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Research problem 

• Input-output (IO) analysis is a non-stochastic approach, 
prone to numerous limitations – it is usually described as 
a rather „crude“ tool 

• In the literature there have been several approaches to 
including the stochastic element in IO analysis (e.g. West, 
1986; Jansen, 1994; Ten Raa, 2005; Sancho et al., 2011; 
2012; 2015; 2017; Lenzen et al., 2014) 

• We provide a completely new one, which has potential 
of significantly changing the field and calculations, 
providing them a) stochastic element, so they can be 
easier complemented in e.g. regression analysis; b) 
better accuracy and predictability purposes by including 
significantly more information on the cells in IO tables 

• We test the approach on some preliminary/pilot datasets 



Structure of the presentation 

• Input output analysis and its flaws 

• SDA and the idea of the paper 

• Calculus of distributions 

• Derivation of the new Leontief formulas and 
multipliers 

• Some empirical results 

• Generalization to CoDA and FDA 

• Conclusion 
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Input-output analysis basics 



Some input-output analysis limitations 

• Its framework rests on Leontief‘s basic assumption of constancy of 
input co-efficient of production. 

• Ignores the possibility of factor substitution. 

• The assumption of linear equations, which relates outputs of one 
industry to inputs of others. 

• The rigidity of the input-output model cannot reflect such 
phenomena as bottlenecks, increasing costs, etc. 

• The purchases by the government and consumers are taken as given 
and treated as a specific bill of goods. 

• There is no mechanism for price adjustments. 

• The use of capital in production necessarily leads to stream of output 
at different points of time being jointly produced. 
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From standard random variables to random variables of random variable value  
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In that way, we obtain new kinds of data expressing variability inside classes and 

called "symbolic" as they cannot be reduced to numbers without losing much 

information.  
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Symbolic input-output analysis: the idea 

• Instead of a fixed, gross, aggregate number in the cell of 
intermediary production, we include a distribution 
(quantiles, constructed from the data of legal subjects) 

• The formulas for constructing the (production) multipliers 
significantly change as we are now in the „world“ of 
combining distributions – algebra of random variables 

• We gain a stochastic element and significantly more 
information on the distribution of the intermediary 
production between sectors 

• Additional: IO analysis can also be done for compositional 
and functional data cells in IO tables 



Calculus of distributions – four operations 
• Addition: convolution, C – a mathematical operation on two functions to 

produce a third function, giving the integral of the pointwise multiplication of 
the two functions as a function of the amount that one of the original 
functions is translated 

𝑓 ∗ 𝑔 𝑧 =  𝑓 𝑥 𝑔 𝑧 − 𝑥 𝑑𝑥

∞

−∞

=  𝑓 𝑧 − 𝑥 𝑔 𝑥 𝑑𝑥

∞

−∞

= (𝑔 ∗ 𝑓)(𝑧) 

• Generalized convolution (Seong Kang et al., 2010):  
Let 𝜉1, 𝜉2, … , 𝜉𝑛 be independent and identically distributed random variables with 
the common distribution function 𝐹 and probability density function 𝑓. Then the 
distribution function of the sum 𝜁𝑛 is the 𝑛-fold convolution of itself 𝐹 such as  

𝐹𝑛∗ 𝑥 = 𝐹(𝑛−1)∗ 𝑥 ∗ 𝐹 𝑥      (𝑛 ≥ 2) 
where 𝐹1∗ 𝑥 = 𝐹(𝑥) and its probability density function is  

𝑓𝑛∗ 𝑥 = 𝑓(𝑛−1)∗ 𝑥 ∗ 𝑓 𝑥      (𝑛 ≥ 2) 
where 𝑓1∗ 𝑥 = 𝑓(𝑥). 
 
• Difference, D: 

𝑓 𝑧 = 𝑦 − 𝑥 = −  𝑔 𝑥 ℎ 𝑦 𝑑𝑦

∞

−∞

 



Some common knowledge convolutional relations 

•  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛, 𝑝       0 < 𝑝 < 1         𝑛 = 1,2, …𝑛
𝑖=1  

•  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖 , 𝑝)~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙( 𝑛𝑖
𝑛
𝑖=1

𝑛
𝑖=1 , 𝑝)    0 < 𝑝 < 1   𝑛𝑖 = 1,2, … 

•  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖
𝑛
𝑖=1 , 𝑝)~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙  𝑛𝑖

