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I - A Probabilistic setting for the symbolic paradigm

. E. Diday (1990).
Symbolic data expresses the variability of the data within a class of
data.
SDA : Considering classes of data as new statistical units.

. R.E. (ISI Conference, Rio 2015) Introducing a formalism: X
(data r.v.), C (class variable), S symbolic variable

.Some modifications of Rio talk: Emilion-Diday 2018, Book
chapter, Eds. G. Saporta

. Present talk : Examples of symbolic likelihood. Applications.
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I.1 Description Variable 4 / 17

Population of individuals: (Ω,F ,P) a probability space

(V,V) a measurable space of descriptions.
X : Ω −→ V, measurable w.r.t. F and V, a random variable
(r.v) which describes the individuals.

Generally, V is a measurable subset of Rp and
X = (X1, . . . ,Xp), p = 1, 2, ....

Standard Data Analysis: n × p numerical table of a n-sample
of (X1, . . . ,Xp)
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I.2 Class Variable 5 / 17

Class variable

C : Ω −→ C, measurable w.r.t. F and C, (1)

r.v. which assigns a class label to each individual.
(C, C) is a measurable space of class labels.

X and C are correlated

Class with label c ∈ C, shortly Class c :

(C = c) = {ω ∈ Ω : C (ω) = c} (2)

It is assumed that singletons {c} belong to C, ∀c ∈ C, so that
classes for c ∈ range(C ) form a measurable partition of Ω

Richard Emilion Likelihood in the symbolic context. Examples



I - Probabilistic setting
II - Likelihood in the symbolic context

I.2 Class Variable 5 / 17

Class variable

C : Ω −→ C, measurable w.r.t. F and C, (1)

r.v. which assigns a class label to each individual.
(C, C) is a measurable space of class labels.

X and C are correlated

Class with label c ∈ C, shortly Class c :

(C = c) = {ω ∈ Ω : C (ω) = c} (2)

It is assumed that singletons {c} belong to C, ∀c ∈ C, so that
classes for c ∈ range(C ) form a measurable partition of Ω

Richard Emilion Likelihood in the symbolic context. Examples



I - Probabilistic setting
II - Likelihood in the symbolic context

I.5 Symbolic variable, Symbolic data 6 / 17

Definition : A symbolic variable S of the context (X ,C ) is defined
as a mapping

S : C −→ S
S(c) = f (PX |C=c). (3)

where
f :M1(V) −→ S (4)

is a measurable function taking value in some measurable space of
symbols (S,S).
S(c), c ∈ C is a ‘symbolic data’ representing the variability of the
data X (ω) for ω ∈ (C = c).

Richard Emilion Likelihood in the symbolic context. Examples



I - Probabilistic setting
II - Likelihood in the symbolic context

I.6 Symbols in term of samples 7 / 17

PX |C=c is a probability distribution on (V,V), a complex
object. It is generally estimated from an observed sample
(x (1), c(1)), . . . , (x (n), c(n)) of the pair (X ,C ) such that
c(j) = c .

S(c) can be estimated by an aggregating function of a sample
(x (1), c(1)), . . . , (x (n), c(n)) such that c(j) = c .

BLS (Beranger - Lin - Sisson) Definition
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II.1. Probability measures on (C, C), density 9 / 17

S : C −→ S a symbolic variable with S = Nm or S = Rm

Problem: density of S w.r.t. to the counting (resp. the
Lebesgue) measure ? In the continuous case C should be
uncountable and even nonatomic.

dS : S −→ R+

s −→ dS(s)
(5)

Estimating dS given a n-sample s1, . . . , sn :

s i = (si ,1, . . . si ,m) = S (i)(c) ∈ Rm, S (i) i .i .d .∼ QS , i = 1, . . . , n

for some c ∈ C : randomness of the sample of symbols.
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II.2. LDA model (Blei-Ng-Jordan) Specif. a 10 / 17

Model in Text Mining context. Can be applied in other domains.
. categorical r.v. X : Ω −→ V = {1, . . . , k}, a finite set of k topics,
. r.v. N : Ω −→ N = {0, 1, 2 . . . , },
random probability vector θ = (θ1, . . . , θk) : Ω −→ Tk (N, θ) ∼ Poisson(ξ)⊗ Dirichlet(α)

P(X = i |θ) = θi , i = 1, . . . , k . (6)
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II.2. LDA model. Specifications b 11 / 17

. {1, . . . ,V } a finite set of V words
β = (βi ,j), i = 1, . . . , k, j = 1, . . . ,V be a k × V Markov matrix,
each of its k rows being a probability vector in dimension V . A
document, is considered as an outcome c of our class random
variable C defined as a sequence of random words:

C (ω) = (W (1)(ω), . . . ,W (N(ω))(ω)), ω ∈ Ω

where, given N and θ

X (r) i .i .d∼ P(X |θ), for each r = 1, . . .N

W (r) : Ω −→ {1, . . . ,V }, r = 1, . . .N, are independent

P(W (r) = v |X (r)) = β(X (r),v), for each r = 1, . . .N, v = 1, . . .V .

