
An algebraic approach to temporal network analysis

Vladimir Batagelj
University of Ljubljana, FMF, Department of Mathematics,

Jadranska 19, 1 000 Ljubljana, Slovenia
vladimir.batagelj@fmf.uni-lj.si

Selena Praprotnik
University of Ljubljana, FMF, Department of Mathematics,

Jadranska 19, 1 000 Ljubljana, Slovenia
selena.praprotnik@gmail.com

May 30, 2014/April 20, 2014

Abstract

To describe temporal networks we introduce the notion of temporal quantities. We de-
fine the addition and multiplication of temporal quantities in a way that can be used for the
definition of addition and multiplication of temporal networks with zero latency. The corre-
sponding algebraic structures are semirings. We developed fast algorithms for the proposed
operations. They are available as a Python library TQ and a program Ianus. The proposed
approach enables us to treat as temporal quantities also other network characteristics such
as degrees, connectivity components, centrality measures, Pathfinder skeleton, etc. It is an
alternative to the usual approach to temporal network analysis based on time slices. To
illustrate the developed tools we present some results from the analysis of Franzosi’s vio-
lence network and Corman’s Reuters terror news network.

Keywords: temporal network, semiring, algorithm, network measures, Python library, vi-
olence.

Math.Subj.Class (2010): 91D30; 16Y60; 90B10; 68R10; 93C55

1

1 Introduction
In a temporal network, the presence and activity of nodes and links can change through time.
The time dimension was added to networks in different disciplines. The earliest were the trans-
portation network analysis (Bell and Iida [4], Correa et al. [6]), project scheduling (CPM,
Pert) in Operations Research (Moder [19]) and constraints networks in Artificial Intelligence
(Dechter [11]). There are also qualitative approaches to temporal networks. See for exam-
ple Allen [1] and Vilain et al. [26]. For statistical approaches see Kolaczyk’s book [17] and
Snijders’ Siena page [22]. In this paper we shall stick to the quantitative approach based on
temporal quantities presented in section 3.

In the last two decades the interest for analysis of temporal networks increased partially
motivated by travel-support services and analysis of sequences of events (e-mails, news, phone
calls, etc.). The approaches and results are surveyed by Holme and Saramäki in the paper [14]
and the book [15]. Another overview was produced by Casteigts et al. [10] (see also [9]) based
on their formalization of temporal networks – time-varying graphs or TVGs. A step forward to
data analysis of temporal networks was recently made by Kontoleon et al. [18].

In the paper we first present the basic notions about temporal networks. In section 3 we
introduce the temporal quantities and propose an algebraic approach, based on semirings, to the
analysis of temporal networks. In the following sections we show that most of the traditional
network analysis concepts and algorithms such as degrees, clustering coefficient, closeness, be-
tweenness, weak and strong connectivity, PathFinder skeleton, etc. can be straightforwardly
extended to their temporal versions. The proposed approach is an alternative to the usual ap-
proach to temporal network analysis based on time slices.

2 Description of temporal networks
For the description of temporal networks we propose an elaborated version of the approach
used in Pajek [21]. It is similar to TVGs. Pajek supports two types of descriptions of temporal
networks based on presence and on events (Pajek 0.47, July 1999). Here, we describe only the
approach to capturing the presence of nodes and links.

A temporal network NT = (V ,L,P ,W , T) is obtained by attaching the time, T , to an
ordinary network, where T is a set of time points, t ∈ T . V is the set of nodes, L is the set of
links, P is the set of node properties, andW is the set of link weights [3]. The time T is usually
either a subset of integers, T ⊆ Z, or a subset of reals, T ⊆ R. In Pajek T ⊆ N.

In a temporal network, nodes v ∈ V and links l ∈ L are not necessarily present or active in
all time points. Let T (v), T ∈ P , be the activity set of time points for node v; and T (l), T ∈ W ,
the activity set of time points for link l. T (v) and T (l) are usually described as a sequence of
intervals. The following consistency condition is imposed: If a link l(u, v) is active in time
point t then its end-nodes u and v should be active in time t. Formally we express this by

T (l(u, v)) ⊆ T (u) ∩ T (v).

The activity set T (e) of node/link e is usually described as a sequence of time intervals ([si, fi])
k
i=1,

where si is the starting time and fi is the finishing time.

2

We denote a network consisting of links and nodes active in time t ∈ T by N (t) and call it
the (network) time slice or footprint of t. Let T ′ ⊂ T (for example, a time interval). The notion
of a time slice is extended to T ′ by

N (T ′) =
⋃
t∈T ′

N (t).

2.1 Journeys – walks in temporal networks
When dealing with walks in temporal networks we usually consider two additional information
– weights on links:

• the transition time or latency τ ∈ W; τ :L → R+
0 . τ(l) is equal to the time needed to

traverse the link l. If the function τ is not given we can assume τ(l) = 0 for all links l.

• the value (length, cost, etc.) w ∈ W; w:L → R. If the function w is not given we can
assume w(l) = 1 for all links l.

In applications related to flows in networks we need an additional weight

• the capacity c ∈ W; c:L → R+
0 . c(l) is equal to the maximum quantity of items that can

be transfered in a time unit over the link l. If the function c is not given we can assume
c(l) =∞ (no limits) for all links l.

In real-life networks the values τl(t), wl(t) and cl(t) of functions τ , w and c for a given link
l ∈ L can also vary through time. For example, τl(t) can depend on the overall traffic in the
network. In the following, see Section 3, we shall assume that they are constant on each time
interval.

A temporal walk or journey σ(v0, vk; t0) from the (source) node v0 to the (destination) node
vk starting at a time t0 ∈ T (v0) is a finite sequence

(t0, v0, (t1, l1), v1, (t2, l2), v2, . . . , vk−2, (tk−1, lk−1), vk−1, (tk, lk), vk)

where li ∈ L, ti ∈ T , i = 1, 2, . . . k. The triples vi−1, (ti, li) tell that in the node vi−1 at time ti
the link li was selected for the next transition. The sequence σ has to satisfy the conditions: the
link li links node vi−1 to node vi and is active during the transition:

(a) li(vi−1, vi)

(b) t′i−1 ≤ ti

(c) [ti, t
′
i] ⊆ T (li)

for i = 1, 2, . . . k; where t′i = ti + τ(li) and t′0 = t0.
The number k is called a length of the walk σ. The time used by the walk σ is equal to

t(σ) = t′k − t0

and its value is

w(σ) =
k∑

i=1

w(li, ti, t
′
i)

3

where w(li, ti, t
′
i) is the value of the link li in the time interval [ti, t

′
i] – it is a function com-

bining the values of wli(t) on the time interval [ti, t
′
i]. From the condition (c) it follows by the

consistency that ti ∈ T (vi−1) and t′i ∈ T (vi).
A temporal walk is regular if also

[t′i−1, ti] ⊆ T (vi−1), for i = 1, 2, . . . k.

While waiting for the next step (transition) in node vi−1 this node should be all the time active.

3 Temporal quantities
Besides the presence/absence of nodes and links also their properties can change through time.
To describe them we introduce a notion of a temporal quantity

a(Ta) =

{
a(t) t ∈ Ta

t ∈ T \ Ta

where a(t) is the value of a in an instant t, and denotes the value undefined.
We assume that the values of temporal quantities belong to a set A which is a semiring

(A,+, ·, 0, 1) for binary operations + : A × A → A and · : A × A → A [2]. This means that
(A,+, 0) is an Abelian monoid – the addition + is associative and commutative, and has 0 as
its neutral element; and (A, ·, 1) is a monoid – the multiplication · is associative and has 1 as its
neutral element. Also, multiplication distributes from both sides over addition. We can extend
both operations to the set A = A ∪ { } by requiring that for all a ∈ A it holds

a+ = + a = a and a · = · a = .

The structure (A ,+, ·, , 1) is also a semiring.
The “default” semiring is the combinatorial semiring (R+

0 ,+, ·, 0, 1) where + and · are the
usual addition and multiplication of real numbers. In some applications other semirings are
useful.

In applications of semirings in analysis of graphs and networks the addition + describes
the composition of values on parallel paths and the multiplication · describes the composition
of values on sequential paths – see Figure 1. For a combinatorial semiring these two schemes
correspond to basic principles of combinatorics Rule of Sum and Rule of Product [23].

