Optimized symbolic principal components for interval-valued variables
 SDA-2017 Ljubljana, Slovenia

Jorge Arce ${ }^{2}$ Oldemar Rodríguez ${ }^{1}$
${ }^{1}$ University of Costa Rica, San José, Costa Rica;
${ }^{2}$ National Bank of Costa Rica, San José, Costa Rica;

$$
\text { June 12, } 2017
$$

The centers principal components analysis is conducted by doing a classical analysis on the centered point observations X^{c}.

Then all the vertices of the hypercube are projected on principal components of the centers

With the centers of the hypercubes principal components are computed

Vertices of the hypercubes are projected on principal components of the Centers

If we use differents points inside the hypercube the principal components will change

Vertices of the hypercubes are projected on principal components of the New Points

The question is:

$■$ What are the best points inside the hypercube?

- In order to maximize inertia or
- In order to minimize squared distance between vertices and its projections.

From: Symbolic principal components for interval-valued observations Lynn Billard, Ahlame Douzal-Chouakria and E. Diday we know:

Then, the ν th centers principal component can be written as

$$
\begin{equation*}
P C \nu^{c}=\sum_{j=1}^{p}\left(x_{j}^{0}-\bar{X}_{j}^{c}\right) u_{\nu j} . \tag{4.5}
\end{equation*}
$$

In particular, let $\tilde{\boldsymbol{x}}_{i}=\left(\tilde{x}_{i 1}, \ldots, \tilde{x}_{i p}\right)$ be any point contained in the hypercube H_{i} described by $\boldsymbol{\xi}_{i}$. Thus, we can calculate the ν th centers principal component for this $\tilde{\boldsymbol{x}}_{i}$ from (4.5) as

$$
P C \nu^{c}\left(\tilde{\boldsymbol{x}}_{i}\right)=\sum_{j=1}^{p}\left(\tilde{x}_{i j}-\bar{X}_{j}^{c}\right) u_{\nu j}
$$

From: Symbolic principal components for interval-valued observations Lynn Billard, Ahlame Douzal-Chouakria and E. Diday we know:

Therefore, we can define the ν th centers principal component as

$$
Z_{i \nu}=\left[z_{i \nu}^{a}, z_{i \nu}^{b}\right], \quad \nu=1, \ldots, s \leq p
$$

where

$$
z_{i \nu}^{a}=\sum_{j=1}^{p} \min _{a_{i j}<\tilde{x}_{i j}<b_{i j}}\left\{\left(\tilde{x}_{i j}-\bar{X}_{j}^{c}\right) u_{\nu j}\right\}
$$

and

$$
z_{i \nu}^{b}=\sum_{j=1}^{p} \max _{a_{i j}<\tilde{x}_{i j}<b_{i j}}\left\{\left(\tilde{x}_{i j}-\bar{X}_{j}^{c}\right) u_{\nu j}\right\} .
$$

From: Symbolic principal components for

 interval-valued observations Lynn Billard, Ahlame Douzal-Chouakria and E. Diday we know:It can be shown that these reduce to

$$
z_{i \nu}^{a}=\sum_{j \in J_{c}^{-}}^{p}\left(b_{i j}-\bar{X}_{j}\right) u_{\nu j}+\sum_{j \in J_{c}^{+}}^{p}\left(a_{i j}-\bar{X}_{j}\right) u_{\nu j}
$$

and

$$
z_{i \nu}^{b}=\sum_{j \in J_{c}^{-}}\left(a_{i j}-\bar{X}_{j}\right) u_{\nu j}+\sum_{j \in J_{c}^{+}}^{p}\left(b_{i j}-\bar{X}_{j}\right) u_{\nu j}
$$

where $J_{c}^{-}=\left\{j \mid u_{\nu j}<0\right\}$ and $J_{c}^{+}=\left\{j \mid u_{\nu j}>0\right\}$.

