

k ) ≥ W (Ps
k ; γ s

k), by construction of the
parameterization g. Since the function g is using the maximum likelihood method, we
have for all possible γ s

k calculated from Ps
k ,

γ s+1
k = arg max

γ s
k

∑

u∈Ps
k

ln
[
hk

(
Fu(Z1), . . . , Fu(Zn); γ s

k

)]
.

Therefore, for all γ s
k , it follows that

∑

u∈Ps
k

ln
[
hk

(
Fu(Z1), . . . , Fu(Zn); γ s+1

k

)] ≥
∑

u∈Ps
k

ln
[
hk

(
Fu(Z1), . . . , Fu(Zn); γ s

k

)]

and hence W (Ps
k ; γ s+1

k ) ≥ W (Ps
k ; γ s

k). Summing over each class, k = 1, . . . , K ,
we have

W
(
Ps; γ s+1) ≥ W

(
Ps; γ s). (34)

Combining (33) and (34), we have

W
(
Ps+1; γ s+1) ≥ W

(
Ps; γ s+1) ≥ W

(
Ps; γ s). (35)

The relation (35) therefore implies that {W (Ps, γ s), s ∈ N} is increasing and
can only take a finite number of values since N is finite. Therefore, it converges
in a finite number of iterations and is stationary in the sense that there exists
S∗ ∈ N|W (Ps, γ s) = W (P S∗

, γ S∗
) for all s ≥ S∗.

Remark 1 Estimation of the copula parameters with a maximum likelihood based
method requires specifying the function G Zi (·). In this (parametric) case, it is assumed
that the form of these functions and their derivatives are known.

A.2 Asymptotic behavior

Let F = {F̃ (r)
1 , . . . , F̃ (r)

N } denote a sample of N realizations of a random variable with

values that are distribution functions. The function F̃ (r)
u is an estimation of the true

distribution function which describes the unit u, and is calculated from ru numerical
realizations {xui , i = 1, . . . , ru} for the unit u = 1, . . . , N . Without loss of generality,
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we take ru = r for all u = 1, . . . , N . Let us suppose the true distribution of Fu is
Gaussian N (μu, σ 2

u ) and the parameters are estimated by

mu = μ̃u = 1

r

r∑

i=1

xui , s2
u = σ̃ 2

u = 1

r − 1

r∑

i=1

(xui − μ̃u)2. (36)

For K classes, consider the following hypotheses:

H1: There exists a partition into K classes (P1, . . . , PK ) of the {F̃ (r)
u , u = 1, . . . , N }

such that Pk = {F̃ (r)
u |F̃ (r)

u is an estimation of the Gaussian distribution
N (μk, σ

2
k )}; i.e., Pk consists of those F̃ (r)

u which are estimates of the distri-
bution N (μk, σ

2
k ), k = 1, . . . , K ; or, equivalently,

H2: Each distribution function F̃ (r)
u , u = 1, . . . , N , is an estimation of one of the

K Gaussian distributions N (μk, σ
2
k ), k = 1, . . . , K .

Then, if each of H1 and H2 implies the other and if the estimated parameters μ̃u

and σ̃u of the Gaussian distributions for each individual u, are not biased, classical
results on the convergence of estimators lead us to the following.

Corollary 1 In the limit as r tends to infinity, F̃ (r)
u converges uniformly to Fu, where

Fu follows one of the K Gaussian distributions N (μk, σ
2
k ), k = 1, . . . , K , for all

u = 1, . . . , N. That is, when r tends to infinity, the distributions F̃ (r)
u from F converge

to the true distribution functions Fu describing the individuals, u = 1, . . . , N.

Remark 2 From {F1, . . . , FN }, we can define the σ -algebra generated by each
single function {Fu, u = 1, . . . , N }; and we can define a probability measure
P on [{F1, . . . , FN }, σ ({Fu,u=1,...,N })], corresponding to a multinomial law with
parameters (p1, . . . , pK ), where

P([F ∈ {F1, . . . , FN }; F ∈ Pk]) = pk (37)

with
∑K

k=1 pk = 1.