The semiring (R+
,min,+,∞, 0) is suitable to deal with the shortest paths problem in net-

works; and the semiring ({0, 1},∨,∧, 0, 1) for reachability problems.
Let A (T) denote the set of all temporal quantities over A in time T . To extend the

operations to networks and their matrices we first define the sum (parallel links)

a(Ta) + b(Tb) = s(Ts)

as

s(t) =


a(t) + b(t) t ∈ Ta ∩ Tb
a(t) t ∈ Ta \ Tb
b(t) t ∈ Tb \ Ta

otherwise

4

a

b

a b

a+b

a b.

u u

uu

v

v

v

vz

Figure 1: Semiring addition and multiplication in networks.

and Ts = Ta ∪ Tb; and the product (sequential links)

a(Ta) · b(Tb) = p(Tp)

as

p(t) =

{
a(t) · b(t) t ∈ Ta ∩ Tb

otherwise

and Tp = Ta ∩ Tb.
Let us define the temporal quantities 0 and 1 with requirements 0(t) = and 1(t) = 1 for

all t ∈ T . Again, the structure (A (T),+, ·,0,1) is a semiring, and therefore so is the set of
square matrices of order n over it for addition A⊕B = S

sij = aij + bij

and multiplication A�B = P

pij =
n∑

k=1

aik · bkj.

The matrix multiplication is closely related to traveling on networks. For a value pij to be
defined (different from) there should exist at least one node k such that both link (i, k) and
link (k, j) exist – the transition from the node i to the node j through a node k is possible. Its
contribution is aik · bkj .

In this paper we will, in the following, limit our attention to networks with zero latency
(τ(l) = 0, for all links l). This assumption implies that in journeys it holds t′i = ti + τ(li) = ti.
Therefore the conditions from the definition of journeys simplify into:

(a) li(vi−1, vi)

(b) ti−1 ≤ ti

(c) ti ∈ T (li) .

By consistency we also have ti ∈ T (vi−1) and ti ∈ T (vi).
In networks with zero latency the transitions are immediate (they take no time) – in the

product A�B a link (i, j) exists in a time point t iff in the time point t there exist a link (i, k)
in A and a link (k, j) in B, for some node k.

5

In the following we shall limit our discussion to temporal quantities that can be described in
the form of time-interval/value sequences

a(Ta) = ((Ii, vi))
k
i=1

where Ii is a time-interval and vi is a value of a on this interval. In general the intervals can
be of different types: 1 – [si, fi]; 2 – [si, fi); 3 – (si, fi]; 4 – (si, fi). Also the value vi can be
structured. For example vi = (wi, ci, τi) – weight, capacity and transition time, or vi = (di, ni)
– length of geodesics and number of geodesics, etc.

Algorithm 1 Addition of temporal quantities.

@staticmethod
def get(S):

try: return(next(S))
except StopIteration: return((TQ.inf,TQ.inf,TQ.sZero))

@staticmethod
def sum(a,b):

if len(a) == 0: return(b)
if len(b) == 0: return(a)
c = []; A = a.__iter__(); B = b.__iter__()
(sa,fa,va) = TQ.get(A); (sb,fb,vb) = TQ.get(B)
while (sa<TQ.inf) or (sb<TQ.inf):

if sa < sb:
sc = sa; vc = va
if sb < fa: fc = sb; sa = sb
else: fc = fa; (sa,fa,va) = TQ.get(A)
c.append((sc,fc,vc))

elif sa == sb:
sc = sa; fc = min(fa,fb); vc = TQ.sAdd(va,vb)
c.append((sc,fc,vc))
sa = sb = fc; fA = fa
if fA <= fb: (sa,fa,va) = TQ.get(A)
if fb <= fA: (sb,fb,vb) = TQ.get(B)

else:
sc = sb; vc = vb
if sa < fb: fc = sa; sb = sa
else: fc = fb; (sb,fb,vb) = TQ.get(B)
c.append((sc,fc,vc))

return(TQ.standard(c))

To simplify the exposition we will assume in the following that all the intervals in our de-
scriptions of temporal quantities are of type 2 – [si, fi). Therefore we can describe the temporal
quantities with sequences

a(Ta) = ((si, fi, vi))
k
i=1

To provide a computational support for the proposed approach we are developing in Python
a library TQ (Temporal Quantities). In the examples and the display of selected algorithms we
will use the Python notation.

The following are two temporal quantities a and b represented in Python
a = [(1, 5, 2), (6, 8, 1), (11, 12, 3), (14, 16, 2),

(17, 18, 5), (19, 20, 1)]
b = [(2, 3, 4), (4, 7, 3), (9, 10, 2), (13, 15, 5), (16, 21, 1)]

6

The temporal quantity a has on interval [1, 5) value 2, on interval [6, 8) value 1, on interval
[11, 12) value 3, etc. Outside the specified intervals its value is undefined, .

The temporal quantities can also be visualized as is shown for a and b at the top half of
Figure 2.

For the simplified version of temporal quantities we wrote procedures sum (Algorithm 1)
for addition and prod (Algorithm 2) for multiplication of temporal quantities over the selected
semiring. The semiring operations are provided by functions sAdd and sMul. The procedure
standard joins adjacent time intervals with the same value into a single interval.

Algorithm 2 Multiplication of temporal quantities.

@staticmethod
def prod(a,b):

if len(a)*len(b) == 0: return([])
c = []; A = a.__iter__(); B = b.__iter__()
(sa,fa,va) = TQ.get(A); (sb,fb,vb) = TQ.get(B)
while (sa<TQ.inf) or (sb<TQ.inf):

if fa <= sb: (sa,fa,va) = TQ.get(A)
elif fb <= sa: (sb,fb,vb) = TQ.get(B)
else:

sc = max(sa,sb); fc = min(fa,fb); vc = TQ.sMul(va,vb)
c.append((sc,fc,vc))
if fc == fa: (sa,fa,va) = TQ.get(A)
if fc == fb: (sb,fb,vb) = TQ.get(B)

return(TQ.standard(c))

The following are the sum s and the product p of temporal quantities a and b. They are
visually displayed at the bottom half of Figure 2.

s = [(1, 2, 2), (2, 3, 6), (3, 4, 2), (4, 5, 5), (5, 6, 3),
(6, 7, 4), (7, 8, 1), (9, 10, 2), (11, 12, 3), (13, 14, 5),
(14, 15, 7), (15, 16, 2), (16, 17, 1), (17, 18, 6),
(18, 19, 1), (19, 20, 2), (20, 21, 1)]

p = [(2, 3, 8), (4, 5, 6), (6, 7, 3), (14, 15, 10), (17, 18, 5),
(19, 20, 1)]

In some applications we shall use the aggregated value of a temporal quantity a = ((si, fi, vi))
k
i=1.

It is defined as

Σa =
k∑

i=1

(fi − si) · vi

and is computed using the procedure total. For example Σa = 23 and Σb = 30. Note that
Σa+ Σb = Σ(a+ b).

The description of temporal partitions has the same form as the description of temporal
quantities a = ((si, fi, vi))

k
i=1. They differ only in the interpretation of values vi. In the case of

partitions vi = k means that the unit described with a belongs to a class k in the time interval
[si, fi). We shall use temporal partitions to describe connectivity components in Section 8.

We obtain a more adequate description of temporal networks by using vectors of temporal
quantities (temporal vectors and temporal partitions) for describing properties of nodes and

7

a :

a

● ●

1 5 10 15 20
wMax = 10

b :

b

● ●

1 5 10 15 20
wMax = 10

a + b :

a+b

● ●

1 5 10 15 20
wMax = 10

a · b :

a*b

● ●

1 5 10 15 20
wMax = 10

Figure 2: Addition and multiplication of temporal quantities.

8

police :

Police

● ●

Jan−19 Jul−19 Jan−20 Jul−20 Jan−21 Jul−21 Jan−22 Jul−22 Jan−23
wMax = 410

fascists :

Fascists

● ●

Jan−19 Jul−19 Jan−20 Jul−20 Jan−21 Jul−21 Jan−22 Jul−22 Jan−23
wMax = 410

all :

All

● ●

Jan−19 Jul−19 Jan−20 Jul−20 Jan−21 Jul−21 Jan−22 Jul−22 Jan−23
wMax = 410

Figure 3: Intensity of violent activities of police, fascists and all.

9

making also link weights into temporal quantities. In the current version of library TQ we use
a representation of a network N with its matrix A = [auv]

auv =

{
w(u, v) (u, v) ∈ L

otherwise

where w(u, v) is a temporal weight attached to a link (u, v).