Optimized symbolic principal components for interval-valued variables

Definition $(Z \in X)$

Let be X an intervals symbolic matrix:

$$
X=\left[\begin{array}{ccccc}
{\left[a_{11}, b_{11}\right]} & {\left[a_{12}, b_{12}\right]} & {\left[a_{13}, b_{13}\right]} & \ldots & {\left[a_{1 p}, b_{1 p}\right]} \\
{\left[a_{21}, b_{21}\right]} & {\left[a_{22}, b_{22}\right]} & {\left[a_{23}, b_{23}\right]} & \ldots & {\left[a_{2 p}, b_{2 p}\right]} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
{\left[a_{n 1}, b_{n 1}\right]} & {\left[a_{n 2}, b_{n 2}\right]} & {\left[a_{n 3}, b_{n 3}\right]} & \ldots & {\left[a_{n p}, b_{n p}\right]}
\end{array}\right],
$$

where $a_{i j} \leq b_{i j}$ and let be $Z=\left(z_{i j}\right)$ with $z_{i j} \in \mathbb{R}$. We say that $Z \in X$ if $z_{i j} \in\left[a_{i j}, b_{i j}\right]$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, p$.

Optimized symbolic principal components for interval-valued variables

Let be X an interval data matrix size $n \times p$ and let be $Z \in X$, we do a classical PCA on Z then v th principal components of Z for the observation ξ_{u} with $v=1, \ldots, n, u=1, \ldots, p$,

$$
\begin{equation*}
y_{u v}^{Z}=\sum_{j=1}^{p}\left(z_{j u}-\bar{Z}_{(j)}\right) w_{v_{j}}^{Z} \tag{1}
\end{equation*}
$$

where $\bar{Z}_{(j)}$ is the mean of the variable $Z_{(j)}$ and $w_{v}^{Z}=\left(w_{v_{1}}^{Z}, \ldots, w_{v_{p}}^{Z}\right)$ is the v th eigenvector of the variance-covariance matrix of Z.

Then it is clear that $\beta(Z)=\left\{w_{1}^{Z}, \ldots, w_{p}^{Z}\right\}$ is an orthonormal basis of \mathbb{R}^{p}.

We define the centered and standarized matrix of vertices with respect to Z :

$$
\tilde{X}^{v}(Z)=\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
\frac{a_{11}-\bar{Z}_{(1)}}{\sigma_{(1)}} & \frac{a_{12}-\bar{Z}_{(2)}}{\sigma_{(2)}} & \ldots & \frac{a_{1 p}-\bar{Z}_{(p)}}{\sigma_{(p)}} \\
\ldots & \ldots & \ddots & \ldots \\
\frac{b_{11}-\bar{Z}_{(1)}}{\sigma_{(1)}} & \frac{b_{12}-\bar{Z}_{(2)}}{\sigma_{(2)}} & \ldots & \frac{b_{1 p}-\bar{Z}_{(p)}}{\sigma_{(p)}}
\end{array}\right]} \tag{2}\\
\ldots & \ldots & \ldots & \ldots \\
{\left[\begin{array}{cccc}
\frac{a_{i 1}-\bar{Z}_{(1)}}{\sigma_{(1)}} & \frac{a_{i 2}-\bar{Z}_{(2)}}{\sigma_{(2)}} & \ldots & \frac{a_{i p}-\bar{Z}_{(p)}}{\sigma_{(p)}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{b_{i 1}-\bar{Z}_{(1)}}{\sigma_{(1)}} & \frac{b_{i 2}-\bar{Z}_{(2)}}{\sigma_{(2)}} & \ldots & \frac{b_{i p}-\bar{Z}_{(p)}}{\sigma_{(p)}}
\end{array}\right]} \\
{\left[\begin{array}{c}
\frac{a_{n 1}-\bar{Z}_{(1)}}{\sigma_{(1)}} \\
\frac{a_{n 2}-\bar{Z}_{(2)}}{\sigma_{(2)}} \\
\vdots \\
\vdots
\end{array}\right.} & \ldots & \frac{a_{n p}-\bar{Z}_{(p)}}{\sigma_{(p)}} \\
{\left[\begin{array}{llll}
b_{n 1}-\bar{Z}_{(1)} \\
\sigma_{(1)} & \frac{b_{n 2}-\bar{Z}_{(2)}}{\sigma_{(2)}} & \ldots & \frac{b_{n p}-\bar{Z}_{(p)}}{\sigma_{(p)}}
\end{array}\right]}
\end{array}\right]
$$

Optimized interval PCA

Let be ξ_{i} the i th observation of X with $i=1, \ldots, n$, now the vertices of the hypercube will be projected as a supplementary elements in PCA of Z.