𝑛
𝑖=1 , 𝑝   0 < 𝑝 <

1         𝑛𝑖 = 1,2, …  

•  𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑝)~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝)𝑛
𝑖=1  0 < 𝑝 < 1  𝑛 = 1,2, … 

•  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)
𝑛
𝑖=1 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛  𝜆𝑖

𝑛
𝑖=1           𝜆𝑖 > 0 

•  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖
𝑛
𝑖=1 , 𝜎𝑖

2)~𝑁𝑜𝑟𝑚𝑎𝑙  𝜇𝑖
𝑛
𝑖=1 ,  𝜎𝑖

2𝑛
𝑖=1  − ∞ < 𝜇𝑖 < ∞     𝜎𝑖

2 > 0 

•  𝐶𝑎𝑢𝑐ℎ𝑦(𝑎𝑖
𝑛
𝑖=1 , 𝛾𝑖)~𝐶𝑎𝑢𝑐ℎ𝑦  𝑎𝑖

𝑛
𝑖=1 ,  𝛾𝑖

𝑛
𝑖=1  − ∞ < 𝑎𝑖 < ∞    𝛾𝑖 > 0 

•  𝐺𝑎𝑚𝑚𝑎(𝛼𝑖
𝑛
𝑖=1 , 𝛽)~𝐺𝑎𝑚𝑚𝑎  𝛼𝑖

𝑛
𝑖=1 , 𝛽             𝛼𝑖 > 0   𝛽 > 0 

•  𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝑛
𝑖=1 𝜃)~𝐺𝑎𝑚𝑚𝑎 𝑛, 𝜃                  𝜃 > 0   𝑛 = 1,2, … 

•  𝜒2𝑛
𝑖=1 𝑟𝑖 ~𝜒

2  𝑟𝑖
𝑛
𝑖=1     𝑟𝑖 = 1,2, … 

•  𝑁2(0,1)𝑟
𝑖=1 ~𝜒𝑟

2                 𝑟 = 1,2, … 

•  (𝑋𝑖 − 𝑋 )
2𝑛

𝑖=1 ~𝜎2𝜒𝑛−1
2  𝑤ℎ𝑒𝑟𝑒  𝑋1, … , 𝑋𝑛 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑁 𝜇, 𝜎

2  
 



Calculus of distributions – four operations 
• Multiplication: product distribution, P 
- While the probability density function (PDF) of the sum of two independent random variables is easily 

described as the convolution of their PDFs, the expression for the PDF of the product is more complicated. 
- Rohatgi (1976): Let 𝑋 and 𝑌 be continuous random variables with joint PDF 𝑓𝑋,𝑌(𝑥, 𝑦). The PDF of 𝑉 = 𝑋𝑌 is 

𝑓𝑋𝑌 𝑣 =  𝑓𝑋,𝑌 𝑥,
𝑣

𝑥

1

|𝑥|
𝑑𝑥

∞

−∞

 

 
For the easiest case of Gaussian variables, it is possible to use the following theorem (Beylkin, Monzón and 
Satkauzkas, 2016): 

- The PDF of the product of two independent random variables 𝑋 and the Gaussian variable 𝑌~𝑁(𝜇𝑦, 𝜎𝑦
2) can 

be approximated using approximate multiresolution analysis as 
 

𝑝 𝑡 −  𝑤𝑗
𝑘𝜙𝑗𝑘 𝑡

𝑘∈ℤ𝑗∈ℤ

≤ 𝜖𝑝(𝑡) 

where  

𝑤𝑗
𝑘 = 2−𝑗/2𝑙𝑜𝑔2 

𝑤+ 𝜏 + 𝑤− 𝜏

1 − 4𝜏−2
𝑑𝜏

1

0

 

𝑤+ 𝜏 =
1

2𝜋𝜎𝑦
𝑓(
22−𝑗

2𝛼𝜎𝑦
2−𝜏)𝑒

−
𝛼4𝜏−2

1−4𝜏−2
(𝑘−

𝜇𝑦

2𝛼𝜎𝑦
2−𝜏+2)2

 

𝑤− 𝜏 =
1

2𝜋𝜎𝑦
𝑓(−
22−𝑗

2𝛼𝜎𝑦
2−𝜏)𝑒

−
𝛼4𝜏−2

1−4𝜏−2
(𝑘+

𝜇𝑦

2𝛼𝜎𝑦
2−𝜏+2)2

 

- Beylkin, Monzón and Satkauzkas also derive similar results for combining Gaussian with Cauchy, Laplace and 
Gumbel variables 

 
 
 



Calculus of distributions – four operations 
• Division: ratio distribution, R 

𝑝𝑍 𝑧 =  |𝑦|𝑝𝑋,𝑌(𝑧𝑦, 𝑧)𝑑𝑦
∞

−∞

 

- Also suggested: Mellin transform. 
- The algebraic rules known with ordinary numbers do not apply for the algebra of 

random variables. For example, if a product is C = AB and a ratio is D=C/A it does 
not necessarily mean that the distributions of D and B are the same. 
 