3.1 Examples
Let us look at some examples of temporal networks.

Citation networks can be obtained from bibliographic data bases such as Web of Science
(Knowledge) and Scopus. In a citation networkN = (V ,L,P ,W , T) its set of nodes V consists
of selected works (papers, books, reports, patents, etc.). There exists an arc (u, v) ∈ L iff the
work u cites the work v. The time set T is usually an interval of years [yearfirst, yearlast]
in which the works were published. The activity set of the work v, T (v), is the interval
[yearpublication(v), yearlast]; and the activity set of the arc a = (u, v), T (a), is the interval
[yearpublication(u), yearlast]. An example of a property p ∈ P is the number of pages. Other
properties, such as work’s authors and keywords, are usually represented as two-mode networks.

Project collaboration networks are usually based on some project data base such as Cordis.
The set of nodes V consists of participating institutions. There is an edge (u : v) ∈ L
iff institutions u and v work on a joint project. The time set T is an interval of dates/days
[dayfirst, daylast]. T (v) = T and T (u, v) = {[s, f] : exists a project P such that u and v are
partners on P ; s is the start and f is the finish date of P}.

KEDS/WEIS networks are networks registering political events in critical regions in the
world (Middle East, Balkans, and West Africa) on the basis of daily news. Originally they were
collected by KEDS (Kansas Event Data System). Currently they are hosted by Parus Analytical
Systems. The set of nodes V contains the involved actors (states, political groups, international
organizations, etc.). The links are directed and are describing the events

(date, actor1, actor2, action)

on a given date actor1 made action on actor2. Different actions are determining different re-
lations – we get a multirelational network L = {La : a ∈ Actions}. The time set is determined
by the observed period [dayfirst, daylast]. Since most of the actors are existing during all the
observed period their node activity time sets are T (v) = T . Another option is to consider as
their node activity time sets the period of their engagement in the region. The activity time set
T (l) of an arc l(u, v) ∈ La contains all dates – intervals [day, day+ 1) – in which actor u made
action a on actor v. Another possibility is to base the description on a single relation network
and store the information about action a as a structured value in a triple (day, day + 1, value)

value = [(action1, count1), (action2, count2), . . . , (actionk, countk)]

and introduce an appropriate semiring over such values.
There are many other examples of temporal networks such as: genealogies, contact net-

works, networks of phone calls, transportation time tables, etc.

10

[(3, 9, 1)]

[(1
, 5

, 1
)]

[(7
, 9

, 1
)]

[(2, 8, 1)]

[(
2,

 8
, 1

)]

[(2
, 8

, 1
)]

1

2

3

4 5

6

7

8

910

11

12

13

14

15

Figure 4: First example network. All unlabeled links have a value [(1, 9, 1)].

4 Node activities and degrees
In this section we show how we can use the proposed operations with temporal quantities for a
simple analysis of temporal networks.

We define the activity between groups of nodes V1 and V2 as

act(V1,V2) =
∑
u∈V1

∑
v∈V2

auv.

To illustrate the notion of activity we applied it on Franzosi’s violence temporal network [12].
Roberto Franzosi collected from the journal news in the period (January 1919 – December
1922) information about the different types of interactions between political parties and other
groups of people in Italy. The violence network contains only the data about violent actions and
counts the number of interactions per month.

We determined the temporal quantities pol = act({police},V) + act(V , {police}), fas =
act({fascists},V) + act(V , {fascists}) and all = act(V ,V). They are presented in Figure 3.
Comparing the intensity charts of police and fascists activity with overall activity we see that
most of the violent activity in the first two years 1919 and 1920 was related to the police. In the
next two years (1921 and 1922) it was taken over by the fascists.

For an ordinary graph with a (binary) adjacency matrix A we can compute the correspond-
ing indegre and outdegree vectors using the relations

i = eT �A and o = A� e

where e is a column vector of size n = |V| with all its entries equal to 1. The same holds
for temporal networks. In this case the vector e contains as values the temporal unit 1. The

11

Table 1: Temporal indegrees and outdegrees for the first example network.

Indegrees Outdegrees
1 : [(1, 9, 1)] 1 : [(1, 9, 1)]
2 : [(1, 9, 2)] 2 : [(1, 3, 1), (3, 9, 2)]
3 : [] 3 : [(1, 9, 1)]
4 : [(1, 3, 1), (3, 9, 2)] 4 : [(1, 9, 1)]
5 : [(1, 9, 1)] 5 : [(1, 5, 2), (5, 9, 1)]
6 : [(1, 9, 1)] 6 : [(1, 9, 1)]
7 : [(1, 5, 1), (7, 9, 1)] 7 : [(1, 9, 3)]
8 : [(1, 9, 2)] 8 : [(1, 9, 2)]
9 : [(1, 9, 2)] 9 : [(1, 9, 2)]

10 : [(1, 9, 3)] 10 : [(1, 9, 1)]
11 : [(1, 9, 2)] 11 : [(1, 7, 1), (7, 9, 2)]
12 : [] 12 : []
13 : [(2, 8, 2)] 13 : [(2, 8, 2)]
14 : [(2, 8, 2)] 14 : [(2, 8, 2)]
15 : [(2, 8, 2)] 15 : [(2, 8, 2)]

procedures for computing degrees are simple – see Algorithm 3. Function MatBin(A) trans-
forms all values in the matrix A to 1; and function VecConst(n) constructs a vector of size n
filled with values [(1,∞, 1)]. For a temporal network presented in Figure 4 the corresponding
temporal indegrees and outdegrees are given in Table 1. For example, node 5 has in the time
interval [1, 5) outdegree 2. Because the arc (5, 7) disappears in time point 5 the outdegree of
node 5 diminishes to 1 in the interval [5, 9).

Algorithm 3 Computing temporal indegrees and outdegrees.

@staticmethod
def inDeg(A):

return(TQ.MatVecLeft(TQ.MatBin(A),TQ.VecConst(len(A))))

@staticmethod
def outDeg(A):

return(TQ.MatVecRight(TQ.MatBin(A),TQ.VecConst(len(A[0]))))

We will use the simple temporal network from Figure 4 also for the illustration of other
algorithms because it allows the users to manually check the presented results.

5 Clustering coefficients
Let us assume that the network N is based on a simple directed graph G = (V ,A) without
loops. From a simple undirected graph we obtain the corresponding simple directed graph by
replacing each edge with a pair of opposite arcs. In such a graph the clustering coefficient,
C(v), of the node v is defined as the proportion between the number of realized arcs among the
node’s neighbors and the number of all possible arcs among the node’s neighbors N(v), that is

C(v) =
|A(N(v))|
k(k − 1)

12

where k is the number of neighbors of the node v. For a node v without neighbors or with a
single neighbor we set C(v) = 0.

The clustering coefficient measures a local density of the node’s neighborhood. A problem
in its applications in network analysis is that the identified densest neighborhoods are mostly
very small. For this reason we provided in Pajek the corrected clustering coefficient, C ′(v),

C ′(v) =
|A(N(v))|
∆(k − 1)

where ∆ is the maximum number of neighbors in graph.
To count the number of realized arcs among the node’s neighbors we use the observation

that each arc forms a triangle with links from its end-nodes to the node v; and that the number of
triangles in a simple undirected graph can be obtained as the diagonal value in the third power
of the graph matrix.

AAA
TTT

TTT
AAA

AAT
ATT

ATT
AAT

TAT
ATA

ATA
TAT

TAA
TTA

TTA
TAA

Figure 5: Counting triangles.

For simple directed graphs the counting of triangles is slightly more complicated. Let us
denote T = AT and S = A + T. From Figure 5 we see that each triangle (determined with a
link opposite to the dark node) appears exactly once in

AAA + AAT + TAT + TAA = AAS + TAS = SAS.

This gives us a simple way to count the triangles which is used in Algorithm 4. Since we need
only the diagonal values of the matrix SAS we applied a special procedure MathProdDiag(A,B)
that determines only the diagonal vector of the product AB. Afterward, to get the clustering
coefficient, we have to normalize the obtained counts. The number of neighbors of the node v is
determined as its degree in the corresponding undirected temporal skeleton graph (in which an
edge e = (v : u) exists iff there is at least one arc between the nodes v and u). The maximum

13

number of neighbors ∆ can be considered either for a selected time point or for the complete
time window. Note that to determine the temporal ∆ we used summing of temporal degrees
over the maxmin semiring (R,max,min,−∞,∞).

In Table 2 and Table 3 the ordinary and the corrected clustering coefficients are presented
for the example network from Figure 4 and its undirected skeleton.

Algorithm 4 Clustering coefficients.