(7)
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II.2. LDA model. Symbolic likelihood 12 / 17

Given a class label c = (w1, . . . ,wN), class c is defined as

(C = c) = {ω ∈ Ω : W (1)(ω) = w1, . . . ,W
(N)(ω) = wN}

Topic variability of a document c with N words (w1, . . . ,wN) and
unobserved topics (x1, . . . , xN) expressed by the latent symbol

s(c) = (
N∑
r=1

1(xr=1), . . . ,

N∑
r=1

1(xr=k))

Random symbol S = s ◦ C = (
∑N

r=1 1(X (r)=1), . . . ,
∑N

r=1 1(X (r)=k))
distribution, given (N, θ), is multinomial

P(S = (n1, . . . , nk)|N = n, θ) =
n!

n1! . . . nk !
θn1

1 . . . θnkk

if n1 + . . .+ nk = n
Richard Emilion Likelihood in the symbolic context. Examples
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II.2. LDA. Document / Corpus Probability 13 / 17

We have p(xr |θ) =
∏k

i=1 θ
1xr =i

i and p(wr |xr , β) =
∏V

j=1 β
1wr =j

xr ,j
p(xr ,wr |θ, β) =

∏k
i=1 θ

1xr =i

i

∏V
j=1 β

1wr =j

xr ,j

p(wr |θ, β) =
∑

xr

∏k
i=1 θ

1xr =i

i

∏V
j=1 β

1wr =j

xr ,j

(8)

The probability of a document is,

p(w1, . . .wN |θ, β,N) =
N∏
r=1

∑
xr

k∏
i=1

θ
1xr =i

i

V∏
j=1

β
1wr =j

xr ,j
(9)

p(w1, . . .wN |α, β,N) =

∫
Dd(θ|α)

N∏
r=1

∑
xdr

k∏
i=1

θ
1xr =i

i

V∏
j=1

β
1wr =j

xr ,j
dθ
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II.3. BLS (Beranger-Lin-Sisson) method 14 / 17

X : Ω −→ Rp r.v. with density dX (.|θ).

N ≥ 2 any very large integer. (X (1), . . . ,X (N)),X (r) i .i .d∼ PX .
(x (1), . . . , x (N)) an observed large sample
c = (Bk)k∈K a finite partition covering the support of P(X (1),...,X (N))

Given partition c , the joint distribution of

(1(X (1)∈B1), . . . , 1(X (N)∈B1), . . . , 1(X (1)∈BK ), . . . , 1(X (N)∈BK ))

is captured by the symbolic variable S defined as

S(c) = (
N∑
r=1

1(X (r)∈B1), . . . ,

N∑
r=1

1(X (r)∈Bk )),

whose distribution is multinomial (N, p1, . . . , pK ) with
pk =

∫
Bk

dX (x |θ)dx
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II.3. BLS (Beranger-Lin-Sisson) result 15 / 17

The main observation in BLS ( Beranger B., Lin H., Scott A. S.,
New models for symbolic data analysis, ArXiv e-prints (2018)) is
that the total probabilty formula

dS |ν,θ =

∫
t∈(Rp)N

dS |(X (1),...,X (N))=t,ν(dX )⊗N(t|θ) (10)

yields an inference on parameter θ from an inference on the
symbolic likelihood with parameter ν.
This considerably reduces inference complexity and seems to be a
significant application of the symbolic approach
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II.4 Dirichlet Process Mixture (DPM) 16 / 17

hi : symbol (e.g. histogram hi = bins, frequencies) Bayesian
parametric: hi |θ ∼ F (θ), θ ∼ D: apriori D, shape

DPM: Bayesian nonparametric, flexible, infinite mixture model
hi |θi

ind∼ F (., θi ), i = 1, . . . , n, θi ∈ Θ

θi |P = p
i .i .d .∼ p, i = 1, . . . , n

P ∼ DP(c ,P0) a Dirichlet Process on Θ

(11)

Draw p from DP(c ,P0), θi from p and hi from F (., θi ): the
distribution on Θ is the mixture

∫
Θ F (., θ)dp(θ)
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II.5 Mixture of Dirichlet Processes (MDP) 17 / 17

Antoniak (Ann. Stat. 1974): If the hi ’s and P are as in (11)
then the posterior

P|h1, . . . , hn ∼
∫

DP(cP0 +
n∑

i=1

δθi )dPθ1,...,θn|h1,...,hn (12)

In other words the posterior is a Mixture of Dirichlet
Processes (MDP)

The posterior MDP provides a classification of the histogram
data without any apriori number of classes, mixture
component = fuzzy class.

A mixture of DD estimated from an histogram dataset
converges to a MDP as the bin width goes to 0+ (R.E. Stat.
Anal. & Data Mining 2012)

’DPpackage’ in R
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