Definition

Let be:

$$
\tilde{X}_{i}^{v}(Z)=\left[\begin{array}{cccc}
\frac{a_{i 1}-\bar{Z}_{(1)}}{\sigma_{(1)}} & \frac{a_{i 2}-\bar{Z}_{(2)}}{\sigma_{(2)}} & \ldots & \frac{a_{i p}-\bar{Z}_{(p)}}{\sigma_{(p)}} \tag{3}\\
\frac{a_{i 1} \bar{Z}_{(1)}}{\sigma_{(1)}} & \frac{a_{i 2}-Z_{(2)}}{\sigma_{(2)}} & \ldots & \frac{a_{i p}-Z_{(p)}}{\sigma_{(p)}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{b_{i 1}-\bar{Z}_{(1)}}{\sigma_{(1)}} & \frac{b_{i 2}-\bar{Z}_{(2)}}{\sigma_{(2)}} & \ldots & \frac{b_{i p}-\bar{Z}_{(p)}}{\sigma_{(p)}} \\
\frac{b_{i 1}-\bar{Z}_{(1)}}{\sigma_{(1)}} & \frac{b_{i 2}-\bar{Z}_{(2)}}{\sigma_{(2)}} & \ldots & \frac{b_{i p}-\bar{Z}_{(p)}}{\sigma_{(p)}}
\end{array}\right] .
$$

where $\sigma_{(j)}$ is the standard deviation of $Z_{(j)}$. To simplify, let's denote each row of the matrix $\tilde{X}_{i}^{v}(Z)$ as follows $\tilde{x}_{i_{k j}}^{v}(Z)$, with $k=1, \ldots, 2^{m_{i}}, m_{i}$ the number of non-trivial intervals and $j=1, \ldots, p$

Optimized interval PCA

Therefore, we can define the v th principal components as:

$$
\begin{equation*}
C^{s}\left(x_{i_{j}}^{v}\right)=\sum_{t=1}^{p} \tilde{x}_{i_{i t}}^{v}(Z) w_{s_{t}} \tag{4}
\end{equation*}
$$

to $j=1, \ldots, 2^{m_{i}}, m_{i}$ in the number of non-trivial intervals. where

$$
\begin{equation*}
\tilde{Y}_{i u}^{v}=\tilde{y}_{i u}=\left[\tilde{y}_{i u}^{a_{Z}}, \tilde{y}_{i u}^{b z}\right] \cos u=1, \ldots, p \tag{5}
\end{equation*}
$$

where

$$
\begin{gather*}
\tilde{y}_{i u}^{a_{Z}}=\min _{j=1, \ldots, 2^{m_{i}}} C^{u}\left(x_{i_{j}}^{v}\right) \tag{6}\\
\tilde{y}_{i u}^{b_{Z}}=\max _{j=1, \ldots, 2^{m_{i}}}^{u}\left(x_{i_{j}}^{v}\right)
\end{gather*}
$$

Optimized interval PCA

It can be shown that these reduce to:

Theorem

$\tilde{Y}_{i u}^{v_{Z}}$ can be computed as:

$$
\begin{aligned}
& \tilde{y}_{i k}^{a_{Z}}=\sum_{j \in J_{Z}^{-}}\left(b_{i j}-\bar{Z}_{(j)}\right) w_{k_{j}}^{Z}+\sum_{j \in J_{Z}^{+}}\left(a_{i j}-\bar{Z}_{(j)}\right) w_{k_{j}}^{Z} \\
& \tilde{y}_{i k}^{b_{Z}}=\sum_{j \in J_{Z}^{-}}\left(a_{i j}-\bar{Z}_{(j)}\right) w_{k_{j}}^{Z}+\sum_{j \in J_{Z}^{+}}\left(b_{i j}-\bar{Z}_{(j)}\right) w_{k_{j}}^{Z}
\end{aligned}
$$

where $J_{Z}^{-}=\left\{j \mid w_{k j}^{v}<0\right\}$ y $J_{Z}^{+}=\left\{j \mid w_{k j}^{v} \geq 0\right\}, \bar{Z}_{(j)}$ is the mean $j^{\text {th }}$ column.