@staticmethod
def clusCoef(A,type=1):
type = 1 - standard clustering coefficient
type = 2 - corrected clustering coefficient / temporal degMax
type = 3 - corrected clustering coefficient / overall degMax

nr = len(A); nc = len(A[0])
if nr!=nc: raise TQ.TQerror("clusCoef: square matrix required")
if (type<1)or(type>3):

raise TQ.TQerror("clusCoef: unsuported type")
Ab = TQ.MatSetDiag(TQ.MatBin(A),TQ.sN)
S = TQ.MatBin(TQ.MatSym(Ab))
deg = TQ.MatVecRight(S,TQ.VecConst(nr))
if type == 1:

fac = TQ.VecProd(deg,TQ.VecSum(deg,
TQ.VecConst(nr,const=[(1,TQ.inf,-1)])))

else:
TQ.maxmin(); delta = []
for d in deg: delta = TQ.sum(delta,d)
if type == 3:

Delta = max([v for (s,f,v) in delta])
delta = [(1,TQ.inf,Delta)]

TQ.combinatorial(); fac = []
degm = TQ.VecSum(deg,TQ.VecConst(nr,const=[(1,TQ.inf,-1)]))
for d in degm: fac.append(TQ.prod(delta,d))

tri = TQ.MatProdDiag(TQ.MatProd(S,Ab),S)
cc = TQ.VecProd(TQ.VecInv(fac),tri)
return(cc)

6 Closures in temporal networks
When the basic semiring (A,+, ·, 0, 1) is closed – an unary closure operation ?with the property

a? = 1 + a · a? = 1 + a? · a, for all a ∈ A

is defined in it – this property can be extended also to the corresponding matrix semiring. For
computing the matrix closure we can apply the Fletcher’s algorithm [7, 2]. In most of semirings,
for which we are interested in determining the closures, also the absorption law holds

1 + a = 1, for all a ∈ A.

In these semirings a? = 1, for all a ∈ A, and therefore the Fletcher’s algorithm can be simplified
and performed in place as implemented in Algorithm 5.

14

Table 2: Clustering coefficients for the first example network.

Clustering coefficient Corrected clustering coefficient
1 : [] 1 : []
2 : [] 2 : []
3 : [] 3 : []
4 : [(1, 3, 0.5), (3, 9, 0.1667)] 4 : [(1, 3, 0.25), (3, 9, 0.125)]
5 : [(1, 5, 0.1667), (5, 9, 0.5)] 5 : [(1, 5, 0.125), (5, 9, 0.25)]
6 : [(1, 9, 0.5)] 6 : [(1, 9, 0.25)]
7 : [(1, 5, 0.25), (5, 9, 0.5)] 7 : [(1, 5, 0.25), (5, 7, 0.375),

(7, 9, 0.5)]
8 : [(1, 7, 0.4167), (7, 9, 0.5)] 8 : [(1, 7, 0.4167), (7, 9, 0.5)]
9 : [(1, 7, 0.4167), (7, 9, 0.5)] 9 : [(1, 7, 0.4167), (7, 9, 0.5)]

10 : [(1, 7, 0.4167), (7, 9, 0.5)] 10 : [(1, 7, 0.4167), (7, 9, 0.5)]
11 : [(1, 9, 0.5)] 11 : [(1, 7, 0.375), (7, 9, 0.5)]
12 : [] 12 : []
13 : [(2, 8, 1.0)] 13 : [(2, 8, 0.5)]
14 : [(2, 8, 1.0)] 14 : [(2, 8, 0.5)]
15 : [(2, 8, 1.0)] 15 : [(2, 8, 0.5)]

Table 3: Clustering coefficients for the skeleton of the first example network.

Clustering coefficient Corrected clustering coefficient
1 : [] 1 : []
2 : [] 2 : []
3 : [] 3 : []
4 : [(1, 3, 1.0), (3, 9, 0.3333)] 4 : [(1, 3, 0.5), (3, 9, 0.25)]
5 : [(1, 5, 0.3333), (5, 9, 1.0)] 5 : [(1, 5, 0.25), (5, 9, 0.5)]
6 : [(1, 9, 1.0)] 6 : [(1, 9, 0.5)]
7 : [(1, 5, 0.5), (5, 9, 1.0)] 7 : [(1, 5, 0.5), (5, 7, 0.75),

(7, 9, 1.0)]
8 : [(1, 7, 0.8333), (7, 9, 1.0)] 8 : [(1, 7, 0.8333), (7, 9, 1.0)]
9 : [(1, 7, 0.8333), (7, 9, 1.0)] 9 : [(1, 7, 0.8333), (7, 9, 1.0)]

10 : [(1, 7, 0.8333), (7, 9, 1.0)] 10 : [(1, 7, 0.8333), (7, 9, 1.0)]
11 : [(1, 9, 1.0)] 11 : [(1, 7, 0.75), (7, 9, 1.0)]
12 : [] 12 : []
13 : [(2, 8, 1.0)] 13 : [(2, 8, 0.5)]
14 : [(2, 8, 1.0)] 14 : [(2, 8, 0.5)]
15 : [(2, 8, 1.0)] 15 : [(2, 8, 0.5)]

15

Algorithm 5 Closure of a temporal matrix over an absorptive semiring.

@staticmethod
def MatClosure(R,strict=False):

nr = len(R); nc = len(R[0])
if nr!=nc: raise TQ.TQerror("MatClosure: square matrix required")
C = deepcopy(R)
for k in range(nr):

for u in range(nr):
for v in range(nr):

C[u][v] = TQ.sum(C[u][v], TQ.prod(C[u][k],C[k][v]))
if not strict: C[k][k] = TQ.sum(TQ.sE,C[k][k])

return(C)

7 Temporal node partitions
In previous sections the nodes of temporal networks were considered as being present all the
time. We can describe the presence of nodes through time using a temporal binary (single
valued) node partition T : V → A (T),

T (u) = ((si, fi, 1))ki=1, for u ∈ V

specifying that a node u is present in time intervals [si, fi), i = 1, . . . , k.
The node partition T determined from the temporal network links by

T (u) =
⋃

l∈L:u∈ext(l)

binary(al),

for u ∈ V , is the smallest temporal partition of nodes that satisfies the consistency condition
from Section 2. The term ext(l) denotes the set of endnodes of the link l, al is the temporal
quantity assigned to the link l, and the function binary sets all values in a given temporal
quantity to 1. In library TQ the partition T can be computed using the procedure minTime.

Temporal node partition T can be used also to extract a corresponding subnetwork from a
given temporal network described with a matrix A. The subnetwork contains only the nodes
active in the partition T and the active links satisfying the consistency condition with respect to
T .

To formalize the described procedure we first define the procedure extract(p, a) = b,
where p is a binary temporal quantity and a is a temporal quantity, as

b(t) =

{
a(t) t ∈ Tp ∩ Ta

otherwise .

Let B be a temporal matrix describing the links of the subnetwork. Its entries for l(u, v) ∈ L
are determined by

bl = extract(T (u) ∩ T (v), al).

In TQ this operation is implemented as a procedure MatExtract(T,A).

16

Table 4: Temporal input and output reachability degrees for the first example network.

Input reachability Output reachability
1 : [(1, 9, 3)] 1 : [(1, 3, 2), (3, 5, 10), (5, 9, 5)]
2 : [(1, 9, 3)] 2 : [(1, 3, 2), (3, 5, 10), (5, 9, 5)]
3 : [] 3 : [(1, 3, 2), (3, 5, 10), (5, 9, 5)]
4 : [(1, 3, 3), (3, 9, 6)] 4 : [(1, 5, 8), (5, 9, 3)]
5 : [(1, 3, 3), (3, 9, 6)] 5 : [(1, 5, 8), (5, 9, 3)]
6 : [(1, 3, 3), (3, 9, 6)] 6 : [(1, 5, 8), (5, 9, 3)]
7 : [(1, 3, 3), (3, 5, 6), (7, 9, 5)] 7 : [(1, 7, 4), (7, 9, 5)]
8 : [(1, 3, 8), (3, 5, 11), (5, 9, 5)] 8 : [(1, 7, 4), (7, 9, 5)]
9 : [(1, 3, 8), (3, 5, 11), (5, 9, 5)] 9 : [(1, 7, 4), (7, 9, 5)]

10 : [(1, 3, 8), (3, 5, 11), (5, 9, 5)] 10 : [(1, 7, 4), (7, 9, 5)]
11 : [(1, 3, 8), (3, 5, 11), (5, 9, 5)] 11 : [(1, 7, 4), (7, 9, 5)]
12 : [] 12 : []
13 : [(2, 8, 3)] 13 : [(2, 8, 3)]
14 : [(2, 8, 3)] 14 : [(2, 8, 3)]
15 : [(2, 8, 3)] 15 : [(2, 8, 3)]

8 Temporal reachability and weak and strong connectivity
For a temporal network represented with the corresponding matrix A its transitive closure A?