- Inverse distribution: 
- In general, given the probability distribution of a random variable X with strictly 

positive support, it is possible to find the distribution of the reciprocal, Y = 1 / X. 
If the distribution of X is continuous with density function f(x) and cumulative 
distribution function F(x), then the cumulative distribution function, G(y), and 
PDF of the reciprocal are found as: 

𝐺 𝑦 = 1 − 𝐹(
1

𝑦
) 

𝑔 𝑦 =
1

𝑦2
𝑓(
1

𝑦
) 

 
 

 
 
 



Calculus of distributions – four operations 

• A known result (M.D. Springer, 1979; Hazewinkel, 1991; Whittle, 
2000): 

Random variables have the following properties:  
- complex constants are random variables; 
- the sum of two random variables is a random variable; 
- the product of two random variables is a random variable; 
- addition and multiplication of random variables are both 

commutative; and 
- there is a notion of conjugation of random variables, satisfying 

(ab)* = b*a* and a** = a for all random variables a,b and 
coinciding with complex conjugation if a is a constant. 

Therefore, the random variables form complex commutative *-
algebras (i.e. involutive algebras), see Wegge-Olsen, 1993; 
Davidson, 1996; Cuntz and Echterhoff, 2000; Baez, 2015; Weisstein, 
2015. 



Calculus of distributions – four operations 

An involutive algebra:  

an involutive (*-) ring with involution * that is an 
associative algebra over a commutative *-ring R with 
involution ′, such that (r x)* = r′ x*  ∀r ∈ R, x ∈ A 

• The base *-ring R is usually the complex numbers 
(with ′ acting as complex conjugation) and is 
commutative with A such that A is both left and 
right algebra. 

• Since R is central in A, that is, rx = xr, ∀r ∈ R, x ∈ A, 
the * on A is conjugate-linear in R, meaning (λ x + 
μ y)* = λ′ x* + μ′ y* for λ, μ ∈ R, x, y ∈ A.  



Derivation of the new Leontief formulas 
• Two different cases – total output is fixed or is a 

distribution itself 

• First case – it is fixed 
𝑋 = [𝐼 − 𝑐 𝐴 ]−1𝑌 

1 − 𝐚𝑖𝑖 𝑋𝑖 − 𝐚𝑖𝑗𝑋𝑗
𝑖≠𝑗

= 𝑌𝑖 

• Second case – it is a distribution 
𝑋 = [𝐼 − 𝑟 𝐴 ]−1𝑌 

𝐗𝑖 −
𝐱𝑖𝑖
𝐗𝑖
𝐗𝑖 − 

𝐱𝑖𝑗

𝐗𝑗
𝑖≠𝑗

𝐗𝑗 = 𝐘𝑖 
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Derivation of the new Leontief formulas 
• Final issue – inverting a random matrix (based on its spectral 

properties) 
• A is almost surely invertible whenever its entries are absolutely 

continuous (Cayley-Hamilton method, Neumann series method, 
QR method, random matrix methods, LSMR, LSQR, Kaczmarz 
method – see Trotter, 1984; Silverstein, 1985; Edelman, 1989; 
Dumitriu and Edelman, 2002), the case of discrete entries is non-
trivial. 

• For the later case, use the procedure of Rudelson (2008), using ε-
net argument for one part of the sphere and conditional 
probability arguments (the method of Halász, 1975; 1977) for the 
other. 

• Some special cases: inverse of Ginibre ensemble (matrix of i.i.d. 
random normal variables), inverse of a Wishart and compound 
Wishart matrix, inverse of Cauchy. 

• Some empirical work done with the help of Wolfram 
Mathematica. 



