# Temporal cores in networks 

Vladimir Batagelj, Monika Cerinšek

AS 2016, September $21^{\text {st }} 2016$

## Core of order $k$

Network: $\mathcal{N}=(\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W}) ; n=|\mathcal{V}|, m=|\mathcal{L}|$
k-core (Seidman 1983): A subgraph $\mathcal{H}=(\mathcal{C}, \mathcal{L}(\mathcal{C}))$ induced by the set $\mathcal{C}$ is a $k$-core or a core of order $k$ iff $\forall v \in \mathcal{C}: \operatorname{deg}_{\mathcal{H}}(v) \geq k$ and $\mathcal{H}$ is the maximum subgraph with this property.

The core of maximum order - main core.
The core number of node $v$ is the highest order of a core that contains this node.


## Core decomposition

```
CoreDecomposition ( \(\mathcal{N}\) ):
\(\mathrm{C}=\mathrm{V}\)
\(\mathrm{k}=1\)
while \(C \neq \emptyset\) :
    while \(\exists \mathrm{u} \in C \ni\) : \(\operatorname{deg}(\mathrm{u})<\mathrm{k}\) :
    for \(v \in N(u, C)\) :
                                    \(\operatorname{deg}(v)=\operatorname{deg}(v)-1\)
    \(C=C \backslash v\)
    \(\operatorname{core}(u)=k-1\)
    \(\mathrm{k}=\mathrm{k}+1\)
```


## Temporal network

Temporal network $\mathcal{N}_{\mathcal{T}}=(\mathcal{V}, \mathcal{L}, \mathcal{T}, \mathcal{P}, \mathcal{W})$ is obtained by attaching the time $\mathcal{T}$ to an ordinary network, where $\mathcal{T}$ is a set of time points: $t \in \mathcal{T}$ which are usually integers or reals.


## Temporal quantities

Notion: $T(v)$ - the activity set of time points for the node $v ; T(I)$ the activity set of time points for the link /
Consistency condition: If a link $I(u, v)$ is active at the time point $t$ then its end-nodes $u$ and $v$ should be active at the time $t$ :

$$
T(I(u, v)) \subseteq T(u) \cap T(v)
$$

Temporal quantity a with the activity set $T_{a} \subseteq \mathcal{T}$ describes the changes of properties of nodes and links:

$$
a= \begin{cases}\mathrm{a} \text { '( } \mathrm{t}) & \mathrm{t} \in T_{a} \\ \text { undefined } & \mathrm{t} \in \mathcal{T} \backslash T_{a}\end{cases}
$$

## Core maintenance

The problem of maintaining core numbers for a temporal network．


## Simple algorithm for cores in temporal networks

```
TemporalCores(\mathcal{N}):
D = {u: [triples (start, finish, deg)]}
CoreHierarchy = {u: [triples with deg = 0]}
D = (D.filter(deg > 0)).remove(empty triples)
Dmin = {u: min deg}
while D not empty:
    (dmin, u) = (deg, u) \ni: (u, deg) \in Dmin ^ deg is min deg
    core = [triples from D[u] Э: deg[u] from triple is equal to dmin]
    CoreHierarchy[u].add(core)
    change = core.set (deg = -1)
    D[u] = D[u].add(change).cutAt(dmin) \\ value >= dmin
    for l in N.star(u):
        v = other end-node of l
        if not v in D: continue
        changeLink = I.intersection(change).set (deg = - 1)
        if changeLink empty: continue
        diff = D[v].add(changeLink).cutAt (0) \\ value >= 0
        D[v] = diff.set(max(currentValue, dmin))
        if D[v] is empty:
                                delete D[v], Dmin[v]
        else:
                                Dmin[v] = triple }\inD[v] with min de
    if D[u] empty:
            delete D[u], Dmin[u]
    else:
        Dmin[u] = triple }\inD[u] with min deg
return CoreHierarchy
```


