A FORMULA INVOLVING THE NUMBER OF 1-FACTORS IN A GRAPH

Vladimir Batagelj*, Dragoš Cvetković** and Ivan Gutman***

- * Department of Mathematics, Edvard Kardelj University, Jadranska 19, POB 14, 61111 Ljubljana, Yugoslavia
 - ** University of Belgrade, Faculty of Electrical Engineering, POB 816, 11001 Beograd, Yugoslavia
 - *** University of Kragujevac, Faculty of Sciences, 34000 Kragujevac, Yugoslavia

ABSTRACT

A formula connecting the number of 1-factors in some subgraphs of a graph is proved.

A set of independent edges that cover all vertices of a graph is called a 1-factor of that graph. The number of 1-factors of a graph G is denoted by K(G), with K(G) = 1 if G has no vertices.

<u>Proposition 1.</u> If the edge u of a graph G with an even number of vertices joins the vertices x and y, then

(1)
$$K(G-x-y) \cdot K(G-u) = \sum_{z} (K(G-z))^{2},$$

where Z is a circuit of G and the summation on the r.h.s. of (1) runs over all even circuits of G containing the edge u.

<u>Proof.</u> Let A and B be the sets of 1-factors of G which contain and which do not contain u. Then

$$|A| = K(G-x-y)$$
, $|B| = K(G-u)$.

If $a_i \in A$ and $b_j \in B$, then $c_{ij} = a_i \cup b_j$ contains an even circuit Z passing through u. Both $a_i' = a_i \setminus Z$ and $b_j' = b_j \setminus Z$ are 1-factors of G-Z. The number of c_{ij} 's containing Z is equal to the number of ordered pairs (a_i', b_j') , i.e. $(K(G-Z))^2$. Since the total number of c_{ij} 's is equal to |A||B|, we get (1).

This completes the proof.

Formula (1) has been proved in [1] for hexagonal animals and its validity is now extended to all graphs with an even number of vertices.

Let now G be a graph with an odd number of vertices. Subdividing the edge u with the new vertex z we obtain from G the graph G(u/z). Let us look for a number of 1-factors in G(u/z). There are two possibilities represented in the Fig.1.

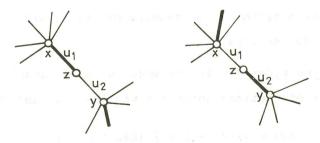


Fig. 1.

It is evident that

(2)
$$K(G(u/z)-x-z) = K(G-x) = K(G(u/z)-u_2),$$

$$K(G(u/z)-y-z) = K(G-y) = K(G(u/z)-u_1).$$

By (1) it follows also

(3)
$$K(G(u/z)-x-z) \cdot K(G(u/z)-u_1) = \sum_{z} (K(G(u/z)-z))^2$$
,

where Z runs over all even circuits of G(u/z) containing the edge u_1 ; and from (3) considering (2) we finally obtain the following proposition.

<u>Proposition 2.</u> If the edge u of a graph G with an odd number of vertices joins the vertices x and y, then

(4)
$$K(G-x) \cdot K(G-y) = \sum_{Z} (K(G-Z))^{2},$$

where Z runs over all odd circuits of G containing the edge u.

Because graphs with odd number of vertices have no 1-factor we can combine (1) and (4) in the following theorem.

Theorem. If the edge u of a graph G joins the vertices x, y, then

$$K(G-x) \cdot K(G-y) + K(G-x-y) \cdot K(G-u) = \sum_{z} (K(G-z))^{2}$$

where Z runs over all circuits of G containing the edge u.

ACKNOWLEDGEMENT

Support has been given by the Mathematical Institute, Beograd.

REFERENCES

[1] I. Gutman, Topological properties of benzenoid systems.VI.
On Kekulé structure count, Bull.Soc.Chim. Beograd
46 (1981), 411-415.