Simulated examples, using Eurostat data 

• Basic multiplier calculation (previous own study) 

Country Year Mult Sci Mult PubAd Mult Hea Mult Edu Mult SocC Mult Advert Mult Creat Mult Publ 

France 2008 1.9323 1.4744 1.3285 1.2981 1.2795 1.9117 1.6940 1.9783 

France 2009 2.2229 1.6001 1.4241 1.3658 1.3607 2.0596 1.9245 2.2389 

France 2010 2.1380 1.5724 1.3925 1.3424 1.3317 2.0058 1.8581 2.1151 

Germany 2008 1.6253 1.4892 1.4369 1.3093 1.4518 1.6346 1.5126 1.8170 

Germany 2009 1.5604 1.4597 1.3707 1.3144 1.3703 1.7272 1.4290 1.7955 

Germany 2010 1.5693 1.4569 1.3500 1.3099 1.3522 1.7031 1.4189 1.7618 

Italy 2008 1.7456 1.5151 1.3913 1.2527 1.5979 2.0493 1.7475 2.1051 

Italy 2009 1.7361 1.4841 1.3829 1.2411 1.5797 2.0398 1.7335 2.1269 

Italy 2010 1.8231 1.4717 1.3805 1.2411 1.5832 2.0530 1.7114 2.0865 

Netherlands 2008 1.5990 1.6075 1.2844 1.3135 1.3306 1.9698 1.8114 1.6926 

Netherlands 2009 1.5967 1.6134 1.2687 1.3007 1.3042 1.9644 1.7662 1.6580 

Netherlands 2010 1.5848 1.5831 1.2587 1.2944 1.2937 1.9415 1.7444 1.6163 

Portugal 2008 1.4708 1.4056 1.5222 1.2137 1.4818 2.1678 1.7880 1.9942 

Portugal 2009 1.4765 1.4390 1.5373 1.2449 1.4485 2.1641 1.8257 1.9797 

Portugal 2010 1.4236 1.3933 1.5346 1.2420 1.4168 2.1243 1.7670 1.9295 



• Symbolic IO – fixed final outputs, Gaussianity, the 
variables calculated are Wishart 

Simulated examples, using Eurostat data 

Country Year Mult Sci Mult PubAd Mult Hea Mult Edu Mult Soc C Mult Advert Mult Creat Mult Publish 

France 2008 (239.13;20) (438.63;20) (180.36;20) (166.03;20) (172.62;20) (819.53;20) (754.81;20) (185.68;20) 

France 2009 (998.61;20) (895.73;20) (601.87;20) (64.72;20) (246.45;20) (127.66;20) (628.01;20) (868.95;20) 

France 2010 (304.32;20) (890.18;20) (92.20;20) (314.75;20) (124.32;20) (797.95;20) (476.65;20) (437.19;20) 

Germany 2008 (961.42;20) (270.95;20) (187.39;20) (701.65;20) (903.26;20) (947.14;20) (170.87;20) (906.01;20) 

Germany 2009 (624.50;20) (75.35;20) (657.43;20) (498.08;20) (459.83;20) (610.81;20) (973.75;20) (925.70;20) 

Germany 2010 (87.07;20) (210.24;20) (934.87;20) (588.27;20) (473.92;20) (46.19;20) (985.59;20) (914.43;20) 

Italy 2008 (155.54;20) (29.82;20) (30.55;20) (339.57;20) (268.57;20) (86.35;20) (856.23;20) (457.82;20) 

Italy 2009 (617.96;20) (922.04;20) (805.62;20) (213.80;20) (483.15;20) (940.93;20) (626.21;20) (378.84;20) 

Italy 2010 (630.45;20) (307.44;20) (693.79;20) (632.27;20) (638.20;20) (380.53;20) (167.30;20) (900.43;20) 

Netherlands 2008 (676.15;20) (635.57;20) (963.38;20) (129.15;20) (74.26;20) (722.59;20) (921.83;20) (3.81;20) 

Netherlands 2009 (665.32;20) (599.26;20) (118.76;20) (92.20;20) (305.33;20) (609.44;20) (644.45;20) (369.53;20) 

Netherlands 2010 (197.45;20) (754.65;20) (42.77;20) (198.92;20) (965.20;20) (89.80;20) (957.63;20) (263.62;20) 

Portugal 2008 (314.93;20) (454.95;20) (184.13;20) (593.65;20) (542.40;20) (526.14;20) (958.31;20) (345.61;20) 

Portugal 2009 (678.75;20) (876.53;20) (441.58;20) (877.74;20) (642.29;20) (182.44;20) (594.32;20) (62.21;20) 

Portugal 2010 (963.34;20) (146.26;20) (349.93;20) (463.31;20) (738.89;20) (255.28;20) (425.84;20) (248.17;20) 