## Artificial example

| Node | Degree |
| :---: | :--- |
| $\mathbf{1}$ | $(1,9,1)$ |
| $\mathbf{2}$ | $(1,3,2),(3,9,3)$ |
| $\mathbf{3}$ | $(1,9,1)$ |
| $\mathbf{4}$ | $(1,3,2),(3,9,3)$ |
| $\mathbf{5}$ | $(1,5,3),(5,9,2)$ |
| $\mathbf{6}$ | $(1,9,2)$ |
| $\mathbf{7}$ | $(1,5,4),(5,7,3),(7,9,4)$ |
| $\mathbf{8}$ | $(1,9,4)$ |
| $\mathbf{9}$ | $(1,9,4)$ |
| $\mathbf{1 0}$ | $(1,9,4),(7,9)$ |
| $\mathbf{1 1}$ | $(1,7,3),(7,9,4)$ |
| $\mathbf{1 2}$ | $(1,9,0),(2,8),(8,9,0)$ |
| $\mathbf{1 3}$ | $(1,2,0),(2,8,2),(8,9,0)$ |
| $\mathbf{1 4}$ | $(1,2,0),(2,8,2),\left(\begin{array}{l}\text {（1）} \\ \mathbf{1 5}\end{array}\right.$ |
|  | $(1,2,0),(2,8,2),(8,9,0)$ |

## Core number

$(1,9,1)$
（1，9，1）
$(3,9,1)$
（1，9，2）
（1，9，2）
（1，9，2）
$(1,7,3),(7,9,4)$
$(1,7,3),(7,9,4)$
$(1,7,3),(7,9,4)$
$(1,7,3),(7,9,4)$
（1，7，3），（7，9，4）
（1，9，0）
$(1,2,0),(2,8,2),(8,9,0)$
$(1,2,0),(2,8,2),(8,9,0)$
$(1,2,0),(2,8,2),(8,9,0)$


## Real-life example - Reuters terror news network ${ }^{1}$

Obtained from the CRA (Centering Resonance Analysis) networks produced by Steve Corman and Kevin Dooley at Arizona State University.

Based on all the stories released during 66 consecutive days by the news agency Reuters concerning the September 11 attack on the U.S., beginning at 9:00 AM EST 9/11/01.

Nodes: important words (terms), $\mathrm{n}=13332$
Lines: two nodes appear in the same utterance, $\mathrm{m}=243447$, undirected, weight is equal to the frequency of appearance, 50859 of them have the weight larger than 1 . No loops.

Example: induced subnetwork on 50 most active nodes.

## Real-life example - Reuters terror news network

## Node Degree

$1(1,2,5),(2,3,6),(3,4,3),(4,5,5),(5,6,4),(6,8,3),(8,10,5),(10,11,3),(11,13,2),(13$, $16,3),(16,17,4),(17,18,5),(18,19,3),(19,21,1),(21,22,2),(22,23,1),(23,24,4),(24$, $25,1),(25,29,3),(29,31,2),(31,33,3),(33,34,1),(34,36,3),(36,37,2),(37,39,3),(39$, $40,4),(40,41,2),(41,42,0),(42,43,3),(43,44,2),(44,45,3),(45,46,1),(46,47,2),(47$, $48,3),(48,49,0),(49,50,4),(50,51,1),(51,52,2),(52,53,1),(53,54,0),(54,58,2),(58$, $59,3),(59,60,2),(60,61,4),(61,62,0),(62,64,2),(64,65,1),(65,67,2)$
2 $(1,2,27),(2,3,29), \ldots,(63,64,2),(64,65,0),(66,67,0)$
$\mathbf{5 0}(1,2,3),(2,3,2),(3,5,1),(5,8,0),(8,10,1),(10,11,2),(11,12,1),(12,15,0),(15,16,3)$, $(16,17,1),(17,19,0),(19,20,1),(20,21,2),(21,22,0),(22,24,1),(24,26,0),(26,27,2)$, $(27,28,0),(28,29,1),(29,31,0),(31,32,1),(32,33,0),(33,35,1),(35,37,0),(37,38,1)$, $(38,42,0),(43,44,2),(44,49,0),(49,50,2),(51,57,0),(58,61,0),(61,62,1),(62,67,0)$