Optimized interval PCA

So far we have found a way to do a PCA for each $Z \in X$. The idea is to look for the matrix Z^{\star} that is optimal in some sense, for example:

■ Minimize the squared distance from the vertices of the hypercube to the principal components of Z.
■ Maximize the variance in the firsts components of Z

Minimize the squared distance from the vertices of the hypercube to the principal components of Z

Let X be an interval matrix size $n \times p, Z \in X$, and

$$
\beta(Z)=\left\{w_{1}^{Z}, \ldots, w_{s}^{Z}\right\}
$$

with $s \leq p$ where w_{i}^{Z} are the eigenvectors of Z variance-covariance matrix. Let be X^{v} the vertices matrix of X and

$$
N=\sum_{i=1}^{n} 2^{m_{i}},
$$

with m_{i} the number of non-trivial intervals for the observation ξ_{i}.

Optimized interval PCA

We want to minimized the function $\varphi(Z): X \rightarrow \mathbb{R}^{+}$defined as follows:

$$
\begin{equation*}
\varphi(Z)=\sum_{i=1}^{N}\left\|\tilde{X}_{i}^{v}(Z)-\operatorname{Pr}_{\beta(Z)}\left(\tilde{X}_{i}^{v}(Z)\right)\right\|^{2} \tag{8}
\end{equation*}
$$

Since $Z \in X$ and X is the finite union of compact sets and the $\varphi(Z)$ is a continuous function then it has a maximum and a minimum.

Algorithm to compute $\varphi(Z)$

Algorithm 1 Calculation of φ
Require: X interval matrix $n \times p, Z \in X$, and
s number of principal components.
Ensure: $\varphi(Z)$
1: Apply a PCA on Z and compute:
2: $\beta=\left\{w_{1}, \ldots, w_{s}\right\}, s \leq p$ where w_{i} are the eigenvectors of Z.
3: Compute the vertices matrix X^{v} of X
4: Compute $\tilde{X}^{v}(Z)$
5: $\varphi(Z)=\sum_{i=1}^{N}\left\|\tilde{X}_{i}^{v}(Z)-\operatorname{Pr}_{\beta(Z)}\left(\tilde{X}_{i}^{v}(Z)\right)\right\|^{2}$.
6: return $\varphi(Z)$

Optimization Problem

Minimize $\quad \varphi(Z)=\sum_{i=1}^{N}\left\|\tilde{X}_{i}^{v}(Z)-\operatorname{Pr}_{\beta(Z)}\left(\tilde{X}_{i}^{v}(Z)\right)\right\|^{2}$
$\left\{\begin{array}{c}a_{11} \leq z_{11} \leq b_{11} \\ \vdots \\ a_{1 j} \leq z_{1 j} \leq b_{1 j}\end{array}\right.$

$$
\begin{gather*}
a_{1 p} \leq z_{1 p} \leq b_{1 p} \tag{9}\\
\vdots \\
a_{i j} \leq z_{i j} \leq b_{i j}
\end{gather*}
$$

Subject to

$$
\begin{gathered}
a_{n 1} \leq z_{n 1} \leq b_{n 1} \\
\vdots \\
a_{n p} \leq z_{n p} \leq b_{n p}
\end{gathered}
$$

Definition $\left(Z^{\star}\right)$

The matrix $Z \in X$ that solve the problem (9) is called the optimal matrix with respect to X^{v} and we will denote it by Z^{\star}.
\square

Definition (Z^{\star})

The matrix $Z \in X$ that solve the problem (9) is called the optimal matrix with respect to X^{v} and we will denote it by Z^{\star}.