Moreover, if the {Gk
Zi

, i = 1, . . . , n} (obtained by F) from each class k = 1, . . . , K ,

are modeled in an empirical way, then from classical results of functional analysis we
have the following.

Corollary 2 In each class k = 1, . . . , K and for each Z, the distribution Gk
Z of class

k converges uniformly toward a Dirac distribution Gk∗
Z at point FNk (Z), where the

function Gk∗
Z is defined by

Gk∗
Z (x) =

{
0, if x < FNk (Z),

1, if x ≥ FNk (Z),

with FNk being the Gaussian distribution function with parameters (μk, σ
2
k ).
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We will also need the following.

Proposition 2 (Diday 2001) The n-dimensional copula C(·) associated with the joint
distribution HZ1,...,Zn (x1, . . . , xn) satisfies the properties (i) the domain of HZ1,...,Zn (·)
is [0, 1], and (ii) C = � = ∏n

i=1 vi or C = Min = Min(v1, . . . , vn).

Then using Proposition 2 and Corollary 2, we obtain the following result.

Proposition 3 In each class k = 1, . . . , K , whatever the number n of values
Z1, . . . , Zn, if the copula Ck of the class k is defined in an empirical way, it con-
verges toward the Min and product � copulas; i.e., Ck converges to C∗

k with copula
C∗

k = Min = �. Moreover, (x1, . . . , xn) ∈ R
n, and

C∗
k

(
Gk∗

Z1
(x1), . . . , Gk∗

Zn
(xn)

) ∈ {0, 1}.

A.3 Mixture decomposition of distribution function of distributions

We have seen in Sect. 2 that the distribution functions of distribution values are them-
selves distribution functions. Instead of computing these distributions class by class,
we can compute an estimation of the global distribution functions at each Z with a
mixture decomposition of the distributions.

Proposition 4 If the true probability laws of the observed individuals {Fu, u = 1, . . . ,

N } are in the classes (P1, . . . , PK ) of a partition into K classes according to a
multinomial law with parameters (p1, . . . , pK ), and if Gk

Z is the distribution function
of distribution values in class k at Z, then the global distribution at point Z (called
G Z ), is

G Z (x) =
K∑

k=1

pk Gk
Z (x). (38)

The parameter pk is the probability that the true distribution function Fu is in
class Pk.

From Corollary 2 and (38), we have the following.

Proposition 5 For each value Z, the global distribution G Z defined in (38) converges
uniformly toward a distribution G∗

Z defined by:

G∗
Z (x) =

⎧
⎨

⎩

0, if x < FN1(Z),∑k
k′=1 pk′ , if FNk (Z) ≤ x < FNk+1(Z),

1, if x ≥ FNK (Z),

with FNk being the Gaussian distribution function N (μk, σ
2
k ), k = 1, . . . , K . In this

proposition, it is assumed that FN1(Z) < · · · < FNK (Z).

Moreover, we have seen in Sect. 2 that the joint distribution function at points
Z1,…, Zn can be written as given in (9). Hence, from Sklar’s Theorem, we have:
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Proposition 6 Let Xi denote the random variable characterized by G Zi (the global
distribution function at point Zi ), i = 1, . . . , n; and let the joint distribution function
of (X1, . . . , Xn) be denoted by HZ1,...,Zn . Then there exists a copula C such that for
all (x1, . . . , xn) ∈ [0, 1]n,

HZ1,...,Zn (x1, . . . , xn; γ ) = C(G Z1(x1; b1), . . . , G Zn (xn; bn);β)

= C

(
K∑

k=1

pk Gk
Z1

(
x1; bk

1

)
, . . . ,

K∑

k=1

pk Gk
Zn

(
xn; bk

n

);β

)
. (39)

From Eq. 39, we deduce there exists a relationship between the mixture
of copulas and the mixture of distributions; this relationship based on the copula
C in Proposition 6 is:

K∑

k=1

pkCk
(
Gk

Z1

(
x1; bk

1

)
, . . . , Gk

Zn

(
xn; bk

n

);βk
)

= C

(
K∑

k=1

pk Gk
Z1

(
x1; bk

1

)
, . . . ,

K∑

k=1

pk Gk
Zn

(
xn; bk

n

);βk

)
. (40)
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