## Node Core number

$1(1,2,4),(2,3,5),(3,5,3),(5,6,4),(6,8,3),(8,10,4),(10,11,3),(11,14,2),(14,18,3)$, $(18,19,2),(19,21,1),(21,22,2),(22,23,1),(23,24,3),(24,25,1),(25,28,2),(28,29,3)$, $(29,33,2),(33,34,1),(34,38,2),(38,39,3),(39,41,2),(41,42,0),(42,45,2),(45,46,1)$, $(46,47,2),(47,48,3),(48,49,0),(49,50,3),(50,51,1),(51,52,2),(52,53,1),(53,54,0)$, $(54,57,2),(57,58,1),(58,59,2),(59,60,1),(60,61,2),(61,62,0),(62,64,2),(64,65,1)$, (65, 67, 2)
$2(1,3,5),(3,6,4),(6,7,5), \ldots,(63,64,1),(64,65,0),(66,67,0)$
$50(1,3,2),(3,5,1),(5,8,0),(8,10,1),(10,11,2),(11,12,1),(12,15,0),(15,16,3),(16,17$, 1), (17, 19, 0), (19, 20, 1), (20, 21, 2), (21, 22, 0), (22, 24, 1), (24, 26, 0), (26, 27, 1), $(27,28$, $0),(28,29,1),(29,31,0),(31,32,1),(32,33,0),(33,35,1),(35,37,0),(37,38,1),(38,42$, $0),(43,44,1),(44,49,0),(49,50,2),(51,57,0),(58,61,0),(61,62,1),(62,67,0)$

## Real-life example - Reuters terror news network

| Node |  | Core number $(\geq 3)$ |
| :--- | :--- | :--- |
| 1 | united_states | $(1,2,4),(2,3,5),(5,6,4),(8,10,4)$ <br> 2 |
| attack | $(1,3,5),(3,6,4),(6,7,5),(7,10,4),(11,12,4)$, |  |
| 4 | people | $(30,31,4)$ <br> $(1,3,5),(3,6,4),(6,7,5),(7,8,4)$ <br> 5 |
| afghanistan | $(1,3,4),(5,6,4),(6,7,5),(8,10,4),(30,31,4)$ |  |
| 6 | bin_laden | $(1,4,4),(5,6,4),(6,7,5),(7,10,4),(11,12,4)$ |
| 7 | new_york | $(1,3,5),(3,6,4),(6,7,5),(30,31,4)$ |
| 8 | pres_bush | $(1,3,5),(3,6,4),(6,7,5),(7,10,4),(11,12,4)$ |
| 9 | washington | $(1,3,5),(3,6,4),(6,7,5),(7,10,4),(11,12,4)$ |
| 10 | official | $(1,3,5),(3,4,4),(5,6,4),(6,7,5)$ |
| 12 | military | $(1,2,4),(5,6,4),(30,31,4)$ |
| 13 | plane | $(1,3,5),(3,7,4)$ |
| 14 | world_trade_ctr | $(1,3,5),(3,6,4),(6,7,5),(30,31,4)$ |
| 15 | security | $(1,2,4),(2,3,5),(5,6,4)$ |
| 16 | american | $(2,3,4)$ |
| 17 | country | $(1,3,4),(5,10,4)$ |
| 18 | city | $(1,3,5),(3,4,4)$ |
| 19 | war | $(1,2,4),(2,3,5),(5,8,4)$ |
| 20 | tuesday | $(1,3,5),(3,7,4)$ |
| 21 | pentagon | $(1,3,5),(3,4,4),(5,6,4),(6,7,5)$ |
| 22 | force | $(5,6,4)$ |
| 23 | government | $(1,3,4),(5,6,4)$ |
| 24 | leader | $(1,4,4),(6,10,4)$ |