(over the reachability semirings based on the semiring ({0, 1},∨,∧, 0, 1)) determines its reach-
ability relation matrix. We obtain its weak connectivity temporal matrix W as

W = (A + AT)?

and its strong connectivity temporal matrix S as

S = A? ∩ (A?)T .

The use of the strict transitive closure instead of a transitive closure in these relations preserves
the inactivity value [] on the diagonal for all isolated nodes.

8.1 Reachability degrees
Let R = A = AA? be the strict reachability relation of a given network. Then the temporal
vectors inReach and outReach determined by

TQ.reach()
R = TQ.MatClosure(TQ.MatBin(A),strict=True)
TQ.combinatorial()
inReach = TQ.inDeg(R)
outReach = TQ.outDeg(R)

contain temporal quantities counting the number of nodes: from which a given node v is reach-
able (inReach[v]) / which are reachable from the node v (outReach[v]). The results for
our example network are presented in Table 4. For example, 8 nodes {4, 5, 6, 7, 8, 9, 10, 11} are
reachable from node 6 in the time interval [1, 5), and 3 nodes {4, 5, 6} are reachable in the time
interval [5, 9).

17

8.2 Temporal weak connectivity
The procedure weakConnMat(A) that for a given temporal network matrix A determines the
corresponding temporal weak connectivity matrix is presented in Algorithm 6. We first switch
to the reachability semirings and afterward compute the strict transitive closure W of the binary
version of the symmetrized matrix A.

To transform the obtained temporal equivalence matrix E into the corresponding temporal
partition p we use the fact that on a given time interval equivalent (in our case weakly con-
nected) nodes get the same value on this interval in the product of the matrix E with a diagonal
matrix computed over the combinatorial semiring (N,+, ·, 0, 1). We take for the diagonal val-
ues randomly shuffled integers from the interval 1 : n. With a very high probability the values
belonging to different equivalence classes are different. This is implemented as a procedure
eqMat2Part(E). Maybe in the future implementations we shall add a loop with the check
of the injectivity of this mapping. The classes of the obtained partition are finally renumbered
with consecutive numbers using the procedure renumPart.

To get the weak connectivity partition we have to combine these two procedures

p = TQ.eqMat2Part(TQ.weakConnMat(A))

For our first example network we obtain the temporal weak partition presented in the left side
of Table 5.

Algorithm 6 Weak connectivity.

@staticmethod
def renumPart(p):

C = {}; q = []
for a in p:

r = []
for (sa,fa,ca) in a:

if not(ca in C): C[ca] = 1+len(C)
r.append((sa,fa,C[ca]))

q.append(r)
return(q)

@staticmethod
def weakConnMat(A):

old = TQ.semiring; TQ.reach()
W = TQ.MatClosure(TQ.MatSym(TQ.MatBin(A)),strict=True)
old()
return(W)

@staticmethod
def eqMat2Part(E):

old = TQ.semiring; TQ.combinatorial()
v = [[(1,TQ.inf,i+1)] for i in range(len(E))]
random.shuffle(v)
p = TQ.MatVecRight(E,v)
old()
return(TQ.renumPart(p))

18

Table 5: Temporal weak and strong connectivity partitions for the first example network.

Weak partition Strong partition
1 : [(1, 3, 1), (3, 5, 2), (5, 9, 3)] 1 : [(1, 9, 1)]
2 : [(1, 3, 1), (3, 5, 2), (5, 9, 3)] 2 : [(1, 9, 1)]
3 : [(1, 3, 1), (3, 5, 2), (5, 9, 3)] 3 : []
4 : [(1, 3, 4), (3, 5, 2), (5, 9, 3)] 4 : [(1, 9, 2)]
5 : [(1, 3, 4), (3, 5, 2), (5, 9, 3)] 5 : [(1, 9, 2)]
6 : [(1, 3, 4), (3, 5, 2), (5, 9, 3)] 6 : [(1, 9, 2)]
7 : [(1, 3, 4), (3, 5, 2), (5, 9, 5)] 7 : [(7, 9, 3)]
8 : [(1, 3, 4), (3, 5, 2), (5, 9, 5)] 8 : [(1, 7, 4), (7, 9, 3)]
9 : [(1, 3, 4), (3, 5, 2), (5, 9, 5)] 9 : [(1, 7, 4), (7, 9, 3)]

10 : [(1, 3, 4), (3, 5, 2), (5, 9, 5)] 10 : [(1, 7, 4), (7, 9, 3)]
11 : [(1, 3, 4), (3, 5, 2), (5, 9, 5)] 11 : [(1, 7, 4), (7, 9, 3)]
12 : [] 12 : []
13 : [(2, 8, 6)] 13 : [(2, 8, 5)]
14 : [(2, 8, 6)] 14 : [(2, 8, 5)]
15 : [(2, 8, 6)] 15 : [(2, 8, 5)]

8.3 Temporal strong connectivity
The procedure strongConnMat(A) that for a given temporal network matrix A determines
the corresponding temporal strong connectivity matrix is presented in Algorithm 7. The pro-
cedure MatInter(A,B) determines the intersection of temporal network binary matrices A
and B.

Algorithm 7 Strong connectivity.

@staticmethod
def strongConnMat(A):

old = TQ.semiring; TQ.reach()
R = TQ.MatClosure(TQ.MatBin(A),strict=True)
S = TQ.MatInter(R,TQ.MatTrans(R))
old()
return(S)

Again, to get the strong connectivity partition we have to apply the procedure eqMat2Part
to the strong connectivity matrix

s = TQ.eqMat2Part(TQ.strongConnMat(A))

For our first example network we obtain the temporal strong partition presented in the right
hand side of Table 5.

9 Temporal closeness and betweenness
Closeness and betweenness are among the traditional social network analysis indices measuring
the importance of nodes [8]. They are somehow problematic when applied to non (strongly)
connected graphs. In this section we will not consider these questions. We will only show how
to compute them for nonproblematic temporal graphs.

19

[(5, 9, 1)]

[(1, 4, 1), (6, 9, 1)]

[(3, 7, 1)]

1

2

3

4

5

6

7

8

Figure 6: Second example network. All unlabeled arcs have value [(1, 9, 1)].

9.1 Temporal closeness
The output closeness of the node v is defined as

ocl(v) =
n− 1∑

u∈V\{v}

dvu
.

To determine the closeness we need first to compute the the matrix D = [duv] of geodetic
distances duv between nodes u and v. It can be obtained as a closure of the network matrix A
over the shortest paths semiring (R+

0 ,min,+,∞, 0). Note that the values in the matrix A can
be any nonnegative real numbers.

In Figure 6 we present our second example temporal network which is an extended version
of the example given in Figure 3 from [2].

Because a complete strict closure matrix D is too large to be listed we present only some of
its selected entries:

D[3,1] = [(3, 7, 3), (7, 9, 5)]
D[4,6] = [(1, 4, 1), (4, 6, 5), (6, 9, 1)]
D[6,3] = [(3, 5, 6), (5, 9, 4)]
D[7,6] = [(1, 9, 4)]

To compute the vector of closeness coefficients of nodes we have to sum the temporal dis-
tances to other nodes over the combinatorial semiring. While summing we replace gaps (in-
activity intervals) with time intervals with value infinity, using the procedure fillGaps. See
Algorithm 8.

The temporal closeness coefficients for our second example network are given in Table 6.

20

Algorithm 8 Temporal closeness.

@staticmethod
def closeness(A,type=2):

type: 1 - output, 2 - all, 3 - input
(s,f,x,y) = TQ.MatSummary(A)
old = TQ.semiring; TQ.path(); n = len(A)
D = TQ.MatClosure(A,strict=True)
cl = [[] for i in range(n)]; TQ.combinatorial()
fac = [(1,TQ.inf,(n-1)*(2 if type==2 else 1))]
for v in range(n):

d = []
for u in range(n):

if u!=v:
if type<3: d = TQ.sum(d,TQ.fillGaps(D[v][u],s,f))
if type>1: d = TQ.sum(d,TQ.fillGaps(D[u][v],s,f))

cl[v] = TQ.prod(fac,TQ.invert(d))
old()
return(cl)

Table 6: Output closeness for the second example network.