Algorithm 3 Minimizing the squared distance PCA
Require: $X n \times p$ matrix, $Z \in X$, s number of principal components, TOL is a tolerance of variations and N the maximum number of iterations.
Ensure: $\tilde{Y}^{V_{Z^{\star}}}$
1: Let be $Z=X^{c}$ the centers matrix as an initial value.
2: Get Z^{\star} using Broyden-Fletcher-Goldfarb-Shanno algorithm BFGS (Z, function $=\varphi(Z)$, TOL, N $)$
3: Get $\tilde{Y}^{V_{Z^{\star}}}$ applying the Theorem 1
4: return $\tilde{Y}^{V^{\star}}$

Broyden-Fletcher-Goldfarb-Shanno algorithm

From an initial guess \mathbf{x}_{0} and an approximate Hessian matrix B_{0} the following steps are repeated as \mathbf{x}_{k} converges to the solution:

1. Obtain a direction \mathbf{p}_{k} by solving $B_{k} \mathbf{p}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$.
2. Perform a line search to find an acceptable stepsize α_{k} in the direction found in the first step.
3. Set $\mathbf{s}_{k}=\alpha_{k} \mathbf{p}_{k}$ and update $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{s}_{k}$.
4. $\mathbf{y}_{k}=\nabla f\left(\mathbf{x}_{k+1}\right)-\nabla f\left(\mathbf{x}_{k}\right)$.
5. $B_{k+1}=B_{k}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{\mathrm{T}}}{\mathbf{y}_{k}^{\mathrm{T}} \mathbf{s}_{k}}-\frac{B_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{\mathrm{T}} B_{k}}{\mathbf{s}_{k}^{\mathrm{T}} B_{k} \mathbf{s}_{k}}$.
$f(\mathbf{x})$ denotes the objective function to be minimized. Convergence can be checked by observing the norm of the gradient, $\left|\nabla f\left(\mathbf{x}_{k}\right)\right|$. Practically, B_{0} can be initialized with $B_{0}=I$, so that the first step will be equivalent to a gradient descent, but further steps are more and more refined by B_{k}, the approximation to the Hessian.

The first step of the algorithm is carried out using the inverse of the matrix B_{k}, which can be obtained efficiently by applying the Sherman-Morrison formula to the step 5 of the algorithm, giving

$$
B_{k+1}^{-1}=\left(I-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}\right) B_{k}^{-1}\left(I-\frac{y_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}\right)+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}
$$

This can be computed efficiently without temporary matrices, recognizing that B_{k}^{-1} is symmetric, and that $\mathbf{y}_{k}^{\mathrm{T}} B_{k}^{-1} \mathbf{y}_{k}$ and $\mathbf{s}_{k}^{\mathrm{T}} \mathbf{y}_{k}$ are scalar, using an expansion such as

$$
B_{k+1}^{-1}=B_{k}^{-1}+\frac{\left(\mathbf{s}_{k}^{\mathrm{T}} \mathbf{y}_{k}+\mathbf{y}_{k}^{\mathrm{T}} B_{k}^{-1} \mathbf{y}_{k}\right)\left(\mathbf{s}_{k} \mathbf{s}_{k}^{\mathrm{T}}\right)}{\left(\mathbf{s}_{k}^{\mathrm{T}} \mathbf{y}_{k}\right)^{2}}-\frac{B_{k}^{-1} \mathbf{y}_{k} \mathbf{s}_{k}^{\mathrm{T}}+\mathbf{s}_{k} \mathbf{y}_{k}^{\mathrm{T}} B_{k}^{-1}}{\mathbf{s}_{k}^{\mathrm{T}} \mathbf{y}_{k}}
$$

In statistical estimation problems (such as maximum likelihood or Bayesian inference), credible intervals or confidence intervals for the solution can be estimated from the inverse of the final Hessian matrix. However, these quantities are technically defined by the true Hessian matrix, and the BFGS approximation may not converge to the true Hessian matrix.