| Node <br> 25 | world | Core number $(\geq 3)$ <br> $(1,3,5),(3,10,4)$ |
| :--- | :--- | :--- |
| 26 | terrorism | $(2,3,4)$ |
|  |  |  |
| 27 | day | $(2,3,4),(5,6,4)$ |
| 28 | week | $(5,6,4),(6,7,5),(8,10,4),(11,12,4)$ |
| 29 | worker | $(1,2,4),(2,3,5)$ |
| 30 | office | $(1,3,4)$ |
| 31 | group | $(2,3,4),(6,7,4)$ |
| 32 | air | $(2,3,4),(5,6,4)$ |
| 34 | time | $(1,3,5),(3,4,4),(5,6,4),(7,8,4)$ |
| 35 | hijack | $(2,3,4)$ |
| 36 | strike | $(2,3,4),(5,6,4),(6,7,5),(30,31,4)$ |
| 38 | flight | $(2,3,4)$ |
| 39 | tell | $(2,3,4)$ |
| 40 | terrorist | $(1,3,4),(6,7,4)$ |
| 41 | airport | $(2,3,4)$ |
| 42 | pakistan | $(2,3,4),(5,7,4)$ |
| 43 | tower | $(1,3,5),(3,4,4),(6,7,5)$ |
| 45 | new | $(2,3,4)$ |
| 47 | wednesday | $(2,3,5),(3,4,4),(8,10,4)$ |
| 48 | nation | $(1,3,4),(5,6,4)$ |
| 49 | police | $(2,4,4),(5,6,4)$ |

## Real-life example - Stem cell research ${ }^{2}$

A data set on the stem cell research during 1997-2012 in Spain collected by Gisela Cantos-Mateos consisting of data on papers about stem cell research in the SCI (Science Citation Index).

Nodes: Spanish institutions, $\mathrm{n}=577$
Lines: collaborations between institutions, $\mathrm{m}=8578$.

