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Almost all the papers dealing with the quadrstic hash methods
- have considered the case when the table size is a prime nurber.

In this paper it is shown that, contrary to what is normally

ﬁ)‘“\‘

L
assumed, for the greestest part of tables whose size is not 2
prime number there exists a quadretic hash method whose period
of search equals the table size.: . A
YEY WORDS AND PHRASES: quadratic search, hash code, scatter
storage, table 'gize .

B In the literature dominstes the convinction thet the period of
. the quadratic search, when the table size is not a prime nurber,
6 i)

\‘\"/

is usually too small for effective use [1] . For this reason

. . . for the_tables, .
the papers deal mainly with the quadratic methods)whose size is
a prime number. The only exception,‘that I know, is the sequence

z. == 2z_+ Ri + %i(i+1) (pod Zk)

e ()

due to Hopgood and Davenport Ir2] , which has the period of cearch

K o . . 9 . . "
2% - R . The coefficients in this quadratic expression are rot

mothad
Tetnodsg

all integers; so it is still possible, that the quadretic search
with integer coefficients for the tables whose size is not a

prime number ere really worse (&he period of search is 16930?) .
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I tried to show this - I found out the opposite.
Consider the sequence
} | z; Exz + al + bi? (moa ¢) (1)
for 1&=0,1,2,... , where a and b are integer constants and.
d is the table s?ze. The most important question is whether ther

exist indices i and j such that

FESEE and ciCi<a (2)
That ie equivalent .to

f,\\
3
!

& TR =x2(; - i)ca. + b<i + J)) =0 (mod d) (3)

Whenn d 1s a prime number, the result is known [}3 ’ [5] ' [;j ’
The sequence (zi) examines in the first d steps one half of
the table ‘(each entry twice) . This is due to the fact that the

set of residues modulo a prime number is a field. In a field the

equation |
&+ bx &0 (mod d)
hes exactly one solution for any a and b (bﬁ‘o) . If besides
this | '
o a = 0 (mod d) or 8 20 - (mod d>

the sequence (zi> examines a half of the table already in the
first (d+1)/2 steps.
For the primes of the form 4k+3 we can construct a "quadratic"

sequence which exemines the whole table'in‘the first d steps
3] .57 -

The existence of & golution of equation (3) is in our case

actually undesirable. If we cen find the coefficients a and b
for which there do rot exist integers i and J which at the
same time satisfy the condition (2) and the equation (3j>,

then the corresponding sequence (zi) has the period of sesrch
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In many cases we really can find such coefficients. Let d

i
t:]..
e A

H

where p; eare prime numbers, and

"’s
~i€1 :¢9{i:>’1
p Ly V
B &< mpi
1€T
and A satisfy the condition

(s ,B)=1

then the sequence (Zi) with as==A and Db&=BC exarmines

the whole table in the first d steps.’
The proof is trivial. Evidently
cz==a+b(i+ )= a+Bc(i+ 3
is coprime with d
(c y d) =1
For this reason we can divide the equation (3) by ¢ . We
get an.equivalent.equation

j-150 (mod a)
which has no solution under the condition (2) .

Coefficients A and C can be used to reduce secondary
clustering [ﬁ] « If BCEO (mod d) this method reduces
to the linear one propoéed b& Bell and Kamen [7]'.

EXAVPLE 1:  a==2% , k>1 |

+ (ZQ - l)i + 2Ri2 (mod 2#)

for any integer @ and R .

21 = 2,
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EXANPLE 2: 4 ==10% ; 'k>1

Q

Z; B 3, + Qi + 10Ri2- - (mod 10‘)

and R eare integers. Q must be an odd number which last

'figure is not' equal 5 .
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