1 : [(1, 9, 0.4375)]
2 : [(1, 3, 0.0000), (3, 5, 0.4375), (5, 9, 0.5833)]
3 : [(1, 3, 0.0000), (3, 7, 0.4375), (7, 9, 0.3889)]
4 : [(1, 3, 0.0000), (3, 4, 0.4375), (4, 6, 0.3500),

(6, 7, 0.4375), (7, 9, 0.3500)]
5 : [(1, 3, 0.0000), (3, 7, 0.4375), (7, 9, 0.3500)]
6 : [(1, 3, 0.0000), (3, 5, 0.2917), (5, 9, 0.3500)]
7 : [(1, 3, 0.0000), (3, 7, 0.4375), (7, 9, 0.3500)]
8 : [(1, 3, 0.0000), (3, 5, 0.3500), (5, 9, 0.4375)]

9.2 Temporal betweenness
The betweenness of the node v is defined as

b(v) =
1

(n− 1)(n− 2)

∑
u,w∈V

|{v,u,w}|=3

nu,w(v)

nu,w

where nu,w is the number of u-w geodesics and nu,w(v) is the number of u-w geodesics passing
through the node v.

Suppose that we know the matrix

C = [(du,v, nu,v)]

where du,v is the length of u-v geodesics. Then it is also easy to determine a temporal quantity
nu,w(v):

nu,w(v) =

{
nu,v · nv,w du,v + dv,w = du,w
0 otherwise .

This gives the following procedure for computing the betweenness coefficients b

21

compute C;
for v ∈ V do begin

r := 0;
for u ∈ V do for w ∈ V do

if n[u,w] 6= 0 ∧ |{v, u, w}| = 3 ∧ d[u,w] = d[u, v] + d[v, w] then
r := r + n[u, v] ∗ n[v, w]/n[u,w];

b[v] := r/((n− 1) ∗ (n− 2))
end;

In [2] it is shown that the matrix C can be obtained by computing a closure of the network
matrix over the geodetic semiring (N2

,⊕,�, (∞, 0), (0, 1)), where N = N∪{∞} and we define
addition ⊕ with:

(a, i)⊕ (b, j) = (min(a, b),


i a < b
i+ j a = b
j a > b

)

and multiplication � with:
(a, i)� (b, j) = (a+ b, i · j).

The implementation of geodetic semiring in TQ library is presented as Algorithm 9.
To compute the geodetic closure we first transform the network temporal adjacency matrix

A to a matrix G = [(d, n)u,v] which has for entries pairs defined by

(d, n)u,v =

{
(1, 1) (u, v) ∈ L
(∞, 0) otherwise

where d is the length of a shortest path and n is the number of shortest paths between u and v.
In temporal networks the distance d and the counter n are temporal quantities.

Following the presented scheme of computing the betweenness vector and adapting it to
temporal quantities (see Algorithm 10) in procedure betweenness we first transform the
network matrix A into a matrix G with values (1, 1) on arcs and compute its strict geodetic
closure C over the geodetic semiring.

Again we present only some selected entries of strict geodetic closure matrix C for our
second example network:

C[1,7] = [(1, 9, (3, 4))]
C[2,2] = [(1, 3, (4, 4)), (3, 4, (4, 6)), (4, 5, (4, 5)), (5, 9, (2, 1))]
C[4,6] = [(1, 4, (1, 1)), (4, 6, (5, 3)), (6, 9, (1, 1))]
C[5,5] = [(1, 9, (1, 1))]
C[6,3] = [(3, 5, (6, 2)), (5, 9, (4, 1))]
C[7,6] = [(1, 3, (4, 2)), (3, 4, (4, 6)), (4, 6, (4, 3)), (6, 7, (4, 6)),

(7, 9, (4, 2))]

For example, the value C[4, 6] reflects the facts that an arc exists from node 4 to node 6 in
time intervals [1, 4) and [6, 9); and in time interval [4, 6) they are connected with 3 geodesics of
length 5: (4, 7, 8, 2, 5, 6), (4, 7, 1, 3, 5, 6), (4, 7, 1, 2, 5, 6).

We continue and using the combinatorial semiring we compute the temporal betweenness
vector bw. The specificity of temporal quantities d[u, v] and n[u, v] is considered in the proce-
dure between that implements the temporal version of the statement

22

Algorithm 9 Geodetic semirings.

@staticmethod
def geoAdd(a,b):

(av,ac) = a; (bv,bc) = b
return((min(av,bv), ac if av<bv else ac+bc if av==bv else bc))

@staticmethod
def geoMul(a,b):

(av,ac) = a; (bv,bc) = b
return((av+bv,ac*bc))

@staticmethod
def geodetic():

TQ.sAdd = TQ.geoAdd; TQ.sMul = TQ.geoMul
TQ.sZero = (TQ.inf,0); TQ.sOne = (0,1)
TQ.sN = []; TQ.sE = [(1,TQ.inf,TQ.sOne)]
TQ.semiring = TQ.geodetic

Table 7: Betweenness for the second example network.

1 : [(3, 4, 0.2500), (4, 6, 0.2754), (6, 7, 0.2500), (7, 9, 0.1429)]
2 : [(1, 3, 0.3452), (3, 4, 0.4048), (4, 6, 0.4187), (6, 7, 0.4048), (7, 9, 0.6071)]
3 : [(1, 3, 0.0595), (3, 4, 0.0952), (4, 6, 0.1052), (6, 7, 0.0952), (7, 9, 0.0595)]
4 : [(1, 3, 0.1667), (3, 4, 0.2500), (4, 5, 0.1762), (5, 6, 0.1048), (6, 9, 0.1786)]
5 : [(1, 3, 0.1667), (3, 4, 0.2500), (4, 5, 0.3476), (5, 6, 0.2762), (6, 9, 0.1786)]
6 : [(1, 3, 0.1190), (3, 4, 0.0952), (4, 6, 0.0544), (6, 7, 0.0952), (7, 9, 0.1786)]
7 : [(1, 3, 0.1190), (3, 4, 0.4048), (4, 5, 0.4694), (5, 6, 0.3266), (6, 7, 0.2619),

(7, 9, 0.1786)]
8 : [(1, 3, 0.3095), (3, 4, 0.2500), (4, 6, 0.2484), (6, 7, 0.2500), (7, 9, 0.5238)]

if d[u,w] = d[u, v] + d[v, w] then r := r + n[u, v] ∗ n[v, w]/n[u,w]
from the betweenness algorithm.

The temporal betweenness coefficients for our second example network are presented in
Table 7.

10 Temporal PathFinder
The Pathfinder algorithm was proposed in the eighties (Schvaneveldt et al. 1988; Schvaneveldt
1990) [24, 25] for the simplification of weighted networks – it removes from the network all
links that do not satisfy the triangle inequality – if for a weighted link there exists a shorter path
connecting its endnodes then the link is removed. The basic idea of the Pathfinder algorithm
is simple. It produces a network PFnet(W, r, q) = (V ,LPF) determined by the following
procedure

compute W(q);
LPF := ∅;
for e(u, v) ∈ L do begin

if W(q)[u, v] = W[u, v] then LPF := LPF ∪ {e}

23

Algorithm 10 Temporal betweenness.

@staticmethod
def between(uv,vw,uw):

if len(uv)==0: return([])
if len(vw)==0: return([])
if len(uw)==0: return([])
r = []; A = uv.__iter__(); B = vw.__iter__(); C = uw.__iter__()
(sa,fa,va) = TQ.get(A); (sb,fb,vb) = TQ.get(B); (sc,fc,vc) = TQ.get(C)
if type(va) is tuple: (da,ca) = va
if type(vb) is tuple: (db,cb) = vb
if type(vc) is tuple: (dc,cc) = vc
while (sa<TQ.inf) or (sb<TQ.inf) or (sc<TQ.inf):

sr = max(sa,sb,sc); fr = min(fa,fb,fc)
if fa <= sr:

(sa,fa,va) = TQ.get(A)
if type(va) is tuple: (da,ca) = va

elif fb <= sr:
(sb,fb,vb) = TQ.get(B)
if type(vb) is tuple: (db,cb) = vb

elif fc <= sr:
(sc,fc,vc) = TQ.get(C)
if type(vc) is tuple: (dc,cc) = vc

else:
if da+db == dc: r.append((sr,fr,ca*cb/cc))
if fr == fa:

(sa,fa,va) = TQ.get(A)
if type(va) is tuple: (da,ca) = va

if fr == fb:
(sb,fb,vb) = TQ.get(B)
if type(vb) is tuple: (db,cb) = vb

if fr == fc:
(sc,fc,vc) = TQ.get(C)
if type(vc) is tuple: (dc,cc) = vc

return(TQ.standard(r))

@staticmethod
def betweenness(A):

G = TQ.MatSetVal(A,(1,1))
old = TQ.semiring; TQ.geodetic(); n = len(G)
C = TQ.MatClosure(G,strict=True)
bw = [[] for i in range(n)]
TQ.combinatorial()
fac = [(1,TQ.inf,1/(n-1)/(n-2))]
for v in range(n):

b = []
for u in range(n):

for w in range(n):
if (C[u][w]!=[]) and (u!=w) and (u!=v) and (v!=w):

b = TQ.sum(b,TQ.between(C[u][v],C[v][w],C[u][w]))
bw[v] = TQ.prod(b,fac)

old()
return(bw)

end;

24

where W is a network dissimilarity matrix and W(q) =
⊕q

i=1 W
i = (1⊕W)q is the matrix of

values of all walks of length at most q computed over the Pathfinder semiring (R+

0 ,⊕,2r ,∞, 0)
with a2r b = r

√
ar + br and a⊕ b = min(a, b).