[^0]
## Real-life example - Stem cell research

| Node |  | $\begin{aligned} & \text { Core number }(\geq 20) \\ & (2010,2011,20),(2011,2012,21) \end{aligned}$ | Node |  | $\begin{aligned} & \text { Core number }(\geq 20) \\ & (2008,2009,25) \end{aligned}$ | Node |  | Core number ( $\geq 20$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | HCSC/M |  | 3 | IN/A |  |  | CIC- <br> IBMCC/SA | (2010, 2011, 20), (2011, 2013, 22) |
| 6 | HUS/SA | (2008, 2009, 25), (2010, 2011, 20), <br> (2011, 2012, 21), (2012, 2013, 22) | 8 | IDIBELL/B | (2011, 2012, 20) | 9 | UB/B | $\begin{aligned} & (2008,2009,25),(2010,2011,20), \\ & (2011,2013,22) \end{aligned}$ |
| 10 | UNIZAR/Z | (2008, 2009, 21), (2012, 2013, 21) | 11 | USAL/SA | $\begin{aligned} & (2008,2009,25),(2010,2011,20) \\ & (2011,2013,22) \end{aligned}$ | 12 | HVH/B | (2010, 2011, 20), (2011, 2013, 22) |
| 13 | HNJ/M | (2010, 2011, 20), (2012, 2013, 22) | 16 | ICO/CT | $\begin{aligned} & (2008,2009,25),(2010,2011,20) \\ & (2012,2013,22) \end{aligned}$ | 17 | HMM/MU | (2011, 2012, 22) |
| 259 | HMS/Z | (2011, 2012, 21) | 20 | UPC/B | (2011, 2012, 21), (2012, 2013, 22) | 21 | ICREA/B | (2010, 2011, 20) |
| 22 | HDM/B | (2008, 2009, 21), (2012, 2013, 22) | 23 | UNAV | (2008, 2009, 25), (2011, 2013, 22) | 24 | $\begin{aligned} & \text { UPV- } \\ & \text { EHU } \end{aligned}$ | (2008, 2009, 21), (2010, 2011, 20) |
| 27 | HISC3/M | $\begin{aligned} & (2008,2009,25),(2010,2011,20) \\ & (2011,2013,22) \end{aligned}$ | 543 | PFIZER/M | (2011, 2012, 21) | 32 | HRYC/M | $\begin{aligned} & (2008,2009,21),(2010,2011,20) \\ & (2011,2013,22) \end{aligned}$ |
| 289 | HJXXIII/T | (2008, 2009, 25) | 34 | HCL/V | (2010, 2011, 20), (2011, 2013, 22) | 35 | HUGTIP/B | (2010, 2011, 20), ( $2012,2013,20)$ |
| 36 | UAB/B | $\begin{aligned} & (2008,2009,21),(2010,2011,20) \text {, } \\ & (2011,2013,22) \end{aligned}$ | 37 | US/SE | (2010, 2011, 20) | 38 | UV/V | $\begin{aligned} & (2008,2009,25),(2010,2011,20) \text {, } \\ & (2011,2013,22) \end{aligned}$ |
| 40 | HCL/B | (2010, 2011, 20), (2011, 2013, 22) | 46 | IDIBAPS/B | $(2008,2009,21),(2010,2011,20)$, $(2011,2013,22)$ | 48 | HSCSP/B | $(2008,2009,21),(2010,2011,20)$ $(2011,2013,22)$ |
| 51 | HBST/B | (2008, 2009, 25), (2011, 2012, 21) | 53 | H12O/M | (2008, 2009, 25), (2011, 2013, 21) | 54 | CNB | (2012, 2013, 22) |
| 55 | HUPH/M | (2011, 2012, 21), (2012, 2013, 22) | 57 | HCLB/Z | (2011, 2012, 21) | 58 | HCUN/NA | (2011, 2013, 22) |