Maximize the variance on the firsts components of Z

Definition

Let be X a $n \times p$ interval matrix, $Z \in X$,

$$
\beta(Z)=\left\{w_{1}^{Z}, \ldots, w_{s}^{Z}\right\}
$$

where $s \leq p$ and w_{i}^{Z} the eigenvectors of the variance-covariance matrix of Z and $\lambda(Z)=\lambda_{1}^{Z}, \ldots, \lambda_{s}^{Z}$ the associated eigenvalues, we define the function

$$
\Lambda(Z, s): X \times \mathbb{N} \rightarrow \mathbb{R}^{+}
$$

as follows:

$$
\begin{equation*}
\Lambda(Z, s)=\sum_{i=1}^{s} \lambda_{i}^{Z} \tag{10}
\end{equation*}
$$

Algorithm to compute $\Lambda(Z, s)$

```
Algorithm 4 Calculation of \Lambda
Require: X interval matrix }n\timesp,Z\inX, an
    s number of principal components.
Ensure: }\Lambda(Z,s
1: Apply a PCA on Z and compute:
2: }\lambda(Z)=\mp@subsup{\lambda}{1}{Z},\ldots,\mp@subsup{\lambda}{s}{Z
    the associated eigenvalues of the variance-covariance
    matrix of Z.
3: \Lambda(Z,s)= \mp@subsup{\sum}{i=1}{s}\mp@subsup{\lambda}{i}{Z}.
4: return }\Lambda(Z,s)
```


Optimization Problem

Maximize $\quad \Lambda(Z, s)=\sum_{i=1}^{s} \lambda_{i}^{Z}$

Algorithm to Maximize the variance PCA

Algorithm 5 Maximizing the variance PCA
Require: $X n \times p$ matrix, $Z \in X, s$ number of principal components, TOL is a tolerance of variations and N the maximum number of iterations.
Ensure: $\tilde{Y}^{V_{Z^{\star}}}$
1: Let be $Z=X^{c}$ the centers matrix as an initial value.
2: Get Z^{\star} using Broyden-Fletcher-Goldfarb-Shanno algorithm BFGS (Z, function $=\Lambda(Z, s), T O L, N)$
3: Get $\tilde{Y}^{V_{Z^{\star}}}$ applying the Theorem 1
4: return $\tilde{Y}^{V_{Z^{\star}}}$

Oils Data Comparation Plot

Oils Data Comparation

	ver.dist $\stackrel{\text { * }}{ }$	cent.dist $\stackrel{\text { - }}{ }$	min.dist $\stackrel{\text { - }}{ }$	max.var ∇^{*}
1	217.20491979452	226.345477905895	174.834606512487	230.524337279273
	inercia.vertex $\stackrel{\square}{ }$	inercia.centros $\stackrel{\square}{ }$	inercia.min.dist $\stackrel{\text { ¢ }}{ }$	inercia.max.var $\stackrel{\text { - }}{ }$
1	67.7627771995287	74.6011009457592	73.9787243730559	77.948613220299
2	88.0249162228891	89.7748735221302	90.2834385024301	94.1681130876581
3	97.7724149902723	98.7261909065107	98.6319450630644	99.9999999999999

Faces Data Comparation Plot

PCA Vertex Data

Min. Distance

PCA Centers Data

Max. Inertia

Faces Data Comparation

	ver.dist ${ }^{\text {\% }}$	cent.dist ${ }^{\text {\% }}$	min.dist ${ }^{\text {* }}$	max.var ${ }^{\text {- }}$
1	3614.34148419874	3942.95420912549	2820.78369329809	3867.53297496876
	inercia.vertex ${ }^{\text {¢ }}$	inercia.centros ${ }^{\text {¢ }}$	inercia.min.dist ${ }^{\text {\% }}$	inercia.max.var ${ }^{\text {* }}$
1	40.0667097210037	43.088416163449	45.1627301022735	52.9691998846087
2	72.0071584552016	80.1717882349615	83.2077760605735	87.3778674340959
3	83.7124062384127	90.5023237657181	92.3406967688621	99.8318016506443
4	91.8005821950097	96.3366942724498	96.4459161680779	99.9306315461714
5	96.5842923422871	99.2474365249974	99.5858659478948	99.9873957795102

What points are selected?

PCA Best Matrix Distance Method

What points are selected?

PCA Best Matrix Inertia Method

oldemar.rodriguez@ucr.ac.cr

Tomorrow I will show you how to do Optimized PCA in RSDA Package....

Thank You