The implementation of the Pathfinder semiring is presented in the initial part of Algo-
rithm 11. The scheme of Pathfinder is expressed as the procedure pathFinder. The temporal
version of the statement

if W(q)[u, v] = W[u, v] then LPF := LPF ∪ {e}
is implemented in the procedure PFcheck.

Algorithm 11 Temporal PathFinder.

@staticmethod
def Minkowski():

if TQ.rPF==TQ.inf: return(max)
if TQ.rPF==1: return(operator.add)
if TQ.rPF==2: return(lambda a,b: sqrt(a*a+b*b))
else: return(lambda a,b: (a**TQ.rPF+b**TQ.rPF)**(1/TQ.rPF))

@staticmethod
def PFsemi():

TQ.sAdd = min; TQ.sMul = TQ.Minkowski()
TQ.sZero = TQ.inf; TQ.sOne = 0
TQ.sN = []; TQ.sE = [(1,TQ.inf,0)]
TQ.semiring = TQ.PFsemi

@staticmethod
def PFcheck(a,b):

if len(a) == 0: return(a)
if len(b) == 0: return(a)
c = []; A = a.__iter__(); B = b.__iter__()
(sa,fa,va) = TQ.get(A); (sb,fb,vb) = TQ.get(B)
while (sa<TQ.inf) or (sb<TQ.inf):

if fa <= sb: (sa,fa,va) = TQ.get(A)
elif fb <= sa: (sb,fb,vb) = TQ.get(B)
else:

sc = max(sa,sb); fc = min(fa,fb)
if vb == va: c.append((sc,fc,va))
if fc == fa: (sa,fa,va) = TQ.get(A)
if fc == fb: (sb,fb,vb) = TQ.get(B)

return(TQ.standard(c))

@staticmethod
def pathFinder(W,r=1,q=inf):

nr = len(W); nc = len(W[0])
if nr!=nc: raise TQ.TQerror("pathFinder: square matrix required")
PF = [[[] for v in range(nr)] for u in range(nr)]
old = TQ.semiring; rold = TQ.rPF; TQ.rPF = r; TQ.PFsemi()
Z = TQ.MatClosure(W) if q>nr else TQ.MatPower(TQ.MatSetDiag(W,TQ.sE),q)
TQ.rPF = rold; old()
for u in range(nr):

for v in range(nr):
PF[u][v] = TQ.PFcheck(W[u][v],Z[u][v])

return(PF)

25

[(1
, 9

, 3
)]

[(1, 9, 1)]

[(1, 9, 5)]
[(1, 9, 1)]

[(1, 9, 3)]

[(1, 9, 7)]

[(
1,

 9
, 1

)]

[(1, 5, 3), (5, 9, 1)]

[(1, 9, 5)]

[(1
, 9

, 1
)]

[(1, 9, 3)]

[(1, 4, 2), (4, 9, 1)]
[(1, 9, 4)]

[(
1,

 9
, 2

)]

1

2

3
4

5

6

7

[(1, 9, 1)]

[(1, 5, 5)]

[(1, 9, 1)]

[(
1,

 9
, 1

)]

[(5, 9, 1)]

[(1, 4, 5)]

[(1
, 9

, 1
)]

[(1, 4, 3)]

[(1, 4, 2), (4, 9, 1)]

[(1, 4, 4)]
[(

1,
 9

, 2
)]

1

2

3
4

5

6

7

Figure 7: Pathfinder example.

26

The bottom network in Figure 7 presents the Pathfinder skeleton PFnet(N , 1,∞) of a net-
work N presented in the top part of the same figure. Because r = 1 a link e is removed if
there exists a path, connecting its initial node to its terminal node, with the value (sum of link
values) smaller than the value of the link e. The arc (1, 2) is removed because 3 = v(1, 2) >
v(1, 3)+v(3, 2) = 2. The arc (1, 6) is removed in the time interval [5, 9) because in this interval
5 = v(1, 6) > v(1, 3) + v(3, 4) + v(4, 5) + v(5, 6) = 4.

11 September 11th Reuters terror news
Reuters terror news network was obtained from the CRA networks produced by Steve Corman
and Kevin Dooley at Arizona State University [5]. The network is based on all the stories
released during 66 consecutive days by the news agency Reuters concerning the September 11
attack on the U.S., beginning at 9:00 AM EST 9/11/01. The nodes of this network are words
(terms); there is an edge between two words iff they appear in the same text unit (sentence).
The weight of an edge is its frequency. The network has n = 13332 nodes (different words in
the news) and m = 243447 edges, 50859 with value larger than 1. There are no loops in the
network.

The Reuters terror news network was used as a case network for the Viszards visualization
session on the Sunbelt XXII International Sunbelt Social Network Conference, New Orleans,
USA, 13-17. February 2002.

We transformed the Pajek version of the network into the Ianus format used in TQ. To iden-
tify important terms we computed their aggregated frequencies and extracted the subnetwork of
50 most active (during 66 days) nodes. They are listed in Table 8.

Trying to draw this subnetwork it turns out to be almost a complete graph. To obtain some-
thing readable we removed all temporal edges with a value smaller than 10. The corresponding
underlying graph is presented in Figure 8. The isolated nodes were removed.

For each of the 50 nodes we determined its temporal activity and drew it. By visual inspec-
tion we identified 6 typical activity patterns – types of terms (see Figure 9). For all charts in
the figure the displayed values are in the interval [0, 200] – the largest activity value for term
Wednesday is larger than 200.

The primary terms are the terms with a very high frequency of appearance in the first week
after September 11th and smaller, slowly declining values in the following period. The repre-
sentative of this group in Figure 9 is hijack and other members are: airport, american, attack,
city, day, flight, nation, New York, official, Pentagon, people, plane, police, president Bush,
security, tower, United States, Washington, world, World Trade center. These are the terms
describing the event.

The secondary terms are a reaction to the event. There are no big changes in the values. We
identified three subgroups: a) slowly declining represented with bin Laden (country, foreign,
government, military, minister, new, Pakistan, tell, terrorism, terrorist, time, war, week); b) sta-
tionary represented with taliban (afghan, Afghanistan, force, group, leader); and c) occasional
with several peaks, represented with bomb (air, building, office, strike, worker).

There are three special patterns – two periodic Wednesday and Tuesday; and one episodic
anthrax.

To consider also the node’s position in the network in a measure of importance of the node

27

Table 8: 50 most frequent terms in the Terror news network.

n term Σfreq n term Σfreq
1 united states 15000 26 terrorism 2212
2 attack 10348 27 day 2128
3 taliban 6266 28 week 2017
4 people 5286 29 worker 1983
5 afghanistan 5176 30 office 1967
6 bin laden 4885 31 group 1966
7 new york 4832 32 air 1962
8 pres bush 4506 33 minister 1919
9 washington 4047 34 time 1898

10 official 3902 35 hijack 1884
11 anthrax 3563 36 strike 1818
12 military 3394 37 afghan 1775
13 plane 3078 38 flight 1775
14 world trade ctr 3006 39 tell 1746
15 security 2906 40 terrorist 1745
16 american 2825 41 airport 1741
17 country 2794 42 pakistan 1714
18 city 2689 43 tower 1685
19 war 2679 44 bomb 1674
20 tuesday 2635 45 new 1650
21 pentagon 2620 46 buildng 1634
22 force 2516 47 wednesday 1593
23 government 2380 48 nation 1589
24 leader 2375 49 police 1587
25 world 2213 50 foreign 1558

28

united_states

attack

taliban

people

afghanistan

bin_laden

new_york

pres_bush
washington

official

anthrax

military

plane

world_trade_ctr

security

american

country

city

war

tuesday

pentagon

government

leader

world

terrorism

week

office

group

air minister

hijack

strike

flight

terrorist

airport

pakistan

tower

bomb

new

buildng

wednesday

nation

foreign

PajekFigure 8: September 11th.

u ∈ V we constructed the attraction coefficient att(u).
Let W = [wuv] be a network matrix. We assume that the weights of links are positive

wuv > 0. We define the node activity act(u) as (see Section 4)

act(u) = act({u},V \ {u}) =
∑

v∈V\{u}

wuv.