| 266 | URL/B | (2012, 2013, 22) | 62 | UAM/M | $\begin{aligned} & (2008,2009,25),(2010,2011,20) \\ & (2011,2013,22) \end{aligned}$ | 63 | UCM/M | $(2008,2009,25),(2010,2011,20)$, $(2011,2013,22)$ $(2011,2013,22)$ |
| 65 | HRS/CO | (2012, 2013, 21) | 66 | HCRUCES/BI | (2011, 2012, 21) | 67 | CIPF/V | (2008, 2009, 21) |
| 69 | UMA/MA | (2008, 2009, 21), (2010, 2011, 20), <br> (2011, 2012, 21), (2012, 2013, 22) | 72 | HUMV/S | (2008, 2009, 25), (2011, 2013, 22) | 73 | UGR/GR | (2011, 2012, 22), (2012, 2013, 20) |
| 74 | CIBERDEM | (2008, 2009, 25) | 75 | SEHH | (2011, 2012, 21), (2012, 2013, 20) | 76 | HULP/M | (2008, 2009, 25), (2010, 2011, 20), $(2011,2013,22)$ |
| 77 | UPV/V | (2008, 2009, 21) | 336 | TERCEL | (2008, 2009, 25) | 81 | HVA/MU | (2011, 2012, 20), (2012, 2013, 21) |
| 82 | UM/MU | (2008, 2009, 25) | 85 | UA/A | (2008, 2009, 25), (2011, 2012, 20) | 87 | HUP/M | (2011, 2013, 22) |
| 344 | HSO/M | (2011, 2012, 21) | 89 | UPF/B | (2008, 2009, 21), (2012, 2013, 22) | 91 | CIBERNED | (2012, 2013, 22) |
| 92 | GENYO/GR | (2011, 2012, 21) | 93 | CBMSO/M | $\begin{aligned} & (2010,2011,20),(2011,2012,22) \\ & (2012,2013,21) \end{aligned}$ | 96 | BACM/GR | (2011, 2013, 22) |
| 272 | ULEON/LE | (2011, 2013, 22) | 310 | SESCAM/TO | (2011, 2012, 21) | 102 | USC | (2011, 2013, 22) |
| 103 | CIBEROBN | (2011, 2012, 21) | 108 | HGJF/CA | (2011, 2012, 21) | 109 | HVN/GR | $\begin{aligned} & (2008,2009,21),(2011,2012,22), \\ & (2012,2013,21) \end{aligned}$ |
| 111 | HANDERSON | (2011, 2012, 21) | 112 | INCYL | $\begin{aligned} & (2008,2009,21),(2010,2011,20) \\ & (2012,2013,21) \end{aligned}$ | 258 | INIA/M | (2012, 2013, 22) |
| 123 | H-JAEN | (2012, 2013, 22) | 124 | HJC/C | (2011, 2012, 20) | 403 | SERGAS/C | ( $2008,2009,25)$ |
| 133 | HCSOL/MA | (2012, 2013, 22) | 134 | IBV/V | (2008, 2009, 25) | 135 | CRG/B | (2008, 2009, 25), ( $2011,2012,21)$ |
| 535 | SERIDA/O | (2011, 2012, 21) | 146 | HSC/GR | (2010, 2011, 20) | 147 | HGM/M | (2010, 2011, 20), (2011, 2013, 22) |
| 149 | IIBM/M | (2011, 2012, 22) | 150 | UNIOVI/O | (2010, 2011, 20) | 153 | UAH/M | (2008, 2009, 25) |
| 176 | HUVR/SE | (2008, 2009, 25), (2011, 2013, 22) | 186 | UVA | (2012, 2013, 22) | 192 | IRB/B | (2011, 2012, 22) |
| 452 | HVS/TO | (2011, 2012, 21) | 80 | HUPLFV/V | $\begin{aligned} & (2008,2009,25),(2010,2011,20) \\ & (2011,2013,22) \end{aligned}$ | 307 | HVB/LE | (2010, 2011, 20) |
| 232 | HUB/B | (2008, 2009, 25) | 492 | UPNA/NA | (2012, 2013, 22) | 253 | UCLM | (2011, 2012, 21), (2012, 2013, 22) |