Simulated examples, using Eurostat data 
• Symbolic IO – outputs as distributions, 

Gaussianity, the variables calculated are Cauchy 
Country Year Mult Sci Mult PubAd Mult Hea Mult Edu Mult Soc C Mult Advert Mult Creatart Mult Publish 

France 2008 (1.709;0.551) (1.262;1.482) (1.850;0.511) (1.925;1.844) (1.679;0.779) (1.225;1.977) (1.574;1.078) (1.493;1.529) 

France 2009 (1.345;0.710) (1.207;1.564) (1.587;1.902) (1.725;1.865) (1.405;1.946) (1.455;1.085) (1.990;1.990) (1.450;1.100) 

France 2010 (1.094;1.585) (1.209;1.370) (1.271;0.596) (1.592;0.559) (1.326;0.787) (1.136;1.810) (1.705;1.199) (1.145;1.349) 

Germany 2008 (1.092;1.264) (1.582;0.801) (1.921;1.960) (1.386;1.349) (1.211;1.919) (1.093;0.506) (1.418;1.334) (1.111;1.537) 

Germany 2009 (1.206;1.548) (1.459;1.944) (1.599;1.440) (1.078;1.042) (1.926;1.939) (1.670;1.924) (1.995;1.534) (1.634;1.294) 

Germany 2010 (1.079;1.478) (1.740;1.019) (1.445;1.997) (1.070;1.467) (1.051;1.402) (1.355;0.513) (1.052;1.465) (1.755;1.409) 

Italy 2008 (1.527;0.700) (1.888;0.818) (1.390;1.270) (1.918;1.658) (1.492;1.968) (1.316;0.571) (1.880;1.688) (1.861;0.730) 

Italy 2009 (1.424;1.635) (1.258;1.860) (1.410;1.537) (1.768;0.540) (1.749;1.010) (1.602;1.523) (1.820;1.357) (1.584;0.981) 

Italy 2010 (1.208;1.349) (1.753;0.700) (1.054;0.573) (1.239;1.627) (1.081;0.638) (1.916;1.075) (1.832;1.962) (1.579;1.920) 

Netherlands 2008 (1.477;0.600) (1.474;1.212) (1.347;0.999) (1.327;1.563) (1.654;1.881) (1.498;1.206) (1.803;1.194) (1.933;0.800) 

Netherlands 2009 (1.442;1.494) (1.789;0.933) (1.451;0.652) (1.773;0.767) (1.361;0.671) (1.648;1.571) (1.073;1.275) (1.206;1.293) 

Netherlands 2010 (1.671;0.856) (1.693;1.854) (1.524;1.373) (1.848;0.762) (1.995;0.642) (1.764;1.611) (1.587;1.547) (1.973;1.935) 

Portugal 2008 (1.905;0.788) (1.012;1.783) (1.921;0.881) (1.927;1.345) (1.892;0.579) (1.846;0.650) (1.744;1.854) (1.705;1.630) 

Portugal 2009 (1.774;1.870) (1.169;1.768) (1.405;1.738) (1.264;0.723) (1.351;1.919) (1.650;1.040) (1.984;1.274) (1.538;1.953) 

Portugal 2010 (1.184;1.865) (1.855;1.444) (1.002;1.628) (1.663;1.721) (1.696;1.562) (1.463;0.742) (1.869;1.664) (1.462;1.166) 



Extensions 
• Two important extensions: 

 
1) Compositional IO analysis – the cells become 

„unordered/categorical bin charts“ 
- In terms of Leontief formulas, basic CoDa operations like 
⨁, ⊖,⨀, ⊡ can be used 

 
2) Functional IO analysis – the cells are functions of 
„intermediary production“ – the main value of the cell 
 
- Largely, this depends on the nature of the (intervening) 

variable we condition upon, e.g. size of companies (nr. of 
employees, revenues, etc.), their sociodemographics or 
other features 

- To be done in future work 



Conclusion – scientific relevance 
• Derivation of a completely new way of approaching 

stochastic possibilities of input-output analysis 

• Note: everything is done under the assumption of 
independent and identically distributed random variables 

• Significant gain in information, the gain in accuracy and 
predictability still to be tested 

• Questions: computing and theoretical issues (both: 
inverting a square matrix of random variables) 

• Calculus of distributions, that could form also the 
foundation of the work in symbolic data analysis and the 
analysis of complex data (also FDA and CoDA) in future, 
where the work so far has largely been limited to general 
uniform distribution assumptions 
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