Then the attraction of the node u is defined as

att(u) =
1

∆

∑
v∈V\{u}

wvu

act(v)
.

Note that the fraction wvu

act(v) is measuring the proportion of the activity of the node v that is
shared with the node u.

From 0 ≤ wvu

act(v) ≤ 1 and deg(v) = 0⇒ wvu = 0 it follows that∑
v∈V\{u}

wvu

act(v)
≤ deg(u) ≤ ∆.

Therefore we have 0 ≤ att(u) ≤ 1, for all u ∈ V .
The maximum possible attraction value 1 is attained exactly for nodes: a) in undirected

network: that are the root of a star; b) in directed network: that are the only out-neighbors of
their in-neighbors – the root of a directed in-star.

29

hijack :

hijack

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

bin Laden :

bin_laden

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

taliban :

taliban

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

bomb :

bomb

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

Wednesday :

wednesday

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

anthrax :

anthrax

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

Figure 9: Types of activity.

30

Table 9: 30 most attractive terms in the Terror news network.

n term Σatt n term Σatt
1 united states 12.216 16 war 2.758
2 taliban 7.096 17 force 2.596
3 attack 7.070 18 new york 2.590
4 afghanistan 5.142 19 government 2.496
5 people 5.023 20 day 2.338
6 bin laden 4.660 21 leader 2.305
7 anthrax 4.601 22 terrorism 2.202
8 pres bush 4.374 23 time 2.182
9 country 3.317 24 group 2.072

10 washington 3.067 25 afghan 2.040
11 security 2.939 26 world 1.995
12 american 2.922 27 week 1.961
13 official 2.831 28 pakistan 1.943
14 city 2.798 29 letter 1.866
15 military 2.793 30 new 1.851

We computed the temporal attraction and the corresponding aggregated attraction values
for all the nodes in our network. We selected 30 nodes with the largest aggregated attraction
values. They are listed in Table 9. Again we visually explored them. In Figure 10 we present
temporal attraction coefficients for the 6 selected terms. For all charts in the figure the displayed
attraction values are in the interval [0, 0.2].

Comparing on the common terms (taliban, bomb, anthrax) the activity charts in Figure 9
with the corresponding attraction charts in Figure 10 we see that they are “correlated” (obvi-
ously act(a)(t) = 0 implies att(a)(t) = 0), but different in details.

For example, the terms taliban and bomb have small attraction values at the beginning of
the time window – the terms were disguised by the primary terms. On the other hand, the terms
taliban and Kabul get increased attraction towards the end of the time window.

12 Conclusions
In the paper we proposed an algebraic approach to the “deterministic” analysis of temporal
networks with zero latency and presented algorithms for the temporal variants of basic network
analysis measures and concepts. We expect that the support for many temporal variants of other
network analysis notions can be developed in similar ways.

All the described algorithms (and some others) are implemented in a Python library TQ
(temporal quantities). We started to develop a program Ianus that will provide an user-friendly
(Pajek like) access to the capabilities of TQ library.

The results obtained from temporal procedures are relatively large. To identify interesting
elements we used in the paper the aggregated values and the visualization of selected elements.
Additional tools for browsing the results should be developed.

31

pres Bush :

pres_bush

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

Pakistan :

pakistan

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

taliban :

taliban

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

Kabul :

kabul

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

bomb :

bomb

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

anthrax :

anthrax

● ●

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

Figure 10: Attraction patterns.

32

Acknowledgements.
The work was supported in part by the ARRS, Slovenia, grant J5-5537, as well as by grant
within the EUROCORES Programme EUROGIGA (project GReGAS) of the European Science
Foundation.

References
[1] Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the

ACM 26, 11, 832-843, November 1983.

[2] Batagelj, V.: Semirings for social networks analysis. Journal of Mathematical Sociology,
19(1994)1, 53-68.

[3] Batagelj, V.: Social Network Analysis, Large-Scale. R.A. Meyers, ed., Encyclopedia of
Complexity and Systems Science, Springer 2009: 8245-8265

[4] Bell, M.G.H., Iida, Y.: Transportation Network Analysis. Chichester: Wiley, 1997

[5] Corman, S.R., Kuhn, T., McPhee, R.D., Dooley, K.J.: Studying complex discursive sys-
tems: Centering resonance analysis of communication. Human Communication Research,
28(2002)2: 157-206.

[6] Correa, J.R., Stier-Moses, N.E.: Wardrop Equilibria. Wiley Encyclopedia of Operations
Research and Management Science, 2011.

[7] Fletcher, J.G.: A more general algorithm for computing closed semiring costs between
vertices of a directed graph. CACM 23 (1980), 350-351.

[8] Freeman, L.C.: Centrality in Social Networks; Conceptual Clarification. Social Networks
1 (1978), 215-239.

[9] Casteigts, A., Flocchini, P.: Deterministic Algorithms in Dynamic Networks: For-
mal Models and Metrics Commissioned by Defense Research and Development Canada
(DRDC), 82p, 2013.

[10] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and
dynamic networks. International Journal of Parallel, Emergent and Distributed Systems,
27(2012)5, 387-408.

[11] Dechter, R. (ed.): Constraint Processing. Morgan Kaufmann, San Francisco, 2003.

[12] Franzosi, R.: Mobilization and Counter-Mobilization Processes: From the “Red Years”
(1919-20) to the “Black Years” (1921-22) in Italy. A New Methodological Approach to
the Study of Narrative Data. Theory and Society, 26(1997)2-3, 275-304.

[13] George, B., Kim, S., Shekhar, S.: Spatio-temporal Network Databases and Routing Al-
gorithms: A Summary of Results. D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD
2007, LNCS 4605, Springer-Verlag, Berlin, Heidelberg, pp. 460-477, 2007.

33

[14] Holme, P., Saramäki, J.: Temporal networks. Physics Reports. Vol 519, Issue 3, 2012, p
97–125.

[15] Holme, P., Saramäki, J. (Eds.): Temporal Networks. Understanding Complex Systems.
Springer, 2013.

[16] D. Kempe, J. Kleinberg, A. Kumar. Connectivity and inference problems for temporal
networks. Proc. 32nd ACM Symposium on Theory of Computing, 2000.

[17] Kolaczyk, E.D.: Statistical Analysis of Network Data: Methods and Models. New York:
Springer, 2009.

[18] Kontoleon, N., Falzon, L., Pattison, P.: Algebraic structures for dynamic networks. Journal
of Mathematical Psychology, 57(2013)6, 310–319.

[19] Moder, J.J., Phillips, C.R: Project Management with CPM and Pert. Second Edition, Van
Nostrand Reinhold, 1970.

[20] Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph Metrics
for Temporal Networks. Chapter in Petter Home and Jari Saramaki (Editors). Temporal
Networks. Springer. 2013, 15-40.

[21] de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek
(Structural Analysis in the Social Sciences), revised and expanded second edition. Cam-
bridge University Press, Cambridge, 2012.

[22] Snijders, T.: Siena. http://www.stats.ox.ac.uk/ snijders/siena/

[23] Riordan, J.: Introduction to combinatorial analysis. New York: Wiley, 1958.

[24] Schvaneveldt, R. W., Dearholt, D. W., Durso, F. T.: Graph theoretic foundations of
Pathfinder networks. Comput. Math. Applic. 15(1988)4, 337-345.

[25] Schvaneveldt, R.W. (Ed.): Pathfinder Associative Networks: Studies in Knowledge Orga-
nization. Norwood, NJ: Ablex, 1990.

[26] Vilain, M., Kautz, H., Van Beek, P.: Constraint Propagation Algorithms for Temporal
Reasoning; A revised Report. In D.S. Weld, J. de Kleer (eds.) Readings in Qualitative
Reasoning about Physical Systems, p 373-381, Morgan Kaufmann, 1990.

34

http://www.stats.ox.ac.uk/~snijders/siena/

	Introduction
	Description of temporal networks
	Journeys – walks in temporal networks

	Temporal quantities
	Examples

	Node activities and degrees
	Clustering coefficients
	Closures in temporal networks
	Temporal node partitions
	Temporal reachability and weak and strong connectivity
	Reachability degrees
	Temporal weak connectivity
	Temporal strong connectivity

	Temporal closeness and betweenness
	Temporal closeness
	Temporal betweenness

	Temporal PathFinder
	September 11th Reuters terror news
	Conclusions