## Real-life example - Stem cell research

Max core numbers by years


## Real-life example - Violence network ${ }^{3}$

Roberto Franzosi collected from the journal news in the period January 1919 - December 1922 information about the different types of interactions between political parties and other groups of people in Italy. The violence network contains only the data about violent actions and counts the number of interactions per month.

Nodes: groups of people, $\mathrm{n}=29$
Links: violent interactions, $\mathrm{m}=105$

[^1]
## Real-life example - Violence network

| Node |  | Core number ( $\geq 3$ ) |
| :---: | :---: | :---: |
| 16 | workers | (29, 30, 3), (33, 34, 3), (39, 41, 3) |
| 1 | undefined | (29, 30, 3), (39, 40, 3) |
| 2 | ? | $(31,32,3),(33,34,3),(40,41,3)$ |
| 3 | people | $(31,32,3),(33,34,3),(39,40,3)$ |
| 4 | police | $(31,32,3),(33,34,3),(40,41,3)$ |
| 21 | catholics | $(33,34,3)$ |
| 7 | fascists | $(29,30,3),(31,32,3),(33,34,3),(39,41,3)$ |
| 8 | communists | $(29,30,3)$ |
| 10 | socialists | $(31,32,3),(40,41,3)$ |

## Real-life example - Violence network

| Node |  | Core number ( $\geq 2$ ) |
| :---: | :---: | :---: |
| 1 | undefined | $\begin{aligned} & (15,16,2),(17,18,2),(25,29,2),(29,30,3),(31,32,2),(38,39,2),(39,40,3),(41 \\ & 44,2),(45,46,2),(48,49,2) \end{aligned}$ |
| 2 | $?$ | $\begin{aligned} & (14,16,2),(17,18,2),(28,29,2),(31,32,3),(32,33,2),(33,34,3),(34,35,2),(40 \\ & 41,3) \end{aligned}$ |
| 3 | people | $\begin{aligned} & (16,18,2),(23,24,2),(25,26,2),(28,30,2),(31,32,3),(33,34,3),(35,37,2),(39 \\ & 40,3),(41,43,2),(48,49,2) \end{aligned}$ |
| 4 | police | $\begin{aligned} & (11,12,2),(14,20,2),(21,23,2),(29,31,2),(31,32,3),(32,33,2),(33,34,3),(34, \\ & 37,2),(38,40,2),(40,41,3) \end{aligned}$ |
| 5 | land owners | $(15,16,2),(17,20,2),(29,30,2),(36,37,2),(38,40,2),(42,43,2)$ |
| 7 | fascists | $\begin{aligned} & (11,12,2),(16,17,2),(19,20,2),(21,24,2),(25,29,2),(29,30,3),(30,31,2),(31 \text {, } \\ & 32,3),(32,33,2),(33,34,3),(34,37,2),(38,39,2),(39,41,3),(41,44,2),(45,46 \\ & 2),(48,49,2) \end{aligned}$ |
| 8 | communists | $(28,29,2),(29,30,3),(31,33,2),(35,37,2),(43,44,2)$ |
| 9 | workers (agr) | $(15,16,2),(17,20,2),(28,30,2),(31,32,2),(33,35,2),(38,43,2),(45,46,2)$ |
| 10 | socialists | $\begin{aligned} & (11,12,2),(16,18,2),(19,20,2),(22,23,2),(25,26,2),(27,30,2),(31,32,3),(33, \\ & 37,2),(38,40,2),(40,41,3),(41,42,2) \end{aligned}$ |
| 12 | war affected | $(35,36,2),(39,40,2)$ |
| 13 | protesters | $(15,16,2),(21,22,2),(29,30,2),(31,32,2),(38,40,2)$ |
| 16 | workers | $\begin{aligned} & (11,12,2),(14,18,2),(19,20,2),(21,24,2),(25,26,2),(27,29,2),(29,30,3),(30 \\ & 33,2),(33,34,3),(34,37,2),(38,39,2),(39,41,3),(41,44,2),(45,46,2) \end{aligned}$ |
| 17 | the right | $(17,18,2),(41,42,2)$ |
| 19 | populars | $(41,42,2)$ |
| 20 | students | $(17,18,2)$ |
| 21 | catholics | $(33,34,3)$ |
| 25 | republicans | $(26,27,2)$ |
| 26 | thugs | $(29,30,2)$ |
| 27 | prisoners/arrested | $(40,41,2)$ |

## Conclusions

Improve the complexity of the algorithm
Extend the algorithm to generalized temporal cores
Find user friendly presentations of results
Compare with the streaming core algorithms

## Thank you!

## Acknowledgment

The second author was partially sponsored by Slovenian Research Agency (ARRS) - projects Z7-7614 (B) and L7-5554.
dr. Vladimir Batagelj, Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia \& University of Primorska, Koper, Slovenia
vladimir.batagelj@fmf.uni-lj.si
dr. Monika Cerinšek, Abelium d.o.o R\&D, Ljubljana, Slovenia monika@abelium.eu


[^0]:    ${ }^{2}$ Cantos-Mateos, G., Zulueta, M.A., Vargas-Quesada, B., Chinchilla-Rodrıguez, Z., 2014. Estudio evolutivo de la investigacion espanola con celulas madre. Visualizacion e identificacion de las principales l'ıneas de investigacion. El Profesional de la Informacion, 23(3), 259-271

[^1]:    ${ }^{3}$ Franzosi, R., 1997. Mobilization and CounterMobilization Processes: From the Red Years (1919-20) to the Black Years (1921-22) in Italy. A New Methodological Approach to the Study of Narrative Data. Theory and Society, $26(2-3)=